
p ()
URL: http://www.elsevier.nl/locate/entcs/volume51.html 17 pages

On the decidability of fragments of the
asynchronous �-calculus

Roberto M. Amadio Charles Meyssonnier 1;2

Laboratoire d'Informatique Fondamentale de Marseille,

CMI, 39 rue Joliot-Curie, 13453, Marseille, France.

Abstract

We study the decidability of a reachability problem for various fragments of the

asynchronous �-calculus. We consider the combination of three main features: name

generation, name mobility, and unbounded control. We show that the combination

of name generation with either name mobility or unbounded control leads to an

undecidable fragment. On the other hand, we prove that name generation without

name mobility and with bounded control is decidable by reduction to the coverability

problem for Petri Nets.

1 Introduction

We are interested in properties of the reduction relation such as reachability,

deadlock, liveness,: : : for process calculi based on the asynchronous �-calculus

[2,7,1].

We recall that `asynchronous' here refers to a communication mechanism

where messages are put in an unbounded and unordered bu�er and that in

the process calculus jargon this amounts to disallow the output pre�x. By

opposition, the synchronous �-calculus forces a synchronization between the

sender and the receiver.

Our interest in the asynchronous �-calculus stems from the observation

that the core of concurrent programming languages such as Pict [13], Join [4],

or Tyco [17] are based on it and the remark that object-oriented programming

languages enjoy a rather direct representation in these formalisms.

In this paper, we will mainly consider a minimal asynchronous, polyadic,

simply sorted �-calculus not including external choice and we will concentrate

on three main `features' of this minimal calculus:

1 famadio,meyssonng@cmi.univ-mrs.fr.
2 The authors are partially supported by RNRT MARVEL.

c2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82198869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

R.M. Amadio and C. Meyssonnier

� Name generation, i.e. the possibility of generating fresh names (values,

channels,: : :).

� Name mobility, i.e. the possibility of transmitting names.

� Unbounded control, i.e. the possibility of dynamically adding new threads

of control.

In the absence of name generation, our formalism can be mapped to Petri

Nets (see, e.g. [15]). This encoding, that basically goes back to early work [5]

on the translation of ccs [11] to Petri Nets, settles most interesting decision

problems for the fragment without name generation. Therefore, the main issue

that, in our opinion, remains to be clari�ed is whether there exist decidable

fragments that include some form of name generation.

So far, most decidability results we are aware of concern the synchronous

�-calculus with bounded control (see, e.g., [3,12]). In the asynchronous case,

our main results are as follows:

� The combination of name generation and name mobility leads to an unde-

cidable fragment even assuming the control �nite.

� The combination of name generation and unbounded control leads to an un-

decidable fragment even assuming that no name is transmitted (this re�nes

a well-known undecidability result for ccs).

� Name generation without name mobility and with bounded control is de-

cidable by reduction to Petri Nets. This is our main technical result which

is based on an analysis of the use of generated names. The analysis, which

appears to be original, distinguishes between `persistent' and `temporary'

names and provides a method to reuse the same name for generated tem-

porary names which are alive at di�erent times.

We regard these results as a �rst step towards the systematic introduction

of approximated decision methods for languages including name generation.

We expect that a fruitful approach is to understand these methods by factoring

the approximation through a translation into Petri Nets. Once the behaviour

is mapped to a Petri Net further standard approximation techniques are avail-

able based, e.g., on semi-linear sets (see, e.g., [16], for an up to date survey).

2 Asynchronous �-calculus

As usual, we assume given a denumerable set of names, that we denote a; b; : : :

Vectors of names (possibly empty) are denoted ~a;~b; : : : We denote with [~b=~a]

a substitution on names. If ~a � a1; : : : ; an then we use (�~a) as a shorthand

for (�a1) : : : (�an).

We suppose that every name a has an associated sort st(a) and that names

are used consistently with their sort. We will just rely on simple sorts as

2

R.M. Amadio and C. Meyssonnier

de�ned by the following grammar

s ::= o jj Ch(s; : : : ; s)(1)

where o is some ground sort.

We consider a polyadic, simply sorted, asynchronous �-calculus with the

standard operations of message creation a~b, input pre�x a(~b):P , parallel com-

position P j Q, name generation (�a)P , and parametric recursive de�nitions.

The latter is preferred to iteration because it allows a better control on the

creation and termination of parallel threads.

We denote with A;B; : : : parametric process identi�ers. A process is pre-

sented by a �nite system E of parametric equations A(~a) = P and an initial

con�guration where we assume that: (i) every process identi�er is de�ned by

exactly one equation, and (ii) the names occurring free in P are included in

f~ag. It will be convenient to assume that every equation has the following

normalised shape:

A(~a) = a(~a0):(� ~a00)(�i2Iai~ai j �j2JAj(~aj)) :(2)

Such an equation speci�es a process that inputs a message and then generates

new names, sends a number of messages, and runs a number of continuations.

The sets I and J are assumed �nite (possibly empty, in which case the parallel

composition reduces to the terminated process 0). We note that in equation

(2) the names ~a, ~a0, and ~a00 are bound. We will assume that they are renamed

so that they are all distinct.

Given a �nite system of recursive equations as above, a con�guration is a

normalised process of the shape:

(�~a)(�i2Iai(~ai) j �j2JAj(~aj))

where as usual `�' stands for the parallel composition. Let P;Q be two con�g-

urations. We write P � Q if P is syntactically equal to Q up to renaming of

bound names, permutation of name generations, and associativity and com-

mutativity of parallel composition. We denote with fn(P) the set of names

occurring free in P .

Next we introduce the reduction relation on con�gurations. All we want

to capture is the usual reduction rule

a~b j a(~c):P ! [~b=~c]P

allowed to take place under name generation and parallel composition, up to

a suitable structural equivalence. Our de�nition of reduction is a bit technical

because it has to evaluate the actual parameters, unfold a recursive de�nition

to �nd an input pre�x matching a message, and then bring the name genera-

tions, the messages, and the continuations under the input pre�x at top level.

The advantages of this approach, is that we can then limit the structural rules

to the ones stated above, give a compact normal form for con�gurations, and

provide a simple translation to Petri Nets.

De�nition 2.1 If the equation associated to the process identi�er A is (2)

3

R.M. Amadio and C. Meyssonnier

and

(i) P � (�~b0)(A(~b) j c(~c) j Q),

(ii) the sets f~a; ~a0; ~a00g and f~b0g [fn(P) are mutually disjoint,

(iii) � � [~b=~a;~c=~a0],

(iv) and �(a) = c

then

P ! (�~b0; ~a00)(�i2I�(ai~ai) j �j2JAj(�~aj) j Q) :(3)

We may wonder whether our normalised con�gurations can represent all

usual processes of the �-calculus, say:

p ::= a~b jj a(~b):p jj!(a(~b):p) jj (�a)p jj (p j p) :

Indeed, this can be easily checked. We note that, up to structural equivalence,

a process p can always be written as:

p � (�~a)(�i2Iai~ai j �j2Jaj(~aj):pj j �k2K!(ak(~ak):pk)) :

We claim that we can build a con�guration P and a set of equations E whose

behaviour is equivalent to p's. We proceed by induction on the structure of

p to generate the set of equations. For every process aj(~aj):pj we introduce

a fresh process identi�er Aj(: : :) and the equation Aj(: : :) = aj(~aj): : : :, and
we apply inductively the transformation to pj. Similarly, for every process

!(ak(~ak):pk)) we introduce a fresh process identi�er Ak(: : :) and the equation

Ak(: : :) = ak(~ak):(Ak(: : :) j : : :), and we apply inductively the transformation

to pk.

Reassured about the expressivity of our formalism, we can now formally

state the reachability problem we address in this paper.

De�nition 2.2 Given a system of equations E containing a process identi�er

A and a related initial con�guration P , the reachability problem asks whether

P reduces to a con�guration containing the process identi�er A, i.e. P !
�

(�~a)(: : : j A(~b) j : : :), for some ~a;~b.

In section 3.4, we will relate this problem to the well known coverability

problem for Petri Nets.

3 The fragment without name generation reduces to

Petri Nets

We consider the fragment where the equation (2) is restricted to having the

shape:

A(~a) = a(~b):(�i2Ici~di j �j2JAj(~ej)) :(4)

In this fragment no name generation is allowed. Given such a system of

equations and an initial con�guration P we will recall below the standard

construction of a Petri Net that simulates the reduction of the process.

4

R.M. Amadio and C. Meyssonnier

3.1 Parameterless systems of equations

First we recall the notion of parameterless system of equations (a notation

used, e.g., in the context of ccs [11]). In this case, all names have sort Ch()

and an equation has the shape

A = �k2Kak:(�i2Ikai j �j2JkAj)(5)

where K is a �nite set and � stands for the external choice (external choice

is just used here to represent an intermediate step towards the translation

to Petri Nets). If K is empty, we take conventionally the left hand side as

the terminated process 0. No renaming is allowed and a process identi�er is

literally replaced by the right hand side of the equation de�ning it.

3.2 From parameterless systems of equations to Petri Nets

We �x a system of equations without parameters of the shape (5). Let P be

an initial con�guration. Without loss of generality, we may assume that P

contains no name generators �; otherwise we replace the names bound by �
by fresh names. Let N be the collection of names free in P . Since there is

no name generation, these are all the names that can appear in a reachable

con�guration.

(1) We associate a distinct place to every name a 2 N and to every process

identi�er A. The intended interpretation is that a token at place a corresponds

to a message a while a token at place A means that the control of a thread is

at A. Following this interpretation we determine the initial marking.

(2) To every equation we associate a set of transitions which are connected to

the places as follows. If A = a1 : : :+� � �+an : : : then we introduce n transitions

t1; : : : ; tn and for k = 1; : : : ; n an edge from place A to transition tk and an

edge from place ak to transition tk. Moreover, if the continuation of ak has

the shape

(�i2Iai j �j2JAj)

then we add an edge from transition tk to place ai for i 2 I and from transition

tk to place Aj for j 2 J .

3.3 From systems without name generation to parameterless systems

We �x a system of parametric equations without name generation of the shape

(4). For the sake of notational simplicity we assume that all channels have a

recursive sort s = Ch(s), and that all process identi�ers depend on k param-

eters. Then:

� for every pair of channel names a; b 2 N , we introduce a new channel name

ab of sort Ch().

� for every equation of the shape (4) and for every vector of names ~a0 2 Nk

5

R.M. Amadio and C. Meyssonnier

we produce an equation

A~a0 = �b02N(�(a)b0 :(�i2I�(ci)�(di) j �j2JAj;�(~ej))) :

where � � [~a0=~a; b0=b].

To summarize, we transform a parametric system into a system without pa-

rameters but with external choice, and in turn, we transform the latter system

into a Petri Net.

3.4 From reachability to coverability, and back

In terms of Petri Nets, the reachability problem we have formulated in de�ni-

tion 2.2 amounts to checking whether certain places, corresponding to a given

process identi�er, will contain a token. This is an instance of the coverability

problem for which Lipton [10] has provided a 2O(
p
n) space lower bound and

Racko� [14] a 2O(n log n) space upper bound.

On the other hand, it is easy to see that the coverability problem for

Petri Nets can be reduced to the reachability problem 2.2. Given a Petri

Net, for every transition t taking, say, one token from places a1; : : : ; an and

putting one token in places b1; : : : ; bm, we introduce the equations (we omit

the parameters):

At = a1:A
1
t A1

t = a2:A
2
t : : : An�1

t = an:(b1 j � � � j bm j At)

Thus a transition of the Petri Net is now simulated by serialising the reading

of the tokens. If we want to know, whether, say, the place a will ever contain

a token we add the equation A = a:B. Then the initial con�guration contains

the process identi�er At for every transition t, a number of messages corre-

sponding to the initial marking, and the process identi�er A. To determine

whether the place a will contain a token it is then enough to check whether

the initial con�guration reaches one containing the process identi�er B.

This reduction is polynomial and it shows that even without mobility and

without name generation the reachability problem 2.2 we consider requires

exponential space. We expect that our reachability problem could be gen-

eralized mimicking what has been done for Petri Nets [18]. On the other

hand, the quest for decidability results on the equivalence problem (trace,

bisimulation,: : :) is discouraged by the negative results known for Petri Nets

[6,9].

4 The fragment with bounded control is undecidable

We say that a con�guration has bounded control if there is a natural number

that bounds the number of live threads running in parallel in any accessible

con�guration. One can imagine various syntactic conditions that imply this

property and are eÆciently checkable. To show our negative results, it will be

enough to consider the fragment where the equation (2) is restricted to having

6

R.M. Amadio and C. Meyssonnier

the shape:

A(~a) = a(~b):(� ~d)(�i2Iai~bi j A
0(~c))

A(~a) = A1(~a1)� A2(~a2) :

where � denotes the internal choice. This means that, up to internal choice,

every control point has exactly one continuation and thus the control is basi-

cally bounded by the number of parallel threads present in the initial con�gu-

ration.

Remark 4.1 It is well known that internal choice is de�nable from parallel

composition and name generation. In our case, there is just a little twist to

�t the shape of the normalised equations (2). Thus we replace the equation

A(: : :) = A1(: : :)� A2(: : :) by the equations

A(: : :) = t:(�c)(A0
1(c; : : :) j A

0
2(c; : : :) j c j t)

A0
i(: : :) = c:Ai(: : :) for i = 1; 2

where t is a `global' channel provided in the initial con�guration with a message

t (the t channel plays the role of the ccs � action).

A similar trick applies if we want to de�ne the internal choice of two

messages a1 � a2. Then we introduce an identi�er A and the equations:

A(: : :) = t:(�c)(A0
1(c; : : :) j A

0
2(c; : : :) j c j t)

A0
i(: : :) = c:ai for i = 1; 2 :

Proposition 4.2 The reachability problem for the fragment with bounded con-

trol is undecidable.

Proof. The proof is loosely inspired by the encoding of the computation

mechanism of Turing machines into a deduction system for Horn clauses with-

out function symbols, also known as datalog. Readers familiar with the lat-

ter might �nd it inspiring to look at an `existential' Horn clause 8~x (a(~x) �
9~y b(~x; ~y)) as a recursive process A = a(~x):(�~y)(b(~x; ~y) j a(~x) j A).

We now turn to the technical development. We simulate a 2-counter ma-

chine (see, e.g. [8]) and reduce the halting problem to the reachability problem

2.2. We assume that the 2-counter machine contains instructions of the form:

(1) q : Ck := Ck + 1; goto q0

(2) q : (Ck = 0)! goto q0; Ck := Ck � 1; goto q00

where C1; C2 denote the two counters. An instruction of type (1) increments

the counter k and jumps to another point of the control. An instruction of

type (2) tests whether the counter Ck is 0 and if it is the case it jumps to

a control point q0, otherwise it decrements the counter and jumps to control

point q00.

A counter is represented as a stack of cells where the bottom cell contains

0 and all the others contain 1. Thus the value 2 is represented by the stack

7

R.M. Amadio and C. Meyssonnier

011. For every state, we assume a channel q of sort Ch(). Moreover, for every

counter Ck we assume channels

Topk of sort Ch(Ch(Ch();Ch();Ch())) and

Adj k of sort Ch(Ch(Ch();Ch();Ch());Ch()) :

Every cell of the stack is assigned a distinct channel a of sort Ch(Ch();Ch();Ch()).

We associate to every such channel three more distinct channels a0; a1; at and

a message a(a0; a1; at). Moreover:

� If the channel a refers to the bottom cell then we introduce a message a0,

and otherwise we introduce a message a1.

� If the channel a refers to the cell at the top of the stack we introduce a

message Topka.

� If the channels a and b refer to two adjacent cells (the �rst under the second)

then we introduce a message Adj k(a; bt).

For instance, the stack 011 could be represented by the following messages:

a(a0; a1; at) j a0 j Adj k(a; bt) j (bottom cell)

b(b0; b1; bt) j b1 j Adj k(b; ct) j (second cell)

c(c0; c1; ct) j c1 j Topkc (top cell)

We now consider the problem of implementing on this data structure the 2-
counter machine operations. An instruction of type (1) is translated as:

A = q:Topk(a):(�a
0
; a

0
0; a

0
1; a

0
t)(q

0 j Adj k(a; a
0
t) j Topk(a

0) j a0(a00; a
0
1; a

0
t) j a

0
1 j A);

and an instruction of type (2) becomes:

A = q:Topk(a):a(a0; a1; at):

(a0:(q0 j Topk(a) j a(a0; a1; at) j a0 j A)� (if Ck = 0)

a1:Adj k(b; bt):(at j bt:(q
00 j Topk(b) j A))) (if Ck > 0) :

Note that in the equations above we have omitted the parameters (which

can be easily inferred) as well as the intermediate process identi�ers. The

case (Ck > 0) reveals the role of the channel at: it is used to simulate via a

communication an equality test between at and bt so as to make sure that the

received channel b corresponds to the cell preceding a's. 2

4.1 Undecidability with generated values and conditional

The encoding above relies on channel mobility and moreover processes may in-

put on received channel names. A frequently used extension of the �-calculus
includes a conditional on name equality. To formalise this extension, we as-

sume equations may have the shape:

A(~a) = [a = a0]A0(~a0); A00(~a00)(6)

8

R.M. Amadio and C. Meyssonnier

with the expected meaning that we branch on A0 if a � a0 and on A00 otherwise.

Now if we allow a conditional on names of basic sort o then a simpler

encoding is possible where all transmitted names have sort o. We assume

additional channels Contk to indicate the contents of a cell (values 0 or 1).

The sorts are now as follows:

Topk of sort Ch(o); Adj k of sort Ch(o; o); and Contk of sort Ch(o; o) :

An instruction of type (1) is translated as:

A = q:Topk(a):(�a
0)(q0 j Adj k(a; a

0) j Contk(a
0
; 1) j Topk(a

0) j A);

and an instruction of type (2) is translated as:

A = q:Topk(a):Contk(a
0
; v):[a0 = a]

([v = 0](q0 j Topk(a) j Contk(a; 0) j A);

Adj k(a
0
; a

00):[a00 = a](q0 j Topk(a
0) j A)) :

5 The fragment without name mobility is undecidable

We consider the fragment where all names have sort Ch(), i.e., no name

mobility is allowed. Then the equation (2) is restricted to having the shape:

A(~a) = a:(� ~d)(�i2Iai j �j2JAj(~cj)) :(7)

In the absence of name mobility, generated names cannot be extruded and

therefore name generation is essentially ccs restriction. Milner [11] shows that

synchronous ccs with restriction, relabelling, and external choice is powerful

enough to simulate a 2-counter machine. We will show that this simulation

can be still carried on while dropping external choice and relabelling and using

just asynchronous communication. Schematically, we replace (i) synchronous

communication by asynchronous communication plus an acknowledgement,

(ii) external choice by internal choice (of course, this is possible because we

are just looking at a reachability property), and (iii) relabelling by parametric

equations.

Proposition 5.1 The reachability problem for the fragment with name gen-

eration and without name mobility is undecidable.

Proof. Again we simulate a 2-counter machine in the form described in the
proof of proposition 4.2 and reduce the halting problem to the reachability
problem 2.2. The basic issue is to represent a stack. To this end we de�ne
the following system of equations (inspired by [11]). The channel i stands for
increment, z for counter is zero, and d for decrement. Each of these channels
comes with a corresponding `acknowledgement' channel ia, za, and da which

9

R.M. Amadio and C. Meyssonnier

are kept implicit below.

B(i; z; d) = Bi(i; z; d) �Bz(i; z; d)

Bi(i; z; d) = i:(i
a
j CB(i; z; d))

Bz(i; z; d) = z:(za j B(i; z; d))

C(i; z; d; z0; d0) = Ci(i; z; d; z
0
; d

0)� Cd(i; z; d; z
0
; d

0)

Ci(i; z; d; z
0
; d

0) = i:(i
a
j CC (i; z; d; z0; d0))

Cd(i; z; d; z
0
; d

0) = d:((d0 � z0) j D(i; z; d; z0; d0))

D(i; z; d; z0; d0) = Dd(i; z; d; z
0
; d

0)�Dz(i; z; d; z
0
; d

0)

Dd(i; z; d; z
0
; d

0) = (d0a:(d
a
j C(i; z; d; z0; d0)))

Dz(i; z; d; z
0
; d

0) = (z0a:(d
a
j B(i; z; d)))

CB(i; z; d) � (�i00; z00; d00)(C(i; z; d; z00; d00) j B(i00; z00; d00))

CC (i; z; d; z0; d0) � (�i00; z00; d00)(C(i; z; d; z00; d00) j C(i00; z00; d00; z0; d0)) :

A process C receives on i; d and sends on z0; d0. A process B receives on
i; z. When decrementing, a process C sends messages to its neighbour. The
message goes on d if the neighbour is C and on z if the neighbour is B. Here
is a schematic intuition of what happens:

DCCCBB ! DDCCBB ! DDDCBB ! DDDDBB !

DDDBBB ! DDCBBB ! DCCBBB! CCCBBB :

The D is propagated towards the right till it meets B and when this

happens it becomes B and shortcuts the last B.

Note the peculiar way in which we use the internal choice. If a `server'

can receive requests on two channels then it guesses non-deterministically on

which channel the next message is coming. Symmetrically, a `client' with two

requests internally guesses which request is going to be served. If client and

server guess consistently we obtain the desired behaviour. Otherwise client

and server get stuck.

We translate a program of a 2-counter machine as a `�nite' control process

that acts as a client for two counters' processes initialised by:

B(i1; z1; d1) j B(i2; z2; d2) :

10

R.M. Amadio and C. Meyssonnier

The instructions of type (1) and (2) are simulated as follows:

(1) Aq = q:(ik j i
a
k:(q

0 j Aq)) ;

(2) Aq = Az
q � Ad

q

Az
q = q:(zk j z

a
k :(q

0 j Aq))

Ad
q = q:(dk j d

a
k:(q

00 j Aq)) :

It is clear that by a suitable selection of internal choices we can simulate

the behaviour of the 2-counter machine. On the other hand, suppose an

attempted communication gets stuck because of wrong internal choices. This

may happen (i) when the control sends a request to a counter, or (ii) when

a decrement instruction propagates towards the right in a counter. In both

cases the control is stuck. In the �rst case this is clear, in the second case this

happens because the control waits for an acknowledgement which is delivered

only after the propagation is completed. 2

Remark 5.2 In all the equations above, an input is followed, up to inter-

nal choice, by exactly one output. This implies that the number of messages

present in a reachable con�guration is bounded.

6 The fragment without mobility and with bounded

control is decidable

We consider the fragment where all names have the sort Ch(), and the equation

(2) is restricted to the shape:

A(~a) = a:(� ~d)(�i2Iai j B(~b)) :(8)

For the sake of simplicity, we assume that all the equations in a given system

depend on k parameters. We note that in systems without name mobility and

with bounded control there is a bound on the number of `live' names appearing

in any reachable con�guration. Indeed, the only form of name transmission

allowed in these systems is via the recursion parameters: once a name dis-

appears from the recursion parameters, no input can ever be performed on

that name again. Therefore, without loss of generality we suppose that in the

equation (8) above f~dg � f~bg.

The basic idea is to generalise the reduction to Petri Nets presented in

section 3 and to replace name generation by the reusing of `dead' names.

We will begin by transforming the system into an equivalent parameterless

system of equations with reset (and without name generation), which in turn

we transform into a Petri Net with reset arcs. The latter can be reduced to a

standard Petri Net, provided that the number of tokens in resetable places is

bounded (in general Petri Nets with reset arcs are undecidable).

11

R.M. Amadio and C. Meyssonnier

In the following, a parameterless system of equations with reset is a variant

of the parameterless system presented in section 3.1. In such a system, the

equations have the shape

A = a:reset ~d:(�i2Iai j B) ;(9)

and the semantics of the reset operator is to erase all messages sent on names

belonging to its argument.

6.1 Lifetime analysis of names

In order to reduce a Petri Net with reset arcs to a standard Petri Net, we

need a bound on the number of tokens in any resetable place. This leads

us to distinguishing two kinds of names in the original system: persistent

names, for which there is no bound, but which never need to be reset, and

temporary names. We will give a bound on the number of messages sent on

any temporary name.

To this end, we introduce the parameter ow graph of the system, which

is de�ned as follows.

De�nition 6.1 The parameter ow graph of a system E is a directed graph

G = (L; 7!), where:

� The set of nodes L is given by the parameter positions fAi j A identi�er in E and i 2
[1; k]g.

� Ai
7! Bj

is an edge of the graph if if the equation associated to A in the

system E is

A(~a) = a:(� ~d)(: : : j B(~b)) ;

and the i-th component of ~a is equal to the j-th component of ~b.

Positions leading to a cycle in G will be referred to as persistent positions,

while the others will be called temporary positions. Accordingly, when a name

occurs in A(~a) we will call that name persistent if it is used in at least one

persistent position, and temporary if it is used only in temporary positions.

Note the peculiar structure of G: if we consider the class of positions

associated to one process identi�er, all edges from vertices in this class lead to

vertices in a unique class, due to our syntactic de�nition of �nite control. Also,

since all names in f~ag are distinct, we cannot have, for i 6= j, Ai 7! Bl and

Aj 7! Bl. It follows from these observations that the set of vertices reachable

from a temporary position is a �nite tree. If e is the number of equations

in E then the size of the tree is bounded by e � k which is the number of

parameter positions. Moreover, if m is the maximum number of outputs on

any parameter in any equation of E , then the number of outputs performed

on any temporary name is bounded by e � k � m, which is polynomial in the

size of E .

12

R.M. Amadio and C. Meyssonnier

A2 B2 C2

A1 B1 C1

Fig. 1. The parameter ow graph for E

Example 6.2 Let us consider the system E de�ned by the equations

A(a; b) = b:(a j B(a; a))

B(a; b) = a:C(a; b)

C(a; b) = b:(�c)(c j A(c; a)) ;

and the initial con�guration

P � a j a j b j A(a; b) :

In this system, all newly generated names are temporary names used in

position A1
. Since the tree rooted in A1

has 6 nodes, and no equation in E

performs more than 1 output on any of its parameters, we can take 6 as a

bound on the number of messages sent on any temporary name.

6.2 From systems without mobility and with bounded control to parameterless

systems with reset

We �x a system E of equations of the type (8), and an initial con�guration P ,

which does not contain any generated names. Let N0 be the set of names free

in P , and n the number of process identi�ers in P . Without loss of generality,

we may suppose that every process identi�er in E relates to a unique thread

of the initial con�guration (if process identi�ers are shared among di�erent

threads then we can always rename them so as to satisfy this condition).

We will construct a system E 0 of equations of the shape (9) and show that

the reachability problem for E and P reduces to a �nite number of reachability

problems for E 0 and a suitable initial con�guration P 0.

We assume, for every j 2 [1; n], pairwise disjoint sets Pj and Tj, of re-

spective cardinalities k and 2k, which will represent the j-th thread's pri-

vate name space (Pj is used for persistent names and Tj for the temporary

ones). The parameterless system E
0 will be de�ned over the name space

N = N0 [([j2[1;n]Pj [Tj).

De�nition 6.3 The vector of names (a1; : : : ; ak) is compatible with the pro-

cess identi�er A of the jth thread (written (a1; : : : ; ak) # A; j) if for all a 2

13

R.M. Amadio and C. Meyssonnier

fa1; : : : ; akg

a 2

8
<
:
N0 [Pj if 9 i (ai = a and Ai is a persistent position)

N0 [Tj otherwise.

Next we de�ne the system E
0 associated to (P; E).

De�nition 6.4 Fix an equation of the shape (8) in E relating, say, to the

thread j. Then:

(i) for every ~a0 such that ~a0 # A; j,

(ii) for every injective substitution [~d0=~d] such that

f~d0g � Pj [Tj, f~d0g \ f~a0g = ;, � = [~a0=~a; ~d0=~d], and �~b # B; j

we introduce an equation

A~a0 = �(a):reset ~r:(�i2I0�ai j B�~b
)

where f~rg = Tjnf�~bg and I 0 = fi 2 I j �ai =2 f~rgg.

Roughly, we consider all compatible instances ~a0 of a process identi�er A
of a thread j, we replace the generated names ~d by unused names in Pj [Tj
(a simple cardinality argument show that they exist), and we reset all the

channels on temporary names that are not used in the continuation.

Next, we introduce a binary relation R relating con�gurations and param-

eterless con�gurations.

De�nition 6.5 Let Q � (� ~d0)(� ~d)(�i2Iai j �j2[1;n]Aj(~aj)) be a con�guration

where we assume that:

(i) f~d0g \ (
S

j2[1;n]f~ajg) = ;,

(ii) the identi�er Aj relates to the jth thread, and

(iii) if d 2 f~dg then d occurs in exactly one set of parameters f~ajg.

Then Q R (�i2I0�ai j �j2[1;n]Aj;�~aj) whenever:

� I 0 = fi 2 I j ai 2 N0 [(
S

j2[1;n]f~ajg)g and

� � is an injective substitution from ~d to
S

j2[1::n](Tj[Pj) such that �~aj # Aj; j,

for j 2 [1; n].

Here we follow the same approach as in the previous de�nition 6.4: we

replace the generated names occurring in the parameters of exactly one process

identi�er by compatible names in the set Tj [Pj, while removing useless

restrictions and messages.

Given an initial con�guration P , we can easily compute a P 0 such that

P R P 0. Then we have to check that the relation R is suÆciently general to

keep the two con�gurations in lockstep.

Lemma 6.6 If Q R Q0
, we have:

� if Q! R then there is R0
such that R R R0

and Q0
! R0

.

14

R.M. Amadio and C. Meyssonnier

� if Q0
! R0

then there is R such that R R R0
and Q! R.

The proof of this lemma is a simple, although laborious, manipulation of

de�nitions 2.1, 6.4, and 6.5. We can then reduce the reachability problem for

(P; E) to a �nite number of reachability problems for (P 0; E 0).

Proposition 6.7 The reachability of the process identi�er A in (P; E) is equiv-

alent to the reachability of one of the (�nitely many) parameterless identi�ers

A~a0 in (P 0; E 0).

Proof. We apply lemma 6.6 inductively on the length of the considered re-

duction chain and exploit the de�nition of the relation R. 2

6.3 From parameterless systems with reset to Petri Nets with reset arcs

In this section, we show how to extend the reduction from parameterless sys-

tems to Petri Nets described in section 3.2, to a reduction from parameterless

systems with reset to Petri Nets with reset arcs.

We suppose given a parameterless system of equations with reset E 0, and

an initial con�guration P 0 without name generation. Let N be the �nite name

space over which the system is de�ned (note that this may be strictly larger

than the collection of names free in P 0).

Like in section 3.2, we build a Petri Net that has one place for each param-

eterless process identi�er in E 0, and one place for each name in N (remember

that we do not consider mobility). The intended interpretation is still that a

token in place a corresponds to a message a, while a token in place A corre-

sponds to the presence of a parameterless process identi�er A in the current

con�guration.

The transitions are set as in section 3.2, except that we no longer have to

care for external choice (i.e. there is only one transition per equation), and

that if the equation associated to A is A = : : : reset~r : : :, then for each a 2 f~rg
we add a reset arc going from transition tA to the place a.

Note that, thanks to the analysis performed in subsection 6.1, we can

guarantee that all the places pointed to by reset arcs are bounded.

Proposition 6.8 The reachability of A in (P 0; E 0) is equivalent to the cov-

erability of place A with 1 token in the Petri Net with reset arcs described

above.

6.4 From Petri Nets with reset arcs to Petri Nets

Finally, we recall how to simulate a Petri Net with reset arcsN with a standard

Petri NetN0, provided that all resetable places are bounded (this is a standard

result for Petri Nets).

For each resetable place p, we add a complementary place p0. If b is the
bound on the number of tokens in place p, in all reachable markings M we

will maintain the invariant M(p) +M(p0) = b.

15

R.M. Amadio and C. Meyssonnier

To this end, we modify the existing transitions so as to add as many

outgoing arcs to p0 as the number of incoming arcs from p, and as many

incoming arcs from p0 as the number of outgoing arcs to p.

Then, for any transition t that points a reset arc at p, we replace t by the

transitions t0; : : : ; tb, where, ti is connected to the places of the net by the

same arcs as t, plus an arc of weight i incoming from p, an arc of weight b� i

incoming from p0, and an arc of weight b outgoing to p0.

Proposition 6.9 A marking M is reachable in N if and only if the marking

M 0
is reachable in N0, where

� for any place p of N , M 0(p) = M(p),

� and for any resetable place p of N , M 0(p0) = b�M(p).

To summarize, given a system in the fragment without mobility and with

bounded control, by composing the three reductions presented above, we re-

duce the reachability problem for that system to a �nite number of coverability

problems for a standard Petri Net.

Theorem 6.10 The reachability problem for the fragment without mobility

and with bounded control is decidable.

Our decision result could be extended from equations of the shape (8) to

equations of the following shape:

A(~a) = a:(�~c)(�i2Iai j B(~b) j �j2JAj)(10)

where Aj are parameterless process identi�ers that refer to parameterless equa-

tions of the shape (5) whose free names do not intersect the generated names

~c.

An interesting open problem, concerns the decidability of the fragment

with name generation, bounded control, and weak forms of name mobility

where, e.g., a process cannot receive on received names.

References

[1] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the

asynchronous �-calculus. Theoretical Computer Science, 195:291{324, 1998.

[2] G. Boudol. Asynchrony and the �-calculus. Technical report, RR 1702, INRIA,

Sophia-Antipolis, 1992.

[3] M. Dam. Model checking mobile processes. Information and Computation,

1996. Preliminary version appeared in Proc. Concur'93.

[4] C. Fournet, G. Gonthier, J.-J. L�evy, L. Maranget, and D. R�emy. A calculus

of mobile agents. In Proc. CONCUR 96, Springer Lect. Notes in Comp. Sci.

1119, 1996.

16

R.M. Amadio and C. Meyssonnier

[5] U. Golz and A. Mycroft. On the relationship of CCS and Petri Nets. Proc.

ICALP84, Springer Lect. Notes in Comp. Sci. 172:196{208, 1984.

[6] M. Hack. Decidability questions for Petri Nets. Garland publishing Co., 1979.

[7] K. Honda and M. Tokoro. An object calculus for asynchronous communication.

Proc. ECOOP 91, Geneve, Springer Lect. Notes in Comp. Sci. 612, pages 133{

147, 1991.

[8] J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and

computation. Addison-Wesley, 1979.

[9] P. Jancar. Undecidability of bisimilarity for Petri Nets and related problems.

Theoretical Computer Science, 148:281{301, 1995.

[10] R. Lipton. The reachability problem requires exponential space. Technical

Report TR 66, Yale University, 1976.

[11] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[12] U. Montanari and M. Pistore. Checking bisimilarity for �nitary �-calculus. In

CONCUR '95, Springer Lect. Notes in Comp. Sci. 962, 1995.

[13] B. Pierce and D. Turner. Pict: a programming language based on the �-calculus.

University of Cambridge, 1996.

[14] C. Racko�. The covering and boundedness problem for vector addition systems.

Theoretical Computer Science, 6:223{231, 1978.

[15] C. Reutenauer. Aspects math�ematiques des r�eseaux de Petri. Masson Editeur,

1988. Also available in english: The mathematics of Petri Nets, Prentice-Hall.

[16] G. Sutre. Abstraction et acc�eleration de syst�emes in�nis. PhD thesis, ENS

Cachan, 2000.

[17] V. Vasconcelos and R. Bastos. Core-TyCO, the language de�nition, version

0.1. Technical report TD98-3, University of Lisbon, 1998.

[18] H. Yen. A uni�ed approach for deciding the existence of certain Petri Nets

paths. Information and Control, 96(1):119{137, 1992.

17

