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SUMMARY

Circuit computation requires precision in the timing,
extent, and synchrony of principal cell (PC) firing
that is largely enforced by parvalbumin-expressing,
fast-spiking interneurons (PVFSIs). To reliably coordi-
nate network activity, PVFSIs exhibit specialized
synaptic and membrane properties that promote effi-
cient afferent recruitment such as expression of high-
conductance, rapidly gating, GluA4-containing AMPA
receptors (AMPARs). We found that PVFSIs upregu-
late GluA4 during the second postnatal week coinci-
dent with increases in the AMPAR clustering proteins
NPTX2 and NPTXR. Moreover, GluA4 is dramatically
reduced in NPTX2�/�/NPTXR�/� mice with conse-
quent reductions in PVFSI AMPAR function. Early
postnatal NPTX2�/�/NPTXR�/� mice exhibit delayed
circuit maturation with a prolonged critical period
permissive for giant depolarizing potentials. Juvenile
NPTX2�/�/NPTXR�/� mice display reduced feedfor-
ward inhibition yielding a circuit deficient in rhythmo-
genesis and prone to epileptiform discharges. Our
findings demonstrate an essential role for NPTXs in
controlling network dynamics highlighting potential
therapeutic targets for disorders with inhibition/exci-
tation imbalances such as schizophrenia.

INTRODUCTION

Excitatory afferent recruitment of perisomatic inhibition by

PVFSIs dictates synaptic integration properties of downstream

excitatory PCs (Pouille and Scanziani, 2001; Gabernet et al.,

2005). Such feedforward inhibition provides temporal con-
straints upon excitation-spike coupling that allow for coordina-

tion of firing rates in PC assemblies (Bartos et al., 2007; Klaus-

berger and Somogyi, 2008). Indeed, depression of AMPA and/

or NMDA receptors (AMPAR/NMDAR) selectively within PVFSIs

disrupts their recruitment, yielding deficits in PC entrainment

that may underlie cognitive deficits associated with psychiatric

disorders such as schizophrenia, and predispose circuits to

inhibition/excitation (I/E) imbalances that promote epilepsy or

Alzheimer’s disease (Fuchs et al., 2007; Belforte et al., 2010; Kor-

otkova et al., 2010; Caputi et al., 2012; Maheshwari et al., 2013).

However, relative to PCs, little is known regarding establishment

and regulation of excitatory synapses onto PVFSIs. Recently,

we found that the immediate early gene product neuronal pen-

traxin 2 (NPTX2; or NARP) regulates synaptic drive selectively

onto PVFSIs by promoting activity-dependent accumulation

of GluA4-containing AMPARs (Chang et al., 2010). This regula-

tion by NPTX2 critically dictates PVFSI recruitment to maintain

circuit I/E balance following perturbations to network activity.

The importance of such homeostatic control of PVFSI synaptic

integration is highlighted by findings that NPTX2�/�mice display

increased sensitivity to kindling-induced epilepsy and fail to

exhibit ocular dominance plasticity (Chang et al., 2010; Gu

et al., 2013).

Studies revealing a role for NPTX2 in controlling excitatory

drive on hippocampal PVFSIs were complicated by the require-

ment to pretreat mice with stimuli that induce NPTX2 (Chang

et al., 2010). In prior studies, this was accomplished by adminis-

tering maximal electroconvulsive seizures (MECS) 12–18 hr prior

to analysis. We sought to avoid the need for MECS, since it will

induce other factors that could also contribute to changes in

excitability. NPTX2 belongs to the neuronal pentraxin family

that also includes the neuronal pentraxin 1 (NPTX1) and neuronal

pentraxin receptor/3 (NPTXR/3). All three NPTXs are expressed

in adult brain and form disulfide-linked mixed assemblies that

bind AMPARs (Xu et al., 2003; Sia et al., 2007). Only NPTX2 is

induced by activity (Tsui et al., 1996; Xu et al., 2003). NPTXR is
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Figure 1. Developmental Profile of Hippocampal GluA4 Expression

(A) Representative image illustrating the mature immunolabeling pattern of

GluA4 in wild-type hippocampus (scale bar, 100 mm).

(B) Low-magnification (103) and digitally zoomed panels reveal expression of

GFP and GluA4 in representative sections from Nkx2-1-cre:RCE mice at the

indicated ages (scale bars, 100 and 50 mm for low- and high-magnification

images, respectively).

(C) Group data summarizing the developmental expression of GluA4/XFP

double-positive cells as percentages of the XFP+ population (solid line, left

axis) and GluA4+ population (dashed line, right axis). Mice/sections counted:

2/6, P2; 3/9, P5; 4/10, P10, P14, P21, and P40.
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unique in possessing a transmembrane domain and can func-

tion to anchor NPTX complexes to plasma membranes. Based

on their known cofunctionality, we examined NPTX2�/�/
NPTXR�/� mice and found they exhibit basal deficits in PVFSI

AMPAR function. Accordingly, NPTX2�/�/NPTXR�/� mice pro-

vide a unique opportunity to assess the impact of NPTXs on

synapse development, as well as cellular and circuit function,

without a requirement for perturbed activity. We report that com-

bined loss of NPTX2 and NPTXR markedly reduces GluA4

expression leading to reduced PVFSI AMPAR function and feed-

forward inhibition. The resulting I/E imbalance in NPTX2�/�/
NPTXR�/� mice disrupts hippocampal rhythmogenesis, pro-

motes epileptic activity, and impairs hippocampal-dependent

working memory.

RESULTS AND DISCUSSION

In the mature hippocampus, GluA4-containing AMPARs play an

important role at excitatory synapses on PVFSIs due to their fast

kinetics and high conductance, which promote efficient synaptic

recruitment (Geiger et al., 1995, 1997; Fuchs et al., 2007). This

specialized role is highlighted by the limited expression of

GluA4 within the mature hippocampus being excluded from

PCs and segregated to a sparse population of large cells

concentrated around stratum pyramidale of the CA1-CA3 re-

gions and at the hilar-granule cell layer border in the dentate

gyrus, consistent with PVFSI localization (Figure 1A). However,

early developmental progression of GluA4 in PVFSIs remains

largely unknown due to late PV onset (Seto-Ohshima et al.,

1990). To address this, we employed Nkx2-1-cre:RCE GFP

orNkx2-1-cre:tdTOMRFPmice that report themajority of medial

ganglionic eminence (MGE)-derived interneurons, including

PVFSIs (Tricoire et al., 2010). Immunohistochemical (IHC)

analyses revealed the emergence of GluA4+/GFP+ (or RFP+,

together considered XFP+) cells at postnatal day 5 (P5), then

increasing roughly 10-fold by P14, and leveling off through P40

(Figures 1B and 1C). This contrasts with findings that GluA4 in

hippocampal homogenates is high at P1 and then decreases,

becoming undetectable by P18 (Zhu et al., 2000), highlighting

the importance of cell-type-specific evaluation for minority cell

populations within a circuit. However, our findings are consistent

with progressive upregulation of GluA4 mRNA within putative

PVFSIs over the first 2 postnatal weeks (Okaty et al., 2009).

Thus, GluA4 can be grouped together with a number of hall-

mark proteins expressed by mature PVFSIs such as PV itself,

Kv3 channels, synaptotagmin 2, Nav1.1 sodium channels, and
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Figure 2. Loss of GluA4 in NPTX2–/–/NPTXR–/– Mice
(A) GluA4 expression in representative sections from P21 WT and NPTX2�/�/NPTXR�/� mice (top panels; 103, scale bar, 200 mm) with zoomed images of CA1

and DG (bottom panels; scale bar, 50 mm).

(B) Representative images illustrating GluA4 and PV expression in CA1 of P21WT and NPTX2�/�/NPTXR�/� mice (203, scale bar, 50 mm).

(C) Summary plots of GluA4+/PV+ double-positive cells as percentages of the GluA4+ population (left axis) and the density of GluA4+ cells (right axis) in WT and

NPTX2�/�/NPTXR�/� mice. Mice/sections counted: 5/12, WT; 6/14, NPTX2�/�/NPTXR�/�.
(D) Representative images of PV (green), GluA4 (red), andDAPI (blue) staining in dissociated hippocampal cultures fromwild-type andNPTX2�/�/NPTXR�/�mice.

Low-magnification images (upper, scale bar 150 mm) showmerged fluorescence signals, and digitally zoomed panels (lower panels, scale bar, 40 mm) from boxed

dendritic regions above highlight GluA4 and PV signals in isolation.

(E) Histogram summarizing the percentage of PV+ cells that express GluA4+ in wild-type, NPTX2�/�, NPTXR�/�, and NPTX2�/�/NPTXR�/� mice. A total of 127

PV+ cells from 19 culture dishes of wild-type pups from three different litters, 208 PV+ cells from 19 culture dishes of NPTX2�/�/NPTXR�/� mice from three

different litters, 548 PV+ cells from 12 dishes of NPTX2�/� pups from three litters, and 310 PV+ cells from 12 culture dishes from three NPTXR�/� litters were

examined, with each litter representing a single n. For each litter paired wild-type and knockout cultures were produced, processed, and analyzed in parallel.

(F) Sample electron micrographs from hippocampal sections of wild-type and NPTX2�/�/NPTXR�/� mice illustrating asymmetric synapses (arrowheads) in PV

immunopositive processes (15 nm gold, *) probed for GluA4 (5 nm gold, arrows in WT) (scale bars, 100 nm).

(G) Histogram summarizing the density of GluA4 immunogold label observed at asymmetric synapses onto PV immunopositive dendrites in wild-type and

NPTX2�/�/NPTXR�/� mice. Insets show the percentage of GluA4 labeled versus unlabeled asymmetric synapses in PV immunopositive processes of wild-type

(top) and NPTX2�/�/NPTXR�/� (bottom) mice. A total of 152 asymmetric synapses from two wild-type mice and a total of 82 asymmetric synapses from three

NPTX2�/�/NPTXR�/� mice were examined.

(H) Representative sample western blots for GluA4, along with b-actin, from hippocampal synaptosomal preparations obtained from wild-type, NPTX2�/�,
NPTXR�/�, and NPTX2�/�/NPTXR�/� mice.

(I) Plotted is a quantitative summary of GluA4 levels in hippocampal synaptosomal preparations fromwild-type, NPTX2�/�,NPTXR�/�, andNPTX2�/�/NPTXR�/�

mice. The amount of GluA4 is expressed relative to b-actin, and a total of 18 mice from 14 independent litters for each genotype were paired and analyzed in

parallel.

(J) At left is a representative sample immunoblot of discrete biochemical fractions from wild-type hippocampus probed for GluA4 illustrating preferential par-

titioning of GluA4 into the SPM fraction (S2, postnuclear supernatant; P2, pellet 2; S3, supernatant 3; I, input for sucrose gradient; LM, light membranes; MM,

(legend continued on next page)
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two-pore domain potassium leak channels (TWIK1 and TASK1/

3) that are coordinately upregulated during the first few postnatal

weeks and function in a concerted fashion to differentiate imma-

ture interneurons fated to become PVFSIs into fast perisomatic

targeting inhibitory devices (Du et al., 1996; Doischer et al.,

2008; Okaty et al., 2009; Goldberg et al., 2011).

The developmental increase in GluA4 temporally coincides

with upregulation of the AMPAR-interacting partners NPTX2

and NPTXR (Cho et al., 2008). Based on their known cofunction-

ality, we examined the necessity of these NPTXs for normal

PVFSI function by probing GluA4 expression in P21-30 mice

lacking NPTX2 and NPTXR (NPTX2�/�/NPTXR�/�). Surprisingly,
specific somatic GluA4 signal was absent throughout the hippo-

campus of NPTX2�/�/NPTXR�/�mice (Figures 2A–2C). This loss

was particularly striking for PV+ cells, which comprised the vast

majority of GluA4+ cells in wild-type tissue (Figures 2B and 2C).

To confirm the loss of GluA4 throughout NPTX2�/�/NPTXR�/�

PVFSIs, we also probed hippocampal cultures. Double labeling

for PV andGluA4 confirmed a profound reduction in GluA4 signal

throughout the dendritic arbors of PV-expressing cells cultured

from NPTX2�/�/NPTXR�/� mice (Figures 2D and 2E). Even

when GluA4+ cells were encountered in NPTX2�/�/NPTXR�/�

cultures, dendritic expression was comparatively weak (see Fig-

ure S1A available online), suggesting that synaptic GluA4 is

not spared at the expense of somatic extrasynaptic GluA4.

Indeed, subcellular evaluation of GluA4 at asymmetric synapses

onto PV immunopositive processes in hippocampal sections

confirmed that PVFSIs in NPTX2�/�/NPTXR�/� mice are defi-

cient in synaptic GluA4 content (Figures 2F and 2G). Importantly,

GluA4 expression persisted in PV+ cells cultured from either

NPTX2�/� or NPTXR�/� mice, and the total number of PV+ cells

expressing GluA4 was similar to that of wild-types (Figures 2E

and S1A). These observations are consistent with our prior find-

ings of continued GluA4 expression in NPTX2�/� PVFSIs (Chang

et al., 2010) and further indicate that NPTX2 and NPTXR

compensate for each other to some degree in regulating PVFSI

GluA4. Indeed, presynaptically derived NPTX2 and NPTXR

have both individually been implicated in AMPAR clustering

(Sia et al., 2007; Chang et al., 2010). As loss of NPTX2 or NPTXR

alone does not lead to compensatory increases of other pentrax-

ins (Bjartmar et al., 2006), residual basal NPTX2 and NPTXR

appear capable of driving significant GluA4 expression. Consis-

tent with our IHC findings, biochemical analyses of hippocampal

synaptosomal and synaptic plasma membrane preparations

(SPMs) further confirmed a dramatic reduction in GluA4 levels

in NPTX2�/�/NPTXR�/�mice relative to wild-type and NPTX2�/�

or NPTXR�/� mice (Figures 2H–2J). Moreover, loss of GluA4 in

NPTX2�/�/NPTXR�/� mice was evident in cerebellum (Figures

S1B and S1C), suggesting a conserved role for pentraxins in

regulating GluA4 expression throughout the nervous system.

Maturation and circuit integration of PVFSIs has been linked to

the formation of perineuronal nets (PNNs) that accumulate pref-

erentially around these cells and control critical period plasticity
microsomal membranes; SPM, synaptic plasma membranes; Mito, mitochondria

NPTXR�/� SPMs run in parallel and probed for GluA4 (upper blot) and actin (lowe

synapses (SPM GluA4/actin = 5.8 ± 1.3 and 0.57 ± 0.08 for WT and NPTX2�/�

throughout are mean ± SEM; *p < 0.05, Student’s t test or Mann-Whitney U Test
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during network development (Pizzorusso et al., 2002; Gogolla

et al., 2009). Interestingly, PNN formation surrounding PVFSIs

proceeds with a developmental profile that directly parallels

GluA4 expression within PVFSIs (Figures 3A and 3B). Moreover,

PNNs are implicated in NPTX2-mediated GluA4 clustering in

mature PVFSIs as a homeostatic response to elevated circuit ac-

tivity (Chang et al., 2010). Thus, it is conceivable that failure of

NPTX2�/�/NPTXR�/� PVFSIs to upregulate GluA4 relates to

deficient PNN formation. However, we found no difference in

PNNs labeled with Wisteria floribunda agglutinin (WFA) sur-

rounding PV+ cells of wild-type andNPTX2�/�/NPTXR�/� hippo-

campal sections, revealing that NPTX2 and NPTXR are not

instructive for PNNs (Figures 3C and 3D). In addition to PNNs,

the AMPAR accessory protein stargazin/TARPg2 is enriched in

PVFSIs and has been implicated in regulating PVFSI AMPAR

content (Tomita et al., 2003; Maheshwari et al., 2013; Tao

et al., 2013). Consistent with these reports, immunoprecipitation

of GluA4 from hippocampal synaptic plasmamembranes copre-

cipitates stargazin in wild-type mice (Figure 3E), raising the

possibility that the loss of GluA4 in NPTX2�/�/NPTXR�/� mice

occurs secondarily to loss of stargazin. Indeed, in stargazin

mutant mice GluA4 is reportedly reduced at parallel fiber-inter-

neuron synapses of the cerebellum (Shevtsova and Leitch,

2012) and selectively lost in nucleus reticularis of the thalamus

(RTN) (Barad et al., 2012). However, biochemical analyses re-

vealed continued expression of stargazin in the hippocampus

of NPTX2�/�/NPTXR�/� mice with preferential partitioning into

the SPM fraction similar to wild-type mice (Figure 3F). Moreover,

an antibody that recognizes stargazin (and TARPg8) continues to

label NPTX2�/�/NPTXR�/� PV+ cells (Figure 3G), and GluA4 re-

mains present in stargazin�/� mice (Figure S1D). The continued

expression of GluA4 in PVFSIs of stargazin�/� mice conflicts

with findings at corticothalamic inputs to RTN and may reflect

compensation in hippocampal PVFSIs by TARPg8 which also

coprecipitated with hippocampal GluA4 (data not shown). None-

theless, our findings clearly indicate that loss of GluA4 in

NPTX2�/�/NPTXR�/�mice is not related to changes in stargazin.

We also probed whether NPTX2�/�/NPTXR�/� mice exhibit

altered expression of ErbB4, a receptor tyrosine kinase impli-

cated in PVFSI AMPAR expression and localization (Fazzari

et al., 2010; Ting et al., 2011). While ErbB4 was found to interact

with GluA4, we did not detect any changes in ErbB4 levels of

NPTX2�/�/NPTXR�/� mice (Figures S1E–S1G). Despite the pro-

found reduction of GluA4 protein in NPTX2�/�/NPTXR�/� mice,

in situ hybridization and quantitative PCR revealed similar

expression of GluA4 mRNA in wild-type and NPTX2�/�/
NPTXR�/� mice (Figures 3H–3K). Thus, NPTX2�/�/NPTXR�/�

PVFSIs are not deficient in GluA4 transcription, suggesting a

role in regulating GluA4 translation or protein stability.

To determine if the loss of GluA4 in NPTX2�/�/NPTXR�/�

PVFSIs translates to a functional synaptic deficit, we examined

excitatory inputs to PVFSIs. NPTX2�/�/NPTXR�/� mice ex-

hibited a severe reduction in AMPA/NMDA ratios at both granule
). At right is a representative sample immunoblot of wild-type and NPTX2�/�/
r blot) illustrating the loss of GluA4 signal in NPTX2�/�/NPTXR�/� hippocampal

/NPTXR�/�, respectively; p = 0.02, n = 3 mice per genotype). Values plotted

as appropriate. See also Figure S1.
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Figure 3. Normal PNN, Stargazin, and GluA4 mRNA Levels in NPTX2–/–/NPTXR–/– Mice

(A) Representative images of PNN staining with WFA in Nkx2-1-cre:RCE hippocampal sections obtained at the developmental time points indicated (scale bar,

100 mm).

(B) Group data plot illustrating the time course for PNN formation around GFP+ cells in Nkx2-1-cre:RCEmice. Mice/sections counted: 2/6, P2; 3/3, P5; 2/6, P10;

3/5, P14; 2/6, P21; and 3/5, P40.

(legend continued on next page)
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cell- and medial perforant path inputs to PVFSIs (Figures 4A and

4B). This was not accompanied by changes in paired-pulse ratio

(PPR) or AMPAR rectification, suggesting that presynaptic func-

tion is unaltered and that residual AMPARs remain calcium

permeable (Figures 4A and 4B), likely comprised of GluA1 homo-

mers (Geiger et al., 1997). As pentraxins do not interact with

NMDARs, the altered AMPA/NMDA ratio in NPTX2�/�/
NPTXR�/�mice likely reflects reduced AMPAR-mediated trans-

mission rather than enhanced NMDAR function. Indeed, AM-

PAR-mediated spontaneous excitatory postsynaptic currents

(sEPSCs) exhibited slower decay kinetics and were reduced in

amplitude and frequency inNPTX2�/�/NPTXR�/� PVFSIs versus

wild-type controls (Figures 4C and 4D). Interestingly, deficits in

PVFSI AMPAR function were not observed in either NPTX2�/�

or NPTXR�/� single knockouts (Figures 4B and 4D) despite

modest decreases in total hippocampal GluA4 probed biochem-

ically (Figure 2I). This lack of synaptic phenotype in single knock-

outs is consistent with our prior findings (Chang et al., 2010) and

the continued expression of GluA4 in most PVFSIs of NPTX2�/�

or NPTXR�/� mice (Figure 2E).

Reduced AMPAR function in PVFSIs is expected to disrupt

efficient synaptic recruitment of these cells and thus compro-

mise feedforward perisomatic inhibition, promoting a circuit I/E

imbalance in downstream PCs (Pouille and Scanziani, 2001;

Gabernet et al., 2005). To probe whether reduced AMPAR

function in NPTX2�/�/NPTXR�/� PVFSIs alters I/E balance, we

examined disynaptic inhibition in the Schaffer collateral-CA1

pyramidal cell (SC-CA1 PC) circuit. Compared to wild-types,

NPTX2�/�/NPTXR�/� mice exhibited reduced feedforward inhi-

bition when normalized to monosynaptic excitation in SC-CA1

PC recordings (Figures 4E and 4F). As SC-CA1 PC excitation

was not different between wild-type and NPTX2�/�/NPTXR�/�

slices (inset, Figure 4F), the altered I/E ratio reflects a reduction

in recruited inhibition rather than increased excitatory drive at

SC-CA1 synapses. Importantly, total density of PVFSIs was

comparable between wild-type and NPTX2�/�/NPTXR�/�

mice, indicating that similar numbers of PVFSIs are available

for recruitment in the two genotypes (PV+ cell density of

NPTX2�/�/NPTXR�/� was 91% ± 7% of that observed in wild-

types, e.g., Figures 2B and 3C). Indeed, the developmental

trajectory of hippocampal PV expression was similar in wild-

type and NPTX2�/�/NPTXR�/�mice (Figures S2A and S2B).
(C and D) Representative images (C) and group data (D) illustrating the colocaliz

wild-type and NPTX2�/�/NPTXR�/� mice (scale bar, 35 mm). Mice/sections coun

(E) Representative immunoblots illustrating that pull-down of GluA4 from hippo

GluA4 itself (IP lanes). Also shown are the input (IN) and flowthrough (FT) materials

9% of available SPM stargazin coprecipitated with GluA4, n = 4 mice).

(F) Representative western blots of the indicated cell fractions from wild-type an

stargazin (g2) and TARPg8 (g8; upper blot) or GluA4 (lower blot). SPM stargazin/a

respectively, p = 0.66, n = 3 mice per genotype.

(G) Representative images of PV+ cells fromwild-type andNPTX2�/�/NPTXR�/�m

(scale bar, 50 mm).

(H) Representative single-trial qPCR amplification plots for GluA4 mRNA (solid

NPTXR�/� hippocampi. Relative fluorescence intensities (deltaRn) are plotted ag

(I) Group data summarizing the abundance of GluA4mRNA (relative to GADPH) in

experiments using RNA from three independent litters of each genotype were pe

(J and K) Representative sample images (J) and group data summary (K) of wild-t

mRNA by fluorescent in situ hybridization (scale bar, 50 mm). Cells/sections/mice
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Moreover, basic membrane properties of NPTX2�/�/NPTXR�/�

PVFSIs were comparable to wild-types (Figures 4G and 4H).

Finally, PVFSI GABA release probed with the oxytocin receptor

agonist TGOT, which selectively drives PVFSI firing (Owen

et al., 2013), was similar in wild-type and NPTX2�/�/NPTXR�/�

slices (Figures 4I and 4J). Thus, reduced disynaptic inhibition in

NPTX2�/�/NPTXR�/� mice likely reflects diminished PVFSI

afferent-driven recruitment due to impaired AMPAR function

within these cells rather than deficits in PVFSI numbers, impaired

spike generation, or transmitter release. Interestingly, the re-

duced PVFSI AMPAR function and consequent disruption of

feedforward inhibition in NPTX2�/�/NPTXR�/� are similar in

magnitude to observations in GluA4�/� mice (Fuchs et al.,

2007). This is consistent with the almost complete absence of

GluA4 in NPTX2�/�/NPTXR�/� mice and reinforces the critical

role of NPTXs in regulating GluA4 expression to control PVFSI

circuit integration.

Failure of circuits to effectively recruit PVFSIs and the ensuing

I/E imbalance has the capacity to disrupt coherent population

activity, since PVFSIs critically entrain PC assemblies (Bartos

et al., 2007; Klausberger and Somogyi, 2008). Thus, we next

probed physiological and pathological hippocampal network ac-

tivity inNPTX2�/�/NPTXR�/� mice. We first examined the imma-

ture hippocampus beginning on postnatal day 6 (P6) when circuit

activity is dominated by giant depolarizing potentials (GDPs).

GDPs occur spontaneously in immature networks to drive

correlated population activity and are paced by depolarizing

GABAergic inhibition prior to the onset of mature chloride gradi-

ents within PCs (Ben-Ari et al., 2007). In recordings from CA3

PCs, we reliably observed GDPs in wild-type and NPTX2�/�/
NPTXR�/� mice between P6 and P8 in every PC examined (Fig-

ures 5A–5D). Then between P9 and P13 the occurrence of GDPs

decreased in both genotypes, but with distinct temporal dy-

namics (Figure 5C). In wild-types less than 50% of CA3 PCs ex-

hibited GDPs at P11, and no GDPs were detected beyond this

age. In contrast, greater than 50% of the PCs examined in

NPTX2�/�/NPTXR�/� mice still exhibited GDPs at P12, yielding

a significant increase in the overall frequency of GDPs across

all recordings at P11-P12 (Figure 5D). This altered time course

of GDPs within the NPTX2�/�/NPTXR�/� hippocampus is remi-

niscent of disrupted critical period plasticity and synaptic refine-

ment in the developing visual system of pentraxin-deficient mice
ation of PNNs and PV+ cells in hippocampal sections obtained from P21–P30

ted: 5/5, WT; 2/5, NPTX2�/�/NPTXR�/�.
campal synaptic plasma membranes coprecipitates stargazin (g2) as well as

probed with the same antibodies (comparing FT/IN signals revealed that 55%±

d NPTX2�/�/NPTXR�/� hippocampi probed with an antibody that recognizes

ctin = 0.38 ± 0.06 and 0.34 ± 0.06 for wild-type and NPTX2�/�/NPTXR�/� mice,

ice cultures confirming stargazin/g8 expression in PV+ cells in both genotypes

black), PV (gray), and GADPH (hashed black) from wild-type and NPTX2�/�/
ainst PCR cycle numbers on a logarithmic scale.

hippocampi fromwild-type andNPTX2�/�/NPTXR�/�mice. Three independent

rformed.

ype and NPTX2�/�/NPTXR�/� hippocampal sections probed for PV and GluA4

counted: 165/4/2, WT; 196/6/3, NPTX2�/�/NPTXR�/�. See also Figure S1.
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Figure 4. Impaired PVFSI AMPAR Function

and Feedforward Inhibition in NPTX2–/–/

NPTXR–/– Mice

(A) Representative PVFSIs recorded in wild-type

and NPTX2�/�/NPTXR�/� mice with correspond-

ing AMPA and NMDA EPSC traces evoked by

granule cell stimulation (scale bars, 100 mm).

(B) Summary for AMPA/NMDA ratios in PVFSIs at

granule cell (MF, n = 16 cells/8 mice, 4 cells/4

mice, 8 cells/5 mice, 15 cells/7 mice for WT,

NPTX2�/�, NPTXR�/�, NPTX2�/�/NPTXR�/�,
respectively; *p = 0.00007 versus WT, Mann-

Whitney U test) and medial perforant path (PP, n =

15 cells/6 mice, 6 cells/3 mice, 7 cells/3 mice

for WT, NPTXR�/�, and NPTX2�/�/NPTXR�/�,
respectively; *p = 0.02 versus WT Mann-Whitney

U test) inputs for indicated genotypes (PP inputs

not determined [ND] for NPTX2�/� mice). Also

plotted are PPRs (5 Hz) of MF-PVFSI EPSCs.

Inset, I–V relation for AMPAR-mediated trans-

mission, and sample traces, at PP inputs to

NPTX2�/�/NPTXR�/� PVFSIs (n = 5 cells/3 mice).

(C) Representative sEPSC recordings (left) and

ensemble average sEPSC (right) recorded in WT

and NPTX2�/�/NPTXR�/� PVFSIs.

(D) Summary of PVFSI sEPSC properties for the

indicated genotypes (n = 39 cells/16 mice, 23

cells/8 mice, 14 cells/7 mice, 20 cells/9 mice for

WT, NPTX2�/�, NPTXR�/�, and NPTX2�/�/
NPTXR�/�, respectively; *p = 0.002, 0.03, 0.01, and

0.01 for amplitude, Taudecay, frequency (blue bar),

and frequency (green bar), respectively, versus

WT) and cumulative probability plots comparing

WT and NPTX2�/�/NPTXR�/� PVFSIs (insets).

(E) Schematic (above, left) and sample traces

(below, left) illustrating methodology for recording

SC-CA1 feedforward inhibition, along with repre-

sentative sample recordings in wild-type and

NPTX2�/�/NPTXR�/� mice (right).

(F) Group data summary plot of I/E ratios ob-

served using train stimulation in wild-type and

NPTX2�/�/NPTXR�/� mice (n = 10 cells/3 mice

and 9 cells/3 mice for wild-type and NPTX2�/�/
NPTXR�/�, respectively; p = 0.04, 0.005, 0.02,

and 0.008 for P1, P3, P4, and P5, respectively,

Mann-Whitney U test). Inset shows SC-CA1

excitatory field potential recording (fEPSP) input-

output relations, with traces from representative

recordings, for wild-type and NPTX2�/�/NPTXR�/

� mice.

(G) Image of a representative NPTX2�/�/
NPTXR�/� dentate PVFSI (scale bar, 100 mm)

and associated voltage responses (lower inset)

to hyperpolarizing current injection (�200 pA)

as well as depolarizing current injections peri-

threshold (250pA) and twiceperithreshold (500pA)

for action potential firing (inset scale bars, 250 ms/

20 mV).

(H) Histogram summarizing resting membrane

potentials (Vrest), input resistances (Rin), action

potential thresholds (Vthresh), firing frequencies

at twice threshold current injection (f @2Xthresh),

and maximal firing frequencies (fmax) measured in

wild-type (n = 16 cells/7 mice) and NPTX2�/�/
NPTXR�/� (n = 9 cells/4 mice) PVFSIs.

(I)Continuous traces (upper) from representativeCA1PCrecordings inwild-type (left) andNPTX2�/�/NPTXR�/� (right)mice illustrating theeffectsofoxytocin receptor

agonist ([Thre4, Gly7]-oxytocin, TGOT) treatment to evoke release from PVFSIs on sIPSCs. Traces below show the indicated regions on an expanded timescale.

(legend continued on next page)
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(Bjartmar et al., 2006; Koch and Ullian, 2010; Gu et al., 2013),

suggesting a general role for synaptic integration of PVFSIs in

coordinating circuit maturation.

Despite the prolonged developmental window to observe

GDPs in NPTX2�/�/NPTXR�/� mice, other GDP features,

including frequency at younger ages, duration, and charge trans-

fer, were comparable to those of wild-type mice, indicating

similar synaptic dynamics underlying GDP emergence and pac-

ing in both genotypes (Figures 5D–5F). Indeed, GDP frequency in

both wild-type and NPTX2�/�/NPTXR�/� mice was sensitive to

modulation by cannabinoid and NMDA receptor tone, as previ-

ously reported (Figures 5G and 5H) (Ben-Ari et al., 1989; Bernard

et al., 2005). Thus, rather than directly participating in the cellular

and synaptic mechanisms that drive GDPs, PVFSIs likely func-

tion to terminate the permissive window for GDP generation,

perhaps by triggering the establishment of hyperpolarizing chlo-

ride gradients following initiation of perisomatic innervation (Ben-

Ari et al., 2007). This model is consistent with pacing of GDPs by

dendritic inhibition rather than perisomatic inhibition (Ben-Ari

et al., 2007), a feature highlighted by the strong regulation by

cannabinoid receptors which likely operate at dendrite-target-

ing, cholecystokinin-expressing interneurons (Morozov and

Freund, 2003; Lee et al., 2010).

Cessation of the critical period for GDP generation in the

maturing hippocampus signals a transition from spontaneously

internal circuit-generated network activity to mature oscillatory

patterns driven by behavior such as sensory processing, spatial

navigation, learning, and memory retrieval. Unlike GDPs, pacing

of mature network rhythms critically relies upon PVFSI-mediated

perisomatic inhibition to entrain PC assemblies, particularly in

the gamma frequency range (Bartos et al., 2007; Klausberger

and Somogyi, 2008). To determine whether changes in I/E

balance observed in NPTX2�/�/NPTXR�/� mice alters circuit

rhythmogenesis in juvenile mice, we examined carbachol

(CCh)-induced gamma oscillations (Mann et al., 2005). Field re-

cordings in the CA3 PC layer of hippocampal slices revealed

that gamma power was markedly impaired in NPTX2�/�/
NPTXR�/� slices compared to interleaved wild-type slices (Fig-

ures 6A–6F). Consistent with our PVFSI synaptic analyses,

gamma power in NPTX2�/� and NPTXR�/� single knockout

mice was comparable to wild-types (Figures 6C and 6D).

While average peak gamma frequency was similar between the

four genotypes (Figure 6E), both NPTXR�/� and NPTX2�/�/
NPTXR�/�mice had greater variability in gamma frequency, indi-

cating less stable oscillations (Figure 6F). The minor phenotype

in the absence of just NPTXR�/� may reflect a small deficit in

excitatory drive onto PVFSIs relating to reduced sEPSC fre-

quency in this mouse (Figure 4D).

To determine whether naturally occurring in vivo oscillations

are disrupted inNPTX2�/�/NPTXR�/�mice, we performed extra-

cellular recordings from hippocampal CA1 in awake, head-fixed

mice. Analyses of the local field potential recorded in stratum
(J) Summary time course plot of the effects of TGOT on sIPSC amplitudes in wild-

CA1 PCs. sIPSC amplitudes measured during 30 s epochs during TGOT trea

application. Also plotted is the effect of TGOT in wild-type CA1 PCs treated with o

PVFSIs, confirming that TGOT selectively drives sIPSC output from PVFSIs (Hefft

SEM. Recordings throughout were made in slices from mice aged P15–P30. Se

1264 Neuron 85, 1257–1272, March 18, 2015 ª2015 Elsevier Inc.
pyramidale revealed clear episodes of theta and gamma activity

during active states in aged-matched wild-type and NPTX2�/�/
NPTXR�/� mice, indicating that these rhythms remain intact in

the mutants (e.g., Figures 6G and 6H). However, examination

of the averaged power spectra across all recordings revealed

deficient power in the gamma frequency range of NPTX2�/�/
NPTXR�/� mice compared to wild-types (Figure 6I). Indeed,

further analysis confirmed a significant reduction in peak gamma

power ofNPTX2�/�/NPTXR�/�mice that was accompanied by a

modest decrease in peak gamma frequency (Figures 6J and 6K).

In contrast, peak theta power was similar between wild-type and

NPTX2�/�/NPTXR�/� mice, though the mutants exhibited a

small reduction in peak theta frequency (Figures 6L and 6M).

In addition to theta and gamma oscillations, we also observed

sharp wave-associated ripple events (SWRs) during periods of

quiet wakefulness in wild-type and NPTX2�/�/NPTXR�/� mice

(e.g., Figures 7A and 7B). These high-frequency oscillations

(125–250 Hz) are thought to drive memory consolidation during

periods of immobility, consummatory behaviors, and slow wave

sleep by allowing rapid network replay of exploratory driven ac-

tivity patterns over compressed time periods (Buzsáki, 1986;

Foster and Wilson, 2006). Of particular relevance to the current

study, PVFSIs are implicated in coordinating the ensembles of

PCs that participate in SWRs (Csicsvari et al., 1999a, 1999b; El-

lender et al., 2010). Indeed, among the hippocampal oscillatory

rhythms examined in awake behaving mice, SWRs induce the

greatest depth of PVFSI firing modulation (Varga et al., 2012,

2014). Overall, we found that the incidence of SWRs in

NPTX2�/�/NPTXR�/�micewas reduced compared towild-types

(Figure 7C). Analysis of individual SWRs using Morlet wavelets

(e.g., Figures 7D and 7E) revealed that SWRs in wild-type and

NPTX2�/�/NPTXR�/� mice had similar durations, peak ampli-

tudes, and peak power, but that SWRs in NPTX2�/�/NPTXR�/�

mice were reduced in peak frequency (Figures 7F–7I). Impor-

tantly, the laminar profiles of sharp waves and associated ripples

were normal in NPTX2�/�/NPTXR�/� mice (e.g., Figures 7A and

7B), excluding the possibility that the deficits observed related

to changes in the depth profiles of the recordings.

In general, our in vitro and in vivo network findings are consis-

tent with previous reports that mouse mutants with reduced

glutamatergic drive onto PVFSIs display altered hippocampal

oscillations (Fuchs et al., 2007; Rácz et al., 2009; Belforte

et al., 2010; Korotkova et al., 2010; Caputi et al., 2012; Carlén

et al., 2012). In particular, mice with targeted deletion of GluA4

exhibit compromised kainate-induced gamma oscillations in

vitro, similar to our observations for CCh-induced gamma

oscillations in NPTX2�/�/NPTXR�/� mice (Fuchs et al., 2007).

Moreover, ablation of GluA4 selectively in hippocampal PVFSIs

reduces SWR occurrence and decreases peak frequency similar

to our current findings in NPTX2�/�/NPTXR�/� mice (Caputi

et al., 2012). Thus, NPTX2�/�/NPTXR�/� mice phenocopy

several network features of GluA4�/� knockouts. However, in
type (n = 6 cells from 3 mice) and NPTX2�/�/NPTXR�/� (n = 7 cells from 3 mice)

tment were normalized to the average amplitude measured prior to TGOT

mega-agatoxin (AgTX, 500 nM; n = 4 cells from 2 mice) to prevent release from

and Jonas, 2005; Owen et al., 2013). Values plotted throughout are average ±

e also Figure S2.
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Expression in NPTX2–/–/NPTXR–/– Mice

(A and B) Representative sample traces illustrating

GDPs recorded in slices from wild-type (A) and

NPTX2�/�/NPTXR�/� mice with individual GDPs

illustrated below on an expanded timescale.

(C–F) Histograms summarizing the developmental

profiles (ages indicated along x axis) for the per-

centage of CA3 PCs exhibiting GDPs (C), GDP

frequency averaged across recorded cells for

each stage of development (D), GDP half-widths

observed across development (E), and the

average total charge transferred through GDPs at

each stage of development (F) in wild-type and

NPTX2�/�/NPTXR�/� slices. For wild-type re-

cordings the total number of cells and mice re-

corded at each time point (P6–P7 to P13) were 15/

3, 7/2, 12/2, 10/2, 12/2, 11/3, and 6/1; and for

NPTX2�/�/NPTXR�/�mice, 19/3, 18/3, 14/2, 24/3,

13/2, 14/2, 8/1. (D) *p = 0.015, Mann-Whitney U

test. Note, as GDPs were not observed at P12 and

P13 in wild-type mice we did not perform any

statistical comparisons with GDP properties of

NPTX2�/�/NPTXR�/� mice at these stages.

(G and H) Summary plots illustrating the effects of

cannabinoid receptor antagonism with WIN

55,212-2 mesylate (WIN, 5 mM) and NMDAR

antagonism with DL-APV (APV, 100 mM) on GDP

frequencies in wild-type andNPTX2�/�/NPTXR�/�

mice. Plotted are GDP frequencies observed in

each recording before (Ctl) and after WIN or APV

treatment. (G) **p = 0.007 and 9.7 3 10�4 for WT

and NPTX2�/�/NPTXR�/�, respectively (Wilcoxon

test). (H) *p = 0.026 and 0.015 for wild-type and

NPTX2�/�/NPTXR�/�, respectively (paired t test).
contrast to our findings in NPTX2�/�/NPTXR�/� mice, PVFSI

GluA4�/� mice did not exhibit in vivo gamma oscillation deficits

and displayed decreases in SWR peak amplitude and power

(Caputi et al., 2012).
Neuron 85, 1257–1272
To investigate potential behavioral

consequences of the circuit defects in

NPTX2�/�/NPTXR�/�mice, we examined

their performance in a series of tasks

designed to probe general exploration,

anxiety, and spatial working memory. In

the novel open field test, NPTX2�/�/
NPTXR�/� mice exhibited increased

exploratory activity relative to wild-types

during the first 5 min of the test, but

reduced exploration toward the end of a

60 min session, indicating more rapid

habituation (Figure 7J). This habituation

phenotype of NPTX2�/�/NPTXR�/� mice

yielded an overall decrease in exploration

compared to wild-types throughout the

entire session consistent with findings in

GluA4�/� mice (Fuchs et al., 2007).

Despite their increased initial locomotion,

NPTX2�/�/NPTXR�/� mice spent less

time than controls exploring the center
area of the open field during the first 10 min, consistent with an

anxiety-like phenotype (Figure 7K). Indeed, subsequent evalua-

tion in the elevated O-maze revealed that mutant mice spent

less time than controls in the open arms confirming anxiety-like
, March 18, 2015 ª2015 Elsevier Inc. 1265
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Figure 6. Impaired Gamma Oscillations in NPTX2–/–/NPTXR–/– Mice Both In Vitro and In Vivo

(A and B) In vitro gamma oscillations detected in field recordings (top andmiddle) fromCA3 in slices fromwild-type (A) orNPTX2�/�/NPTXR�/� (B) mice after bath

application of 25 mM carbachol (CCh), with corresponding wavelet transform (bottom).

(C) Power density spectra from representative recordings of CCh-evoked gamma oscillations in wild-type (black), NPTX2�/� (red), NPTXR�/� (blue), and

NPTX2�/�/NPTXR�/� (green) mice. Inset shows corresponding sample traces.

(D) NPTX2�/�/NPTXR�/� mice had significant gamma oscillation deficits (Log10 peak gamma power, WT [n = 21] versus NPTX2�/� [n = 8] versus NPTXR�/� [n =

15] versus NPTX2�/�/NPTXR�/� [n = 24];�2.89 ± 0.11 versus�3.17 ± 0.14 versus�2.92 ± 0.16 versus�3.43 ± 0.12; p = 0.0074, one-way ANOVA with post hoc

Bonferroni multiple comparisons); inset shows cumulative frequency distributions of the peak gamma power for WT and NPTX2�/�/NPTXR�/� mice.

(E) No significant differences in peak gamma frequency were observed (WT versus NPTX2�/� versus NPTXR�/� versus NPTX2�/�/NPTXR�/�: 33.7 ± 0.75 Hz

versus 34.1 ± 1.00 Hz versus 31.7 ± 1.23 Hz versus 33.5 ± 1.07 Hz; F = 0.898, p = 0.447, one-way ANOVA).

(F) NPTXR�/� and NPTX2�/�/NPTXR�/� mice displayed significantly greater variability in gamma frequency (deviation from mean frequency, WT versus

NPTX2�/� versus NPTXR�/� versus NPTX2�/�/NPTXR�/�: 1.80 ± 0.43 Hz versus 2.34 ± 0.47 Hz versus 4.04 ± 0.59 Hz versus 4.51 ± 0.65 Hz; H = 16.64, p =

0.0008, Kruskal-Wallis test with post hoc Dunn’s multiple comparisons test).

(G and H) Representative in vivo recordings from CA1 stratum pyramidale of wild-type (G) or NPTX2�/�/NPTXR�/� (H) mice, showing raw traces (top), the same

traces band-pass filtered between 25 and 90 Hz to show the gamma band (middle) and band-pass filtered between 5 and 10 Hz to show the theta band (bottom).

Traces at right with expanded timescale are from boxed regions of the longer time-compressed traces.

(I) Normalized power spectra, averaged from all mice in wild-type (black, n = 6) or NPTX2�/�/NPTXR�/� (green, n = 6) groups.

(J and K) (J) NPTX2�/�/NPTXR�/� mice displayed a significant reduction in peak gamma power (z-score, WT versus NPTX2�/�/NPTXR�/�: 2.13 ± 0.27 versus

1.34 ± 0.20; t = 2.410; p = 0.0367; Student’s t test) and (K) peak gamma frequency WT versusNPTX2�/�/NPTXR�/�: 38.0 ± 0.86 versus 33.2 ± 1.03; t = 3.608; p =

0.0048; Student’s t test).

(legend continued on next page)
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behavior (Figure 7L). Finally, we found thatNPTX2�/�/NPTXR�/�

made significantly fewer correct choices across multiple trials in

the rewarded T-maze alternation task, suggesting impaired hip-

pocampus-dependent working memory (Figure 7M). This deficit

in spatial working memory of NPTX2�/�/NPTXR�/� mice likely

relates directly to the loss of GluA4 within PVFSIs, as several

prior studies have reported deficits in working memory following

genetic manipulations that compromise PVFSI function (Fuchs

et al., 2007; Belforte et al., 2010; Korotkova et al., 2010; Murray

et al., 2011; Caputi et al., 2012; Carlén et al., 2012).

Previously we found that NPTX2�/� mice display increased

sensitivity to kindling-induced epilepsy (Chang et al., 2010). As

NPTX2�/� mice cannot homeostatically increase PVFSI GluA4,

we postulated that this phenotype reflects failure of NPTX2�/�

circuits to rebalance network I/E dynamics and suppress epilep-

togenesis early in the kindling protocol. Importantly, NPTX2�/�

mice showed identical initial responses to kindling but diverged

from wild-types as the kindling process evolved (Chang et al.,

2010), consistent with normal baseline GluA4 content and circuit

integration of PVFSIs in NPTX2�/� mice. In contrast, the severe

basal deficit of PVFSI synaptic recruitment in NPTX2�/�/
NPTXR�/� mice predicts a basal epilepsy phenotype. However,

NPTX2�/�/NPTXR�/�mice did not exhibit overt seizures, nor did

we detect any electrophysiological features of epilepsy during

hippocampal in vivo recordings. To further assess acute epilep-

tiform sensitivity of wild-type, NPTX2�/�, NPTXR�/�, and

NPTX2�/�/NPTXR�/�mice, wemonitored hippocampal network

activity while challenging slices with a modest increase in extra-

cellular potassium (to 8.5mM; Traynelis andDingledine, 1988). In

adult rat slices, this challenge typically promotes spontaneous

recurring interictal bursting, with a minority of slices (�20%) pro-

gressing to electrographic seizure-like activity comprised of

ictal events reminiscent of discharges recorded in vivo during

tonic-clonic seizures (Traynelis and Dingledine, 1988). Similarly,

in our recordings wild-type, NPTX2�/�, and NPTXR�/� slices all

consistently exhibited spontaneous interictal bursting within

7–10 min of increased [K+]o with only a minority of slices yielding

ictal events (Figures 8A, 8C, and 8D). In contrast, slices from

NPTX2�/�/NPTXR�/� consistently displayed full-blown epilepti-

form activity producing spontaneous ictal activity with character-

istic tonic and clonic bursts at regular intervals (Figures 8B and

8D). Pooling of data across all recordings revealed that ictal fre-

quency is significantly enhanced in NPTX2�/�/NPTXR�/� com-

pared to wild-type mice, while interictal frequency is significantly

lower inNPTX2�/�/NPTXR�/� due to the excess time spent in ic-

tal discharges (Figures 8C and 8D). While data from NPTX2�/�

and NPTXR�/� single knockouts trended toward intermediate

phenotypes, slices from these lines were not significantly

different from wild-types.

Considering our findings of GluA4 loss and deficient synaptic

drive in NPTX2�/�/NPTXR�/� PVFSIs, the increased epilepti-

form sensitivity of slices from these mice likely stems from defi-

cient recruitment of perisomatic inhibition leading to network
(L andM ) (L)NPTX2�/�/NPTXR�/�mice did not display significant differences in p

5.37 ± 0.71; t = 0.7938; p = 0.4457, Student’s t test) but (M) did display a small but

7.50 ± 0.18 versus 6.75 ± 0.28; t = 2.236; p = 0.0493; Student’s t test). *p < 0.05,

slices from mice aged P15–P21, and in vivo recordings were performed in P32–P
hyperexcitability. This interpretation is consistent with evidence

that GluA4 mutant mice serve as an animal model of absence

epilepsy (Paz et al., 2011). However, our synaptic findings indi-

cate that despite the reduced circuit integration of PVFSIs in

NPTX2�/�/NPTXR�/� mice these cells still exhibit some capac-

ity for afferent recruitment and once engaged provide efficient

GABAergic input to PCs (cf. Figures 4 and 5). Thus, we reasoned

that the epilepsy-like phenotype of NPTX2�/�/NPTXR�/� mice

might be sensitive to an increase in the efficacy of GABAergic

tone from the PVFSIs engaged in a blunted fashion during the

epileptiform activity. To test this, we utilized the GABAA recep-

tor-positive allosteric modulator indiplon that is selective for

alpha1-containing receptors which are preferentially, though

not solely, localized postsynaptic to PVFSI inputs (Klausberger

et al., 2002; Petroski et al., 2006). Following initiation of epilep-

tiform activity in NPTX2�/�/NPTXR�/� slices, indiplon eliminated

ictal activity in 50% of recordings tested and reduced ictal fre-

quency in the remaining slices (Figures 8E and 8F). Following

indiplon, interictal events remained as the dominant activity

similar to wild-type, NPTX2�/�, and NPTXR�/� mice, indicating

that the underlying pacemaker synaptic drive engaged by high

[K+]o was not disrupted (e.g., Figure 8E). Rather, indiplon

reversal of epileptiform activity likely proceeds by enhancing

circuit inhibition, including but not limited to PVFSI-mediated

perisomatic inhibition to improve I/E balance. This rescue of

the NPTX2�/�/NPTXR�/� epileptiform phenotype is consistent

with the ability of optogenetic-mediated recruitment of PVFSIs

to arrest spontaneous seizures in vivo (Krook-Magnuson et al.,

2013) and further validates PVFSI-mediated inhibition as an

effective therapeutic target for disorders precipitated by circuit

I/E imbalance.

In summary, we have uncovered an essential role for NPTX2

and NPTXR in orchestrating the basic developmental program

for synaptic integration and network function of hippocampal

PVFSIs. The coincidental temporal relation of NPTX2, NPTXR,

and GluA4 expression, combined with loss of GluA4 in

NPTX2�/�/NPTXR�/� mice, suggests these NPTXs regulate

PVFSI circuit integration by controlling expression and synaptic

localization of GluA4-containing AMPARs. AlthoughGluA4 levels

are upregulated in concert with a number of other proteins that

are also critical for promoting speed and precision in PVFSI

function such as PV, Kv3 channels, Nav1.1 sodium channels,

and two-pore domain potassium leak channels (TWIK1 and

TASK1/3), our findings suggest normal developmental progres-

sion of these other proteins in NPTX2�/�/NPTXR�/� mice.

Thus, within PVFSIs, pentraxins serve to selectively drive matu-

ration of AMPAR function by facilitating the production of GluA4.

Given the reduction in PVFSI sEPSC frequency it is also possible

that NPTXs serve a synaptogenic function in PVFSIs and

that NPTX2�/�/NPTXR�/� mice have reduced numbers of excit-

atory synaptic contacts onto them. However, overall dendritic

architectures of PVFSIs were similar in wild-type and NPTX2�/�/
NPTXR�/� mice, and the mutants exhibited only modest
eak theta power (z-score, WT versusNPTX2�/�/NPTXR�/�: 4.38 ± 1.01 versus

significant decrease in peak theta frequency (WT versusNPTX2�/�/NPTXR�/�:
**p < 0.01, ***p < 0.001 versus wild-type. In vitro recordings were performed in

34 mice.
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Figure 7. Altered SWRs and Behavioral Deficits in NPTX2–/–/NPTXR–/– Mice

(A and B) Depth profiles (interelectrode distance of 50 mm) of representative recordings illustrating SWRs in (A) wild-type and (B) NPTX2�/�/NPTXR�/� mice

in vivo.

(C) The incidence of SWRs was significantly reduced in NPTX2�/�/NPTXR�/� mice (WT [n = 6] versus NPTX2�/�/NPTXR�/� [n = 6], 0.26 ± 0.05 Hz versus 0.13 ±

0.02 Hz; p = 0.0387; Student’s t test).

(D and E) Examples of sharp wave ripples from (D) wild-type and (E) NPTX2�/�/NPTXR�/� mice, recorded from stratum pyramidale, band-pass filtered (130–

250 Hz, top) with corresponding wavelet transforms of the raw traces (bottom).

(F) NPTX2�/�/NPTXR�/�mice did not display a significant difference in the SWR duration (WT versus NPTX2�/�/NPTXR�/�: 59.7 ± 2.96 ms versus 58.8 ± 5.5 ms;

p = 0.8880; Student’s t test).

(G–I) (G) NPTX2�/�/NPTXR�/� mice did show a significant reduction in the peak frequency of SWRs (WT versus NPTX2�/�/NPTXR�/�: 157 ± 2.47 Hz

versus 142 ± 3.05 Hz; p = 0.0037; Student’s t test). NPTX2�/�/NPTXR�/� mice did not display a significant difference in either (H) SWR amplitude (WT

versus NPTX2�/�/NPTXR�/�: 348 ± 48.2 mV versus 326 ± 36.6 mV; t = 0.3622; p = 0.7247; Student’s t test) or (I) SWR power (peak power, mV2/Hz, WT versus

NPTX2�/�/NPTXR�/�: 0.31 ± 0.04 versus 0.28 ± 0.03; t = 0.4777; p = 0.6431; Student’s t test).

(J) NPTX2�/�/NPTXR�/� showed early open-field locomotor hyperactivity and late hypoactivity (n = 15 WT and 13 NPTX2�/�/NPTXR�/� mice; genotype 3 time

interaction: F1,26 = 7.8620, p = 0.0094; two-way ANOVA).

(K and L) (K) NPTX2�/�/NPTXR�/� displayed increased anxiety-like behavior in (K) the novel open field (t = 2.3810, p = 0.0248; Student’s t test). (L) Anxiety-like

behavior was confirmed in the elevated O-maze (n = 15 mice per genotype; t = 2.1624, p = 0.0393; Student’s t test).

(M) NPTX2�/�/NPTXR�/� mice made fewer correct choices in a reward alternation task (n = 7 WTs and 11 mutants; main effect of genotype; F1,16 = 7.7876, p =

0.0131; two-way ANOVA) *p < 0.05 **p < 0.01, ***p < 0.001 versus wild-type. In vivo recordings were performed in P32–P34 mice, and behavior was assessed in

P70–P91 mice.
reductions in synaptic density (Figures S2C–S2J). Thus, the def-

icits in NPTX2�/�/NPTXR�/� PVFSI recruitment relate primarily

to reduced AMPAR content at synapses rather than dramatic

changes in the numbers of afferents impinging upon PVFSIs.
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Prior studies have focused on the role of neuronal pentraxins

as AMPAR clustering proteins without evidence of a larger role

in coordinating both overall protein expression and synaptic

localization (O’Brien et al., 1999, 2002; Mi et al., 2002; Xu
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Figure 8. Increased Susceptibility to Epileptiform Activity in NPTX2–/–/NPTXR–/– Mice

(A) Representative recordings of epileptiform activity induced following bath application of 8.5 mM [K+]o in slices fromwild-type mice: (i) representative trace from

WT mouse showing rhythmic clusters of interictal events; (ii) two clusters of interictal events from boxed region of i on an expanded timescale; (iii) expanded

timescale trace from boxed area in (ii), showing rhythmicity of interictal events; (iv) single interictal event from boxed area of (iii) on expanded timescale.

(B) Similar to (A), but for a representative NPTX2�/�/NPTXR�/� recording: (i) representative trace from NPTX2�/�/NPTXR�/� mouse showing rhythmic clusters of

ictal events; (ii) single ictal event from boxed region in (i) on expanded timescale; (iii) boxed event from (ii) on expanded timescale with interictal events preceding

the onset of an ictal event; (iv) beginning of ictal event on an expanded timescale from boxed region in iii.

(C)NPTX2�/�/NPTXR�/�mice displayed significantly more ictal events during high K+ epileptiform activity (ictal events per hour, WT (n = 9) versusNPTX2�/� (n =

7) versus NPTXR�/� (n = 7) versus NPTX2�/�/NPTXR�/� (n = 11): 0.78 ± 0.39 versus 8.77 ± 6.05 versus 4.60 ± 2.48 versus 19.12 ± 4.64; H = 13.85, p = 0.0031,

Kruskal-Wallis test with post hoc Dunn’s multiple comparisons test).

(D) Interictal events in NPTX2�/�/NPTXR�/� mice were significantly less frequent (interictal event frequency, WT versus NPTX2�/� versus NPTXR�/� versus

NPTX2�/�/NPTXR�/�: 0.70 ± 0.07 Hz versus 0.73 ± 0.15 Hz versus 0.35 ± 0.10 Hz versus 0.41 ± 0.04 Hz; p = 0.0033, Kruskal-Wallis test with post hoc Dunn’s

multiple comparisons test).

(E) Representative recording from an NPTX2�/�/NPTXR�/� slice showing the effect of indiplon on high K+-induced ictal activity. Shown is a full time course of

indiplon-mediated attenuation of ictal events (i) with a single ictal event prior to indiplon application (ii) and remaining interictal events (iii) after indiplon from the

boxed regions in (i) shown on expanded timescales.

(F) Bath application of indiplon significantly reduced the frequency of ictal events inNPTX2�/�/NPTXR�/�mice (ictal events per hour, baseline versus indiplon [n =

6]: 30.0 ± 4.3 versus 10.3 ± 5.9; p = 0.0141; paired t test. **p < 0.01 versus WT). Recordings throughout were performed in P15–P30 mice.
et al., 2003; Sia et al., 2007; Chang et al., 2010). Interestingly,

GluA4 transcription proceeds normally in the absence of

NPTX2 and NPTXR. Given the direct association of neuronal

pentraxins with the N-terminal domain of GluA4, it is possible

that this interaction stabilizes GluA4 to prevent rapid degrada-

tion. Alternatively, pentraxins may regulate GluA4mRNA transla-
tion. Future studies into the cellular mechanisms of NPTX-medi-

ated GluA4 regulation will be necessary to resolve these

possibilities. Concerning the sources of NPTX2 and NPTXR for

regulating PVFSI GluA4, evidence to date implicates presynapti-

cally derived NPTXs in driving synaptic AMPAR accumulation

(Chang et al., 2010; Sia et al., 2007). While NPTX2 is secreted,
Neuron 85, 1257–1272, March 18, 2015 ª2015 Elsevier Inc. 1269



the transmembrane domain of NPTXR may serve to anchor

NPTX complexes at presynaptic terminals innervating PVFIs.

Such heterocomplexes may then be released to interact with

postsynaptic PVFSIs following activity-dependent cleavage of

NPTXR by extracellular matrix metalloproteases (Cho et al.,

2008). An alternate possibility would place NPTXR in the post-

synaptic membrane of PVFIs to bind presynaptically derived

NPTX2. However, while activity-dependent NPTX2 expression

has recently been demonstrated in somatostatin interneurons

(Spiegel et al., 2014), NPTX expression has not yet been local-

ized within PVFIs.

Previously, NPTX2 alone was implicated in homeostatic adap-

tations in GluA4 levels and AMPAR function (Chang et al., 2010).

However, NPTX2�/� PVFSIs exhibit normal basal excitatory

drive. Thus, NPTX2�/�/NPTXR�/� mice provided a unique op-

portunity to assess the impact of NPTXs on cellular and circuit

function, without a requirement for perturbed activity. Indeed,

we found thatNPTX2�/�/NPTXR�/�mice exhibited basal deficits

in PVFSI AMPAR function, yielding a circuit with reduced feed-

forward inhibition and disrupted network oscillations and that

is prone to epileptiform activity. In association with these circuit

changes, NPTX2�/�/NPTXR�/� mice exhibited increased anxi-

ety-like behavior as well as deficits in exploration and spatial

working memory. These cellular, network, and behavioral defi-

ciencies are similar to findings in GluA4 mutants (Fuchs et al.,

2007; Paz et al., 2011), indicating that the reduction of GluA4 in

NPTX2�/�/NPTXR�/� mice is sufficient in magnitude to pheno-

copy mice with targeted deletion of GluA4. Our current findings

extend the role of NPTXs to coordinating the basic synaptic

developmental program of PVFSIs, and reveal the essential

role of NPTXs in controlling hippocampal network properties.

The restricted expression of GluA4 to PVFSIs, combined with

the selective synaptic regulation by NPTXs, points to the impor-

tance of these targets for understanding and treating disorders

associated with I/E imbalance due to PVFSI dysfunction.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are provided in Supplemental Information.

IHC, Cell Culture, and Postembedding EM

Fixed brains from mice P2–P60 were removed, cryoprotected, and sectioned,

then stained for the indicated proteins with visualization either using fluores-

cently labeled secondary Abs or through immunoperoxidase labeling. Images

of the stained sections were obtained, and labeled cells were manually

counted, with the results converted to cell-density measurements. Hippocam-

pal cell cultures were prepared from P0–P5 mice, and fixation and staining

were performed after 15–30 days in vitro. Postembedding immunogold EM

was performed on tissue from 2-month-old mice with excitatory synapse den-

sity and synaptic GluA4 content evaluated in PV immunopositive processes.

Biochemistry, qPCR, and ISH

Western blot analyses were performed on hippocampal synaptosomes and

membrane fractions or cerebellar lysates obtained from P22-P30 mice as indi-

cated. For quantification, densitometry of protein bands of interest was

normalized to that of b-actin. Immunoprecipitations were performed from

SPM fractions run through GluA4-conjugated beads. qPCR was carried out

on P20 hippocampi using a StepOne instrument from Applied Biosystems,

and target gene levels were normalized to the endogenous control gene

gadph. ISH was carried out on fresh frozen sections from P30 mice using

the RNAscope Fluorescent Multiplex kit (Advanced Cell Diagnostics Inc.).
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Electrophysiology and Behavior

Whole-cell patch recordings from PVFSIs and CA1/CA3 pyramids were per-

formed in submerged hippocampal slices fromP5–P30mice to evaluate PVFSI

synaptic/intrinsic/spiking properties, feedforward inhibition, andGDPs as indi-

cated. For in vitro gamma oscillations and epileptiform activity, CA3 local field

potentials (LFPs) were recorded in slices maintained in an interface chamber.

In vivo recordings were performed in awake head-fixed mice (P32–P34) using

a 32 channel electrode inserted into the hippocampus through a craniotomy to

monitor CA1 LFPs. For behavior, adult mice (10–13 weeks old) were assessed

for novelty-induced locomotor activity in a novel square arena, anxiety-like

behavior in an elevated O-maze, and spatial working memory using rewarded

alternation in a T-maze.
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D., Rühlmann, C., Jones, S.R., Deisseroth, K., Sheng,M., et al. (2012). A critical

role for NMDA receptors in parvalbumin interneurons for gamma rhythm induc-

tion and behavior. Mol. Psychiatry 17, 537–548.

Chang, M.C., Park, J.M., Pelkey, K.A., Grabenstatter, H.L., Xu, D.S., Linden,

D.J., Sutula, T.P., McBain, C.J., and Worley, P.F. (2010). Narp regulates ho-

meostatic scaling of excitatory synapses on parvalbumin-expressing interneu-

rons. Nat. Neurosci. 13, 1090–1097.

Cho, R.W., Park, J.M., Wolff, S.B., Xu, D., Hopf, C., Kim, J.A., Reddy, R.C.,

Petralia, R.S., Perin, M.S., Linden, D.J., and Worley, P.F. (2008). mGluR1/5-

dependent long-term depression requires the regulated ectodomain cleavage

of neuronal pentraxin NPR by TACE. Neuron 57, 858–871.
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