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Abstract 

Based on the potential power of human-computer symbiosis, we present a methodology to capture and fuse unconscious 
cognition with high-powered computer analysis to improve the solution to complex computational problems. Unconscious 
cognition can be captured using non-intrusive sensors such as eye trackers when stimuli are controlled, and this system’s 
response signal has the resolution to differentiate between conscious deliberate movements from the unconscious. This post-
processed response signal, when combined with the power of computation, will provide a dynamic pathway to enable enhanced 
discovery and understanding in complex problem-solving domains, aiding effective decision-making. A central result of this 
paper is a methodology that can rank order unconscious cognition responses for prioritization into the computational engine, 
demonstrated using eye-tracking measurements on visual search. 
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1. Introduction 

Based on the potential power of human-computer symbiosis, we present a methodology to capture and fuse 
unconscious cognition with high-powered computer analysis to improve the solution to complex computational 
problems.  

A key assumption is that experts who have been trained in specific scenarios, have intuitions that are accurate 
most of the time. Most researchers and experts agree that intuition is a rapid, associative process that drives 
judgments without the use of deliberate, conscious reasoning [1, 2]. It is this unconscious, rapidly generated 
behavior, we intend to capture and aid via computation. Unconscious cognition can be captured using non-intrusive 
sensors such as eye trackers, and its response signal has the resolution to differentiate deliberate conscious behavior 
from the unconscious. This post-processed response signal, when combined with the power of computation, will 
provide a dynamic pathway, to enable enhanced discovery and understanding in complex problem solving-domains 
aiding effective decision-making. A central result of this paper is a methodology that can rank order unconscious 
cognition responses for prioritization into the computational engine, demonstrated using visual search eye-tracking 
measurements.  

Our review of the literature and prior research resulted in the identification of two ways to elicit intuitive 
cognition: 1) force-choice decision tasks, which elicit non-conscious processing [3], and 2) a probable response-time 
window, which serves as a quantifiable boundary for intuition [4]. Ultimately, this method forces user selection, and 
creates time-pressure conditions upon which responses arise with minimal influence of conscious reasoning. 

As an estimate for a probable response-time window we use knowledge of event-related potential measurements 
through a dense-array EEG within 280ms [5], which serves as a window in which intuition occurs. This measure 
also aligns closely with the prominent P300 measure of neurological reactions to a given stimulus [6]. While 
quantifying intuition like behavior at a neurological level, it is important to note that these measures are event related 
potentials, and do not represent the added time for motor responses (i.e., the time it takes to respond with a choice 
after initial perception of stimuli). This is critical for our purposes because our inputs will be generated through user 
responses, not neurological assessments. Hence, response timings will have to be adjusted for different sensors and 
measurement setups. 

In addition to these force-choice decision tasks and probable response-time window, we signal process the 
response to employ additional and practical measures of unconscious cognition, namely speed to respond to stimuli 
and wavering of response, to help rank order the unconscious cognition inputs. We rank order the measured response 
signals to stimuli using a novel, fuzzy logic-based approach. Preliminary test results using representative test data - 
images (stimuli) and their corresponding responses – are promising and provide preliminary validation of our 
research approach.  

Finally, we illustrate the potential practical benefits of this research by describing realistic application concepts. 
The currently chosen experiments are driven by visual search of images for object identification. Openly available 
image data sets are used to demonstrate how the technology solution combines human unconscious cognition inputs 
with Artificial Intelligence (AI)-based computational methods, to enable robust problem solving and decision 
support. 

2. Experimental methodology 

An eye tracker is a powerful sensor that gives an accurate representation and understanding of an individual’s eye 
movement behavior. The technology has come a long way in the last decade, and it is almost unobtrusive today. It 
currently has a price point (< USD $100) that could facilitate the deployment of such hardware as standard user 
interface in computer systems, in the very near future. However, eye trackers are not mind-reading devices. They can 
tell us where the person looked at, but not why. 

Our goal in this research is to measure eye tracking movements of different users on various image stimuli and 
differentiate movement patterns or behaviors during visual search. We hypothesize that different visual search 
behavioral patterns are induced due to differing levels of unconscious cognition triggers. While we cannot attribute 
the eye movement behavior to specific human thought processes, the grading of these unconscious cognition signals 
could be used as additional inputs in man-machine symbiosis applications.  
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Fig. 1. Image Stimulus and Eye Track. 

To demonstrate our concept, the first task is to set up visual stimuli that are generic for the average adult, and 
does not require any specific domain knowledge or training. We also have to ensure that human eye trace behavior is 
independent of the images that are used. So the goal of experimental design is to present different image categories 
with different complexity and monitor and differentiate eye trace behavior. We can then argue that the technique will 
scale in general. 

We choose the freely downloadable and categorized Corel image database [7] to assemble a visual stimuli. The 
visual stimuli for these experiments is a 10*15 grid of 150 butterfly images, randomly assembled from the image 
database. We call this the background. We replace one of the grid butterfly images with an image of a tiger (Fig. 1). 
The visual search task is to locate the tiger from among the butterflies. The white track is a typical eye trace from 
center of screen to the tiger. 

The image stimulus is presented to the user for only about 5 seconds maximum and the user has to locate the tiger 
within this time period. Thus, this is a forced choice task and the user’s job is to as quickly as possible, locate the 
tiger from among the butterflies and stay focused on the tiger once discovered. Whether the user locates the tiger or 
not, the next visual stimulus image is displayed after the set time interval. The user then initiates the next visual 
search from where they left off from the previous image stimulus. A maximum of 10 image stimuli are presented for 
one experimental run (category), so as not to tire the user.  

The four image stimuli categories reflecting differing levels of complexity in tracking the target are: 
 

1. Keep the background butterfly image grid the same and vary the location of the same tiger image at random. 
2. Keep the background butterfly image grid the same and vary the location of different tiger images at random. 
3. Reassemble the background butterfly image grid with different butterfly images and vary the location of the same 

tiger image at random. 
4. Reassemble the background butterfly image grid with different butterfly images and vary the location of different 

tiger images at random. 
 

User’s eye traces are captured for the four experimental categories above, for ten image stimuli in each category, 
totaling to 40 measurements. For these initial experiments we had four users with ages ranging from 20 to 60. Hence 
there were 160 experiments in total for 4 users each with 40 measurements. The goal was to check for differentiable 
eye trace pattern behaviors while undertaking visual search. The experimental categories cater to differing tiger 
image contrast with respect to the background butterfly images, presenting different difficulties of search. The four 
experimental categories get more complicated from 1 to 4 listed above. Irrespective of the complexity of the image 
stimuli, there are similar patterns of eye trace behavior, across all categories. As the stimuli gets complex there is 
more searching for the target, and hence a more conscious deliberate response. 
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The eye is constantly scanning around to help construct a complete picture of what we are looking at. This 
process is divided into fixation – the pause of the eye movement on a specific area of the visual field and saccades – 
rapid movements of the eye from one fixation to another. Saccades help stitch the complete scene together. Fixations 
take place in our foveal vision, which accounts for nearly half of the visual information sent to our brain and is 
highly detailed and provides complete clarity about what we are looking at [8]. Eye trackers only track an 
individual’s foveal vision, which accounts for less than 8% of our visual field [9]. 

In the first experimental category, for every new stimulus the background image remained the same and the same 
known tiger image was randomly moved around. Without going into the details, the eye perceives the difference 
between the current and previous images and is hence able to detect the new random tiger location with much more 
ease for the first experimental set as compared to the last category, where the background and the tiger image is new 
for every new stimulus. What is being detected by the user could be a change or movement of stimulus in the 
peripheral vision [10] rather than the actual tiger. In this case the visual search is decisive and the eye moves rapidly 
from start point on image to the target tiger image as seen in Fig. 1. When the stimulus includes changing 
backgrounds or the tiger image, contrast is too close to those of neighboring butterflies, hence detection becomes 
difficult and the eye traces a longer path hunting for the tiger. This then becomes a deliberate and conscious search. 

Our intent is to develop a robust methodology by signal processing the eye trace signals to differentiate between 
these two extreme behaviors, a rapid decisive movement versus an indecisive and conscious movement.  

3. Results and discussions 

We have successfully developed a methodology that can differentiate between the two extreme behaviors in eye 
traces during visual search – a rapid decisive movement versus an indecisive and conscious search pattern.  We can 
also show that these two behaviors are universal and independent of the variations in stimuli as tested. These 
behaviors exist on the four categories of images tested. We can further generalize that these results are not dependent 
on the specific images of the butterflies or tiger as in our experiments. 

Eye trace for every image stimulus start at different locations depending on where the eye was at the previous 
stimulus. In Fig. 1 the eye trace started at the center of the screen as it was the first image displayed. In Fig. 2(a)  the 
eye trace started where the eye was looking at the end of the previous image stimuli. Hence we have to normalize 
eye traces to compare responses across different stimuli. Fig. 2(b) shows the normalized eye trace for that in Fig. 
2(a). The starting point is always normalized to (0, 0) and the end point to (1, 1) so that all in-between points are 
scaled to these end points. In practice we take the mean of a group of points at start and end respectively, to ensure 
statistical stability of end points. The straight line connecting the end points is just for reference. 

Fig. 2. (a) Conscious Visual Search; (b) Normalized Eye Trace.  

a b 
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One of the key results of this work is to design a computational routine that can distinguish between a deliberate 
conscious wavering search similar to Fig. 2(a) and that of an unconscious not so wavering search path as in Fig. 1. 
All eye trace responses for stimuli images such as shown in Fig. 1 and Fig. 2(a) are first normalized as shown in Fig. 
2(b). We then extract features from this normalized signal. The features of interest are based on knowledge of 
intuitive like behaviors such as 1) wavering and 2) reaction time.  

Specifically, wavering can be computed as the total path traversed by the eye trace in the normalized plot. Since 
the distance between start and end is normalized to unity, the length of path is an indicator of how much longer it 
took vis-à-vis, a straight line path, the shortest distance between start and end points.  

Reaction time can be represented using various features. We use average velocity around start point and end 
points to be a proxy for reaction. A deliberate move would involve high start velocities. However, a lower end 
velocity around points clustering towards a target end point, would be an indicator of having reached the search goal. 
Note that this does not ensure the participant has found the search goal, but only that the eye has settled on some 
region of interest on the image stimulus. In addition to start and end velocities, we use the average velocity of the 
entire trace and its average acceleration as additional proxies for reaction. Given these five input features 1) Waver 
2) VelRatioStart - average velocity at start point  3) VelRatioEnd - average velocity at end point 4) VelRatio - 
average trace velocity and 5) AccnRatio - average trace acceleration, we can build a rule engine that predicts if the 
eye trace is a deliberate unconscious response - UCog or not. The output of the Fuzzy computation UCog tends to 
unity as the eye trace is classified as an unconscious response.   

We use the Fuzzy logic Toolbox in Matlab® [11] using the Mamdani Method to implement common sense, 
human interpretable, intuitive rules based on the above five input features, to compute the output UCog. The Fuzzy 
Inference Rules shown in Fig.  are easily interpretable. If eye trace input feature, Waver is low then UCog – the 
output of the Fuzzy computation indicating unconscious cognition is high and vice versa. As explained earlier higher 
velocity at start indicates deliberate moves and lower velocity at end indicates settling down to some region, both 
indicative of high UCog. The six rules shown in Fig.  are self-explanatory and have produced good outputs. 

To evaluate the performance of the fuzzy classifier we had to manually annotate all the 160 experiments to look 
for eye traces and evaluate if the trace represented a pattern similar to Fig. 1 or Fig. 2(a). The error was then 
computed as the difference between the fuzzy output and the human evaluation. Fig. 4 shows the errors in the fuzzy 
computational engine. The accuracy is about 90% across the entire experimental set. 

We can further improve the accuracy of this fuzzy engine. However, the purpose of this work was to demonstrate 
a methodology to capture behavior from eye traces that can augment computation.  We have demonstrated that 
computing human behavior signals from eye traces is feasible. The next step is to use this input to augment 
applications. 

 

Fig. 3. Fuzzy Inference Rules. 
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Fig. 4. Fuzzy Rule Evaluation. 

4. Potential applications and future R&D 

In the next phase of our work we are developing applications driven by the fuzzy engine using our technology 
called “Virtual Hyperlink”. We call it virtual as there is no hyperlink marked as such. 

The first one is a browsing application, where when a user’s attention jumps rapidly to another region on the 
screen, additional details of artifacts at the end point of the eye track is presented to the user as a non-intrusive pop 
up window that fades away when the focus of the eye is changed. If the eye focus lingers on the pop up window, the 
user can explore further details, provided the computational engine has access to relevant information to display. 

A second application is for image exploration. Image analysts who have to review a large number of images 
without a specific directed search intent other than to look for domain specific anomalies, can leverage the Virtual 
Hyperlink technology. Their next image presented to the analyst will be based on their eye trace signal behavior on 
the current image stimulus.  Images similar to regions in the image that command their attention will be fed to them 
at a higher rate for evaluation. This could be thought of as a visual directed search.  The analyst looks for artifacts of 
interest and the computation engine delivers images with similar artifacts back to the analyst. Focusing on a different 
artifact set will then drive the computation engine in the new chosen direction. 

5. Conclusions 

We have demonstrated a methodology to capture unconscious cognition using eye tracking signals on image 
stimuli, post-processed by a fuzzy logic engine based on intuitive rules of behavior. Unconscious cognition can be 
captured using non-intrusive sensors such as eye trackers when the stimulus is controlled and its response signal has 
the resolution to differentiate the conscious from the unconscious. Using four different categories of image sets 
across four different users we show that two distinct eye trace behaviors can be detected 1) an unwavering quick and 
direct path towards object of interest and 2) a wavering slower undecided long path searching for a target. These 
behaviors are observed irrespective of the complexity of the visual search problem. 

We then describe two computer applications to improve the solution to complex computational problems by 
fusing computational power with such human behavior responses.   
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