
DISCRETE
MATHEMATICS

ELSEVIER Discrete Mathematics 136 (1994) 175-223

Probabilistically checkable proofs and their consequences for
approximation algorithms

S. H o u g a r d y , H.J. P r 6 m e l * , A. S teger

lnstitut fi~r lnformatik, Humboldt Universitht un Berlin, 10099 Berlin, Germany

Received 16 July 1993; revised 13 December 1993

Abstract

The aim of this paper is to present a self-contained proof of the spectacular recent achieve-
ment that NP = PCP (log n, 1). We include, as consequences, results concerning nonapproxima-
bility of the clique number, as well as of the chromatic number of graphs, and of MAX-SNP
hard problems.

Contents

1. Introduction
2. Probabilistically checkable proofs
3. Consequences in combinatorial optimization

3.1. Non-approximabi l i ty of the clique number
3.2. Non-approximabi l i ty of the chromat ic number

3.3. Non-approximabi l i ty of M A X - S N P hard problems

3. A proof of NP = PCP (log n, 1)
4.1. Overview and structure of the proof
4.2. Probabilistically checkable solutions
4.3. Arithmetization

4.4. N P ~ P C P (poly(n), 1)

4.5. Low degree tests and low degree extensions

4.6. (R 3 SAT, Ea)~PCS (log n, 1, poly(log n))

4.7. Compos ing verifiers: recursive proof checking

4.8. A corollary: How to verify a theorem without even reading it
Appendix A. LFKN-type tests
Appendix B. Low degree tests

* Corresponding author.

0012-365X/94/$07.00 ,~ 1994--Elsevier Science B.V. All rights reserved
SSDI 001 2 -365X(94)001 12-V

176 S. Hougardv et al. / Discrete Mathematics 136 (1994) 175-223

1. Introduction

On April 7, 1992, The New York Times published an article entitled 'New Short
Cut Found for Long Math Proofs'. The aim of this article was to popularize a new
characterization of the class NP, obtained by Arora et al. [-3], which can formally be
phrased as NP = PCP(log n, 1). This is indeed an amazing result - - with far-reaching
consequences in discrete mathematics.

In order to roughly explain this result, let us first recall the definition of the class
NP. A language (decision problem) is in the class NP if, for every input x which
belongs to this language, there exists a membership proof, say ~x, which can be
checked in polynomial time by some Turing machine. Typical decision problems in
N P are the satisfiability problem, the Hamiltonian cycle problem and the 3-coloring
problem. Membership proofs for problems in NP are usually concise and simple.
They just consist, for example, of a satisfying assignment, a Hamiltonian cycle, or
a 3-coloring, respectively. Surely, to distinguish a proper 3-coloring from a coloring
that is proper on all but one of the vertices, one really has to read the color of every
vertex, i.e., the whole proof!

This is not the case with probabilistically checkable proofs. Here we give just an
intuitive idea of this notion; a precise definition is given in the next section.
Probabilistically checkable proofs are inspected by verifiers (polynomial time Turing
machines) which proceed as follows. After reading the input x and a string v of random
bits, they decide which bits (positions) of the proof they want to read. Subsequently,
they either accept the input x or reject it - - only on the knowledge of the (few) queried
bits! A language (a decision problem) is said to have a probabilistically checkable
proof if, for all x in the language, there exists a proof 7rx which the verifier accepts for
all random strings ~, while, for all x not in the language, the verifier rejects all proofs
for a majority of the random strings.

As we will see, it is fairly easy to construct a probabilistically checkable proof for
problems in NP which can be checked by reading only a constant number of bits - - if
we allow the verifier to use polynomially many random bits. But, as a consequence,
these proofs may be of exponential length. Highly nontrivial and surprising, however,
is the fact that every problem in NP has even a proof of polynomial length with the
same property. More precisely, every input x of length n admits a proof of polynomial
length which can be checked probabilistically by reading only a constant number of
bits from it, using random strings ~ of length at most (_9(log n). This is, roughly, the
essence of the ' N P = PCP(logn, 1)' result.

Just as amazing as this result itself are the consequences in the seemingly unrelated
area of approximation algorithms - - resolving several long-standing open problems.
Here, we will just mention two of them. First, consider the problem of finding
a maximum clique in a graph. The corresponding decision problem, namely to decide,
for a given graph G and a number k, whether the clique number of G is at least k, is one
of the classical NP-complete problems. Until the N P = P C P (I o g n , 1) result was
proved, no nontrivial lower bound for the approximation guarantee of a polynomial

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175 223 177

time algorithm for the clique-number in a given graph was known. As a consequence

of their characterization result for the class NP, Arora et al. [-3] deduced from

a result of Feige et al. [15] that there exists a constant e > 0 such that no

polynomial time approximation algorithm for the clique number of a graph on
n vertices can be guaranteed to come within a factor of n ~ of the right answer - - unless
P = N P .

Second, we take a look at the problem of finding the chromatic number of a given
graph. This problem is also known to be NP-hard. Even more, an old result of Garey

and Johnson [17] states that for any e>0, no polynomial time algorithm can

approximate the chromatic number within a factor of 2 - e, unless P = NP. Now, using
an appropriate transformation from the clique-problem, Lund and Yannakakis [28]
have been able to show that the chromatic number of a graph is just as hard to

approximate as the clique number. More precisely, there exists a constant e > 0 such

that no polynomial time approximation algorithm for the chromatic number of
a graph on n vertices can have a performance guarantee that is n ~ - - unless P - -NP .

For constant chromatic number, Khanna et al. [25] proved that it is even NP-hard to

color a 3-colorable graph with four colors.

The NP = PCP(Iog n, 1) result, but even more its consequences on approximation
algorithms, have astonished many people working in discrete mathematics and

have had considerable impact on their work. The methods for proving this result
have been developed in computer science during the last few years. The idea of

writing this paper was to collect and explain the ingredients (some of them not

being easily accessible), to present a self-contained proof of the N P = P C P
(logn, 1) result, and to explore some of its applications. The paper should be,

we hope, a readable guide to these results for people who are not experts in this field,

but rather view this exciting development more from the angle of a discrete

mathematician.

2. Probabilistically checkable proofs

A verifier V is a polynomial-time Turing machine with access to an input x and
a string z of random bits. Furthermore the verifier has access to a proof n via an

oracle, which takes as input a position of the proof the verifier wants to query and

outputs the corresponding bit of the proof n (cf. Fig. 1).
The result of V's computation, usually denoted by V(x,z,n), is either ACCEPX

or REJECX. For clarity let us explicitly state, that we always assume verifiers to be
non-adaptive, that is we assume that the bits a verifier queries solely depend on the

input x and the random string z, but not on the outcome of any previously queried
bits.

An (r(n), q(n))-restricted verifier is a verifier that for inputs x of length n uses at most

~(n) random bits and queries at most c)(n) bits from n, where ?(n) and O(n) are integral
functions such that ~(n)=C(r(n)) and c~(n)= (9(q(n)).

178 S. Hougardr et al. / Discrete Mathematics 136 (1994) 175-223

[input x / J I r andom bits "r / J [proof r /

ACCEPT/REJECT

Fig. 1. A verifier for probabilistically checkable proofs.

Definition 2.1. A language L is in PCP(r(n), q(n)) iff there exists an (r(n), q(n))-restricted
verifier V such that:

(i) For all x 6 L there exists a proof nx such that

Prob~ [V(x, z, nx) = ACCEPT] = 1,

(ii) while for all x ¢ L every proof n satisfies

Probe [V(x, z, r0 = accept] < ¼.

Here the notation Probe[. . .] means that the probability is taken over all random
strings the verifier may read (that is, over all 0-1 strings of length t(lx])), where every
string is equally likely. In other words, the probability is computed with respect to the
uniform distribution on {0, lff tlxl).

Note. In slight abuse of notation we will allow the functions r(n) and q(n) to be of the
form poly(n), polylog(n)) and so on. (Here we assume that, for example, every
polynomial function p(n) satisfies p(n)= C(poly(n)).)

The reader is invited to observe that the constant ¼ in Definition 2.1 may be
replaced by any constant c¢ between 0 and 1.

With these definitions in hand we are now able to interpret the new characterization:
every language in NP has a membership proof n which can be checked probabilisti-
cally by using (9(log n) random bits and querying only (_9(1) bits of the proof.

Theorem 2.2 (Arora et al. [3]).

NP = PCP(log n, 1).

Note t h a t one inclusion of Theorem 2.2 is trivial. Namely, the inclusion
PCP(Iog n, 1) c NP follows immediately from the fact that there exist only polynomially

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175 223 179

many different random strings of length C(logn). The other inclusion is proven in
Section 4.

3. Consequences in combinatorial optimization

Our main motivation for being interested in the NP = PCP(log n, 1) result are its
startling consequences in combinatorial optimization. In this section we will state the
three most important consequences: the nonapproximabili ty of the clique number, of
the chromatic number and of MAX-SNP-hard problems.

The quality of an approximation algorithm is measured by its performance guaran-
tee which is defined as follows. Let A be an approximation algorithm and I be an
instance for the algorithm. By OPT(I) we denote the value of an optimal solution and
by A(I) the value of the solution found by the approximation algorithm A. Then the
performance ratio of A on input I is defined as the quotient A(I)/OPT(I) resp.
OPT(I)/A(I) whatever of the two values is larger. Now the performance guarantee of
the algorithm A is the supremum of all performance ratios for instances I with
OPT(I)>n o for some integer no.

Until recently the three above mentioned optimization problems shared the same
status: the best known polynomial time approximation algorithms - - even though
they are quite intricate - - had very poor approximation ratios compared to the best
known lower bounds. For example the best known polynomial time approximation
algorithm for the chromatic number of a graph on n vertices has a performance
guarantee of C(n(loglogn)2/log 3 n) [21]. On the other hand the best known lower

bound is 2 - e , i.e., no polynomial time algorithm for approximating the chromatic
number can have a performance guarantee better than 2 - e , unless P = N P [17].

The usual way to prove the nonapproximabili ty of an optimization problem P is to
reduce the instances of some NP-complete language L to instances of the problem
P with a large gap in their cost functions. That is, for elements of L one has to
construct instances of P that have a value of at least, say c in the cost function of P,
while for all other instances the value of the cost function is at most some constant
fraction of c. The difficulty in constructing such a transformation is that it is possible
that two strings x and y differ in only one bit even though x is an element of L and y is
not. A main feature of the NP = PCP(log n, 1) result is that it provides a robust way to
compute instances with the desired gap.

3.1. Nonapproximability of the clique number

A clique of a graph G is a set of pairwise adjacent vertices in G. The clique number
of G is defined as the size of a largest clique contained in G and is denoted by re(G).
The problem C L I Q U E is to decide for a graph G and a number k whether the
clique number of G is at least k. This problem is one of the classical NP-complete
problems [24].

180 S. Hougardy et at./Discrete Mathematics 136 (1994) 175-223

The NP-completeness of CLIQUE leads naturally to the question whether the
underlying optimization problem - - finding a maximum size clique - - has at least
a 'good' polynomial time approximation algorithm. For the clique number, the best
known performance guarantee of a polynomial time approximation algorithm is
achieved by an algorithm due to Boppana and Halld6rsson [-13]. It has a performance
guarantee of Cg(n/log 2 n).

Before the N P = P C P (l o g n , 1) result (Theorem 2.2) was proved, no nontrivial
lower bound for the performance guarantee of a polynomial time approximation
algorithm for the clique number of a graph was known. The only result in this
direction, due to Garey and Johnson [18], is that the existence of a polynomial time
approximation algorithm for the clique number of a graph with a constant
performance guarantee implies the existence of a polynomial time approximation
scheme (PTAS for short; a PTAS is a family of algorithms, one for each ~ > 0, which
are polynomial in time, and achieve an approximation ratio of 1 + 5) for the clique
number.

As a first step we will show in Section 3.1.1 how the N P = P C P (l o g n , 1) result
together with a result of Feige et al. [15] implies that, unless P = NP, no polynomial
time approximation algorithm for the clique number problem can achieve a constant
performance guarantee. Further results of Feige et al. [15], using random walk
techniques of Ajtai et al. [1-] resp. Impagliazzo and Zuckerman [22], give in combina-
tion with the N P = P C P (l o g n , 1) result a much stronger statement: there exists
a constant ~ such that no polynomial time approximation algorithm for the clique
number can have a performance guarantee that is n ~ - - unless P = NP. This will be
shown in Section 3.1.2.

3.1.1. Nonapproximability up to any constant factor
Feige et al. [15] were the first who used results in the theory of interactive proofs to

obtain some nonapproximability results for the clique number. They showed that
NP _~ PCP (log n log log n, log n log log n) and used this result to prove that the clique
number of a graph cannot be approximated in polynomial time up to any constant
factor unless NP = DTIME(n~1°~°g")). Their proof can immediately be applied to the
N P = PCP (log n, 1) result to get the following theorem.

Theorem 3.1. Unless P = NP, the clique number of a graph cannot be approximated in
polynomial time up to a factor of 2.

Proof. Based on the existence of a (log n, 1)-restricted verifier (Theorem 2.2) for any
language in NP we will construct for a given language L e N P and any input x of
length n a graph Gx with the following property:

x e L =~ o(Gx)=f(n),

xq~L ~ og(G~,)<¼f(n),

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 181

where the function f will be specified later. Thus a polynomial time algorithm that
approximates the clique number of a graph up to a factor of 2 could be used to
recognize any language in NP in polynomial time.

We now describe the construction of the graph Gx. Let V be the (log n, 1)-restricted
verifier for the language L and r(n)=(_9(logn) resp. c(n)=(_9(1) be the maximum
number of random bits resp. query bits used by V on inputs of length n. The vertex set
of Gx will consist of all accepting runs of V on input x. Each of these can be described

by a tuple (~, al, a2 act.)) where ~ is the random string of length r(n) used for the
computat ion and ai is the answer to the ith queried bit of ~z. The length of the whole
tuple is (9(log n) which implies that the size of Gx is polynomially bounded. To decide
whether a given tuple is a vertex of Gx one just has to verify that V accepts the input
x with random string z and answers ai.

Two different vertices (z, a 1 ac~,)) and (g, 81 ci~.)) of G~ are adjacent if there
exists at least one proof 7z that is consistent with both tuples, i.e., if there is a position
p of the proof string that was queried in both runs then the returned bits, say a~ and 8j,
have to have the same value. Obviously for any pair of vertices in G~ this can be
checked in polynomial time. Observe that G~ is a 2 '~"~ partite graph.

For a fixed proof 7r any two vertices of Gx that are consistent with ~ (i.e., the
returned bits a~ equal the corresponding bits of rr) are adjacent. Thus for all proofs
7t we have

co(Gx)/> number of accepting runs of V with respect to

= 2 r~"). Prob~ [V(x, ~, ~) = ACCEPT].

On the other hand, if C is a clique in G~ then all vertices in C that query a position
p must get the same answer a and thus there exists one proof ~ that is consistent with
all vertices of C. Since this is especially true for a clique of size ~o(G~) we know that

there exists some go such that

co(Gx)~<number of accepting runs of V with respect to ~o

= 2 '~"). Probe [V(x, z, no) = ACCEPT].

Combining the two inequalities we get

co(Gx) = 2 '~")' max Probe [V(x, ~, g) ~- ACCEPT].
/ t

By the definition of a restricted verifier the value of max , Prob~ [V(x, ~, ~)= ACCEPT] is
either 1 or less than ¼ depending on whether xeL or xq~L. This proves the above-
stated property of the graph Gx. []

The reader is invited to observe that we did not make use of the fact that the verifier
reads only a constant number of bits from ~. The same proof works if the verifier
would be allowed to read (9(log n) bits.

182 s. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

As already remarked in Section 2 the constant ¼ in the definition of the class
PCP(. , .) may be replaced by any other constant between 0 and 1. If we choose instead
of ¼ the constant e, then in the above theorem we have to replace the number 2 by

1/v/~. We therefore get the following corollary.

Corollary 3.2. Unless P = NP, the clique number of a graph cannot be approximated in

polynomial time up to any constant factor.

3.1.2. Nonapproximabil i ty up to n ~

Let PCP~(.,.) denote the class of languages defined in the same way as PCP(. , .)
except that the constant ¼ in Definition 2.1 is replaced by e. As observed already
above we have PCP~(. , .)=PCP(. , .) for any constant e. This follows from the
fact that by repeating the run of the restricted verifier a (suitable) constant number of
times, the probability of getting a wrong answer can be made arbitrarily (but
constantly) small.

If we want to use the proof of Theorem 3.1 to show that the clique number cannot
be approximated up to a factor of n ~ we would need to prove that PCP(log n, 1) equals
PCP,-,(logn, 1) for some 6 depending on e. Unfortunately, to show this one had to
rerun the restricted verifier k times with k satisfying (½)k< n ~. This means k/> ~ log n
and thus we would need (9(log 2 n) random bits and (9(log n) query bits which gives
only N P _ PCP, ,(log 2 n, log n). However, relying on a method of Ajtai et al. [1] resp.
Impagliazzo and Zuckerman [22] that makes use of random walks on expanders it
can be shown that in fact (9(logn) random bits are sufficient (i.e., one can show
NP ___ PCP, ~(log n, log n)).

The idea behind this technique is as follows. Instead of using truly random bits one
generates pseudo-random bits by taking a special d-regular graph (d is a constant) that
has a vertex for every possible 0-1 string of length r(n)=(9(logn) and chooses an
arbitrary vertex of this graph as a starting point of a random walk where each of the
d edges incident to a vertex is chosen with probability 1/d. Every cth step of the
random walk (c is a constant) one uses the string that is associated to the just
reached vertex as a pseudo-random string. Obviously, in this way only a constant
number of random bits are needed to generate a pseudo-random string of length r(n).

Thus the total number of random bits used to get (9(log n) pseudo-random strings of
length r(n) is (9(log n). The following lemma gives the theoretical background for this
method.

Lemma 3.3. Let ~e be an infinite family of d-regular graphs with the following property:

I f G = (V, E) is a member of f~ e and A denotes its adjacency matrix multiplied by 1/d then
all but the largest eigenvalue o f A are less than 1 - 6 and positive.

Then for every subset C o f V with I CI ~<1VW16 there exists a constant c such that the

probability that a random walk on G o f length k . c arrives in every cth step in a vertex of
C is at most 2 -k.

S. Hougardy et al. / Discrete Mathematics 136 { 1994) 175 223 183

Proof. Let 1 =21 >22 >--23 >~ .-. >~2,~>0 be the eigenvalues of A. Note that since G is
d-regular the largest eigenvalue of A is 1. Since 2z is bounded away from 1 by
a constant there exists a constant c such that (22)c~<¼. Let p be a vector with
a component for every vertex of G containing the probability of being at that vertex.
By Po we denote the vector whose entries are all 1/I VI. The vector Ap gives for each
vertex of G the probability of being at that vertex after one single step of the random
walk. Similarly ACp gives these probabilities after c steps of the random walk. Let N be
the matrix whose entries are all zero except for the diagonal, where Nu is 1 if i6C.
Then NACp gives the probabilities of being in a vertex of C after c steps of the random
walk. Let I-} denote the Ll-norm. Then](NAC)kpl is the probability that every cth step
the random walk is in a vertex of C. To estimate this value, we first compute an upper
bound for the Lz-norm []'[I of NACp:

1] NACp 1[~<½]l P 11- (1)

To prove this inequality we first decompose p into the sum of two vectors v and
w where v is a multiple ofpo and w is a vector orthogonal to v. Since v is an eigenvector
of A belonging to the eigenvalue 1 we have

j 1
ilgAcvll=llgvll= Ni~i=lV2 ~ 1 ~ v2=~ ilvll,

Similarly we get for the vector w using that it is orthogonal to v:

II NA%, Iq ~ II ACw II ~<(22) ~ II w II ~<¼ II w [I.

Using the triangle inequality and the fact that the sum of the L2-norms of two
orthogonal vectors is bounded by v /2 times the L2-norm of the sum of these vectors
we get by combining these two inequalities:

rINA~PII <-II NA~vII + IINACwII ~<¼ (ll vii +]l wll)~<¼ v/2 Ilprl <½ Ilpll

and thus have proved (1).
Now making use of a well-known inequality between the L1- and the L2-norm and

applying (1) k times we get

I(NAC)kpo14 1 ~ / ~ ' II(NA¢)kpo II

~< Ix /~ (½)k l lPo l l

= 2 -k. []

The proof of the existence of families c~ satisfying the requirements of the above
lemma is based on the existence of constant degree expanders. An (n, d, c)-expander is
a d-regular bipartite graph G = (A, B, E) with J A I = [BI = n such that for every set X c A
with]Xl<~n/2 its neighborhood has size at least [XI(l+c(1-]X]/n)). A family of
(ni, d, c)-expanders is an infinite set of graphs Gi that are (n, d, c)-expanders with n i ~
and ni+ l/ni~ l.

184 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

The explicit construction of families of expanders was first achieved by Margulis
[29]. He constructed a class of 5-regular expanders as follows:

Let m be an integer and Zm := Z/mZ be the ring of residues modulo m. The vertex
set of the expander is partitioned into sets Am and Bm both being Zm x Zm. Each
vertex (x,y) of Am is connected to the vertices (x,y), (x+ 1,y), (x ,y+ 1), (x+y ,y) and
(- y , x) of Bin. The proof that the graphs constructed in this way are indeed
expanders can be found in Margulis [29]. Another construction is given by Gabber

and Galil [163.
If G is a d-regular expander then let A be its adjacency matrix multiplied by lid.

Alon [2] has shown that for every family of d-regular expanders there exists a constant
0 such that for any member of this family all but the largest eigenvalue of A have
a value of less than 1 - O.

Let G be a d-regular expander belonging to some family ~o and let G' denote the
graph that is obtained from G by adding d loops to every vertex of G. Let A resp. A' be
the adjacency matrices of G resp. G' multiplied by 1/d resp. ½d. If 2 is an eigenvalue of
A then (1 + 2)/2 will be an eigenvalue of A'. Since the eigenvalues of G lie all between
- 1 and 1, we know that the eigenvalues of G' are between 0 and 1. Thus the family
~ consisting of all the graphs G' satisfies the requirements of the above lemma.
Obviously the graphs G' are constructable in polynomial time.

We can therefore apply Lemma 3.3 to derive the following corollary.

C o r o l l a r y 3.4. NP ~ PCP, ,(log n, log n).

Proof. Let N o be a family of 5-regular expanders satisfying the requirements of
Lemma 3.3. Let G be a member of rg o that has a vertex for every possible 0-1-string
of length (9(log n).

By performing a random walk on G one takes the 0-1-string associated to every cth
vertex as a pseudo-random string for a (log n, 1)-restricted verifier with error probabil-
ity less than 1 . Lemma 3.3 shows that the probability that this verifier gives k times
a wrong answer is less than 2 -k. Choosing k>~elogn proves the corollary. []

Now by plugging the (log n, log n)-restricted verifier with error probability n-E into
the proof of Theorem 3.1 one gets the following theorem.

T h e o r e m 3.5. Unless P = NP, there exists a constant 6 > 0 such that the clique number
of a graph cannot be approximated in polynomial time up to n ~.

3.2. Nonapproximability of the chromatic number

A coloring of a graph is an assignment of colors to the vertices of the graph such that
no two adjacent vertices get the same color. The chromatic number of a graph G is the
minimum number of colors needed in a coloring of G. It is denoted by x(G).

S. Hougardy eta/. / Discrete Mathematics 136 (1994) 175-223 185

The problem C O L O R I N G is to decide for a graph G and a number k whether the
chromatic number of G is at most k. Like CLIQUE, this problem was shown to be
NP-complete in the famous paper of Karp [24]. In contrast to CLIQUE, the problem
C O L O R I N G remains NP-complete even for any constant k ~> 3.

The NP-completeness of C O L O R I N G leads to the question of the best possible
performance guarantee of an approximation algorithm for the chromatic number.
The best algorithm known is due to Halld6rsson [21] and has a performance
guarantee of (9(n(log log n)2/log 3 n).

On the other hand it has been shown by Garey and Johnson 1-18] that no
polynomial time algorithm for approximating the chromatic number can have a per-
formance guarantee better than 2 - e , unless P = NP.

Like for C L I Q U E the N P = P C P (I o g n , 1) result can also be used to prove some
nonapproximabili ty results for the chromatic number. Lund and Yannakakis [28]
have shown that it is NP-hard to approximate the chromatic number of a graph up to
a factor of n 6, for some constant 6 > 0. Their proof is based on the corresponding result
for the clique number (Theorem 3.5). Khanna et al. [25] have simplified this proof in
a recent paper. Moreover they have shown that even 4-coloring a 3-chromatic graph
is NP-hard. The next two sections are devoted to these results.

3.2.1. Nonapproximability.for arbitrary chromatic numbers
The proof of Lund and Yannakakis [28] for the nonapproximabili ty of the

chromatic number up to a factor of n 6 is based on the graph Gx used in the proof of

Theorem 3.5. Recall that the graph Gx is an s-partite graph with s = 2 '("~ and classes of
size q where both s and q are polynomial in n, the length of x. The special property of
the graph Gx was that its clique number is either s or at most s/nt Starting from this
graph G~, Lund and Yannakakis [28] constructed a new graph H~ having the
property that the large gap in the possible values of the clique number of Gx is
transformed into a large gap of the clique covering number of H~. Since the clique
covering number of H~ equals the chromatic number of its complement this finishes
the proof.

Khanna et al. [25] have used the same ideas for constructing the graph Hx but
found a simpler transformation. We are now going to describe their proof.

Theorem 3.6. There exists an ~ > 0 such that the chromatic number of a graph cannot be

approximated in polynomial time up to a factor of n ~, unless P = N P .

Proof. The proof of Theorem 3.5 shows that it is NP-hard given an s-partite graph
G with classes of size q=(9(poly(s)) to distinguish between the cases ~o(G)=s and
co(G) < s t -6. We will now construct an s-partite graph H with classes of size q' := (sq) s
such that co(H)= co(G). Moreover if the clique number of G is s then the graph H can
be covered by q' cliques of size s. The clique covering number of a graph is
at least as large as its number of vertices divided by the size of a largest clique.
Therefore the clique covering number of H is either q' or at least q's ~. Since q' is

186 S. Hougarc(v et al. / Discrete Mathematics 136 (1994) 175 223

polynomial in s this means that approximating the clique covering number of a graph
up to a factor of n * for some e depending on 6 is NP-hard. Since the clique covering
number of H equals the chromatic number of its complement this finishes the proof of
the theorem.

We are now going to describe the construction of/4. Let the vertices of the graph
G be arranged in s rows each consisting of the q elements of one of the s classes of G.
Thus each row is a stable set and if G has a clique of size s then this clique has
a representative in each row.

The graph H is constructed in the following way: For each row of G there is a row in
H consisting of a stable set of q' vertices. The vertices in each row are arranged into
columns numbered 0, 1 , . . . , q ' - 1 . Later we will describe a mapping between the
vertices of one row of G to the vertices of the corresponding row of H. For every edge
(u, v) from G we add an edge (u', v') in H where u' resp. v' are the images of u resp.
v under this mapping.

Furthermore the graph H will be made invariant under rotation, i.e. if the ith vertex
in row a is connected to the j th vertex in row b then we also add the q ' - 1 edges
connecting the (i+k)th vertex of row a with the (j+k) th vertex of row b for
k = 1,2 q ' - 1 , where the sums are taken modulo q'.

This property of H implies that if we find a clique of size s in H then there are q ' - 1
other cliques in H arising from the first clique under rotation, such that all these
cliques cover H. Therefore if the clique number of H is s then its clique covering
number is q'.

We will now describe how the vertices of each row of G are mapped to the vertices
of a corresponding row of H. This mapping is based on the existence of a special
function T.

Lemma 3.7. For every integer n there exists an injective mapping
T: {0, 1 n-- 1 }--* {0, 1,. . . , m-- 1 } with m = n 5 such that the sums T (a)+ T(b) + T(c)

are all distinct modulo m for different multisets {a, b, c} with a, b, c~{0, 1 n - 1 } .

The proof of this lemma is straightforward. If T is defined for all values up to n - 2
then one just has to define the value of T (n - 1) appropriately. Note that the mapping
T has also the property that for all distinct multisets {a,b} of size two the sums
T(a) + T(b) are distinct.

Using the mapping T we define a map between the vertices of G and H by
just mapping the ith vertex of the j th row of G to the T (j q + i) t h vertex of the
j th row of H.

We claim that co(G) equals co(H), which concludes the proof as outlined above. To
see this, observe first that by construction every edge in H has at least one 'origin' in G,
namely the one which created it. Using the definition of T it follows immediately that
in fact this origin is uniquely defined and that consequently every clique in H has an
origin in G which is also a clique. This shows ~o(H)<~co(G). The reverse inequality
follows trivially from the construction of H. []

S. Hougarc!v et al. / Discrete Mathematics 136 (1994) 175-223 187

3.2.2. Nonapproximability for constant chromatic numbers
Lund and Yannakakis [28] also proved some nonapproximability results for

graphs with constant chromatic number. Namely, they showed that for every constant
h there exists a constant Ch such that it is NP-hard to color ch-colorable graphs with
less than h. Ch colors. Unfortunately the dependence of Ch on h did not allow them to
get any implication for 'small' constant chromatic numbers, like for example
3-colorable graphs.

Khanna et al. [25] however where able to extend the proof in such a way that they
could derive nonapproximability results also for such small constant chromatic
numbers. Especially for 3-chromatic graphs, they where able to prove the following
result which we state here without proof.

Theorem 3.8. Unless P = NP, it is not possible to color a 3-colorable graph with 4 colors
in polynomial time.

By substituting every vertex of a clique of size k by a 3-colorable graph, one
immediately shows that a 3kocolorable graph cannot be colored with 5 k - 1 colors in
polynomial time, unless P = N P . Thus we obtain as a corollary, for any constant
chromatic number k:

Corollary 3.9. Unless P = N P , it is not possible to color a k-colorable graph with

k + 2 r k/3 7 - 1 colors in polynomial time.

Even though Theorem 3.8 is considered a breakthrough, it is, for example, still
unknown whether it is possible to 5-color 3-colorable graphs in polynomial time.
This seems to be very unlikely since the best performance ratio in coloring 3-colorable
graphs is due to an algorithm of Blum [11] that achieves a ratio of n am log 5/~ n. Thus it
is probably the case that coloring 3-colorable graphs is NP-hard for any constant
number of colors. It might even be true that coloring a 3-colorable graph with n"
colors is NP-hard for some e> 0.

3.3. Nonapproximability o f M A X - S N P hard problems

The development of the notion of NP-completeness was mainly motivated by the
study of apparently intractable optimization problems [24, 18]. Nevertheless by defini-
tion only decision problems can belong to the class NP. Certainly every optimization
problem can easily be converted into a decision problem by just imposing some
bound on its cost function. But the particular property of being an optimization
problem is not covered by the notion of NP-completeness.

As a consequence the polynomial time reductions used for defining the complete-
ness of a problem in NP do not reflect intrinsic properties of optimization
problems like the value of the cost function or its approximability. While by
definition all NP-complete problems are equivalent under polynomial time

188 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

reductions, the difficulty of the underlying optimization problems may vary tremen-
deously with regard to their approximability. According to present knowledge the
optimization problems corresponding to NP-complete problems fall into three classes:

(1) Problems that can be approximated in polynomial time up to any desired
constant (e.g. BIN-PACKING).

(2) Problems that can be approximated in polynomial time up to some constant
factor (e.g. euclidean TSP).

(3) Problems for which no polynomial time constant factor approximation
algorithm can exist, unless P = NP (e.g. CLIQUE).

Until recently only a few singular results were known about separating the second
class from the first. That is, ruling out the existence of a polynomial time approxima-
tion scheme (PTAS). One famous example is the graph coloring where Garey and
Johnson [17] have shown that unless P = N P , no polynomial time approximation
algorithm can achieve a factor of 2 - e .

To overcome this situation Papadimitriou and Yannakakis [30] introduced the
class MAX-SNP together with an approximation preserving reduction, called
L-reduction. This reduction has the property that if a problem A is L-reducible to
a problem B for which a polynomial time constant factor approximation algorithm is
known then such an algorithm also exists for problem A with some other constant.
A problem in MAX-SNP (cf. [-30] for a precise definition) that is complete for this
class relative to L-reductions is called MAX-SNP complete. If any MAX-SNP
complete problem would allow a polynomial time approximation scheme (PTAS)
then by definition of L-reductions every problem in MAX-SNP would have a PTAS.
On the other hand if one could prove for some MAX-SNP complete problem that it
cannot have a PTAS then no MAX-SNP complete problem can have one (unless
P = N P) .

Papadimitriou and Yannakakis [30] have shown that several well known approxi-
mation problems are MAX-SNP complete:

M A X - S A T : Given a SAT instance find a truth assignment that satisfies as many
clauses as possible. This problem remains MAX-SNP complete even if every clause is
allowed to contain at most two variables.

STABLE-SET-B: Given a graph whose maximum degree is bounded by some
constant B find a maximum stable set.

NODE-CO VER-B: Given a graph whose maximum degree is bounded by a con-
stant B find a minimum node cover.

DOMINATING-SET-B: Given a graph whose maximum degree is bounded by
a constant B find a minimum dominating set (i.e., a set of nodes that is adjacent to all
other nodes).

M A X - C U T : Partition the nodes of a graph into two sets A and B such that the
number of edges between A and B is maximized.

E U C L I D E A N TSP: For a set of points in the plane find a shortest tour that visits
all the points.

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 189

While all of the above problems can be approximated in polynomial time up to

some constant factor, no PTAS for any of these problems was known. The following

theorem shows that such a PTAS cannot exist (modulo P :¢-NP).

Theorem 3.10 (Arora et al. [-3]). Unless P = NP, no M A X - S N P complete problem has

a PTAS.

Proof. We will show that the existence of a PTAS for MAX-3SAT implies P = NP.

Since MAX-3SAT is MAX-SNP complete this proves the theorem.
Let L be an arbitrary language from NP and let V be the (log n, 1)-restricted verifier

for L (whose existence is guaranteed by Theorem 2.2).

For any x e 2 * we will construct a 3SAT instance St such that St is satisfiable if and
only if x is an element of L. Moreover if x does not belong to L then at most some

constant fraction of the clauses in St can simultaneously be satisfied. Therefore

a PTAS for MAX-3SAT could be used to recognize the language L in polynomial
time, i.e. we would have P = NP.

For every position in a proof it we introduce a variable whose values TRUE and

FALSE correspond to the values 1 and 0 of the bit at this position. By using these

variables the 3SAT instance Sx is obtained as follows:
• For any possible random string ~ let S~ denote the Boolean formula that

expresses which proofs n are accepted by V on input x. Since V queries

only a constant number of bits from a proof, the formulas S, have each constant
size.

• Let S'~ be the formula St written as a 3SAT formula. Let k denote the maximum
number of clauses that appear in a S'~. Note that k is a constant.

• Now let St be the conjunction of all the S',.
If x is an element of L then by definition of a restricted verifier there exists a proof n~

such that V accepts x for every random string z. This means that this proof n~ is
a satisfying assignment of S~.

If x is not an element of L then for every proof the verifier V accepts x for at most

¼th of all possible random strings z. This means that at most ¼th of the formulas S'~ are
simultaneously satisfiable. Since every S', consists of at most k clauses we get that at

most 1 - 3/4 k of the clauses of St are simultaneously satisfiable.

The existence of a PTAS for MAX-3SAT would therefore allow to distinguish

between these two cases and thus it would be possible to recognize every language in
NP in polynomial time. []

4. A proof of NP =PCP(iogn, 1)

The second part of our paper is devoted to a proof of Theorem 2.2. The proof which

we present here is self-contained and despite of its inherit algebraic nature - - we try

to formulate it in a 'combinatorial' language. We hope that this formulation makes the

190 S. Hougarclv et al. / Discrete Mathematics 136 (1994) 175-223

pioneering new characterization of NP more easily accessible to all interested discrete
mathematicians, even if they have not followed the new developments in theoretical
computer science during the last few years.

4.1. Overview and structure of the proof

The proof of Theorem 2.2 combines several recent developments in theoretical
computer science. Most notably, these are the theory of interactive proofs, the
arithmetization of Boolean formulas, and the area of self-testing/self-correcting of
computer programs.

The theory of interactive proofs originates in the work of Goldwasser et al. [20] and
of Babai [6]. Two of its major achievements are the characterizations IP = PSPACE
(cf. Shamir [34]) and M I P = NEXPTIME (cf. Babai et al. [10]). Both of these results
are based on the work of Lund et al. [27], who showed that IP, the class of languages
recognizable by polynomial-time interactive proof systems, contains the polynomial
hierarchy. Due to lack of space we will not give a detailed account on the history of
interactive proofs in this paper. We even omit a precise definition of interactive proofs
and the class IP as we will not need them. The only fact from the theory of interactive
proofs that we directly apply in this paper is a proof system from Lund et al. [27]. For
sake of completeness this is included in Appendix A. For more information on
interactive proofs the interested reader is referred to Babai [7] for an amusing
introduction to this topic. A comprehensive survey together with some applications
may also be found in Johnson [23].

A key ingredient of probabilistically checkable proofs is the following simple and
well known fact: if two polynomials of degree at most d coincide in at least d + 1
points, then they are identical. In order to apply this idea and related algebraic
concepts one needs to place 'combinatorial' problems in an °algebraic' setting. This is,
for example, achieved by the arithmetization of Boolean formulas. A brief introduc-
tion into this area is given in Section 4.3.

Another simple but important property of polynomials is that they are very robust:
Even if, say, 1% of all values of a (low degree) polynomial are erroneous, it is not
difficult to reconstruct the correct values. Self-testing and self-correcting plays a major
role in the proof of Theorem 2.2. In particular, the proof relies on efficient testers for
linear functions and low-degree polynomials. A more detailed introduction to this
area is given throughout the subsequent sections, in particular in Section 4.5. In
addition, Appendix B contains the theoretical background for the existence of efficient
testers for low-degree polynomials.

Constructing a probabilistically checkable proof which can be checked by reading
only a constant number of bits is not too difficult if we allow the proof to be of
exponential length. We will do this in Section 4.4. In Section 4.6 on the other hand we
develop a probabilistically checkable proof of polynomial size, which can be checked
by reading only a constant number of 'blocks' from the proof, but where every such
block contains polylogarithmic many bits.

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 191

The existence of a probabilistically checkable proof which can be verified by
reading only a constant number of bits follows from these two proof systems by
applying them recursively. Roughly speaking this is done by also using these proof
systems to encode the 'blocks' of such proofs. More precisely, we proceed as follows.
Using the second proof system recursively we first obtain a new probabilistically
checkable proof, which can be verified by reading a constant number of blocks, but
this time each block consists of only polydoublylogarithmic many bits. Subsequently,
we use the first proof system to encode the blocks of this new proof system. This then
gives the desired probabilistically checkable proof showing that NP ~ PCP(log n, 1).
The other inclusion follows easily from the fact that there exist only polynomially
many random strings of length (9(log n).

It is worthwhile to observe that the definition of the class PCP(r(n), q(n)) or, more
generally, that of probabilistically checkable proofs, very nicely reflects an important
property of NP. The definition of NP by nondeterministic Turing machines requires
the existence of a 'p roof (or solution) which can be verified in polynomial time, but
places absolutely no restriction on how such a proof can be found. Similarly, the
verifier is willing to accept an input, if it is convinced that there exists a solution
- - even without having an idea what the solution looks like.

Often, however, just knowing of the existence of a solution does not suffice. In
particular, for the recursive application of proof systems indicated above, we need
more. There the verifier has to check, with help of a specified proof, that a given string
y is a solution - - and it should do that without reading the solution completely.
That is, the solution is subject to the same restrictions as the proof: the verifier may
only query a few bits from it.

Having in mind the example of a 3-coloring and an almost 3-coloring mentioned in
the introduction, we easily conclude that such a clever verifier cannot exist. Something
slightly weaker, however, turns out to be true. If instead of the string y we give the
verifier a string y' which supposedly corresponds to the encoding of y according to
some fixed, predetermined encoding scheme (or function) E, then the verifier can
decide whether y' is close to E(y) for some solution y - - by probing y' as well as the
proof at only a few places.

In Section 4.2 we give the formal definition of this idea. There we introduce the
classes PCS(r(n), q(n), b(n)) which are defined similarly to the sets PCP(r(n), q(n)), the
main differences being that the new classes contain p-relations together with encoding
schemes for the solutions, instead of simply languages, and have a third parameter
indicating the sizes of the blocks read from the proof.

Fig. 2 contains an overview of the proof of Theorem 2.2 together with an indication
of where the various tools like arithmetization, low-degree and LFKN-tests enter the
proof.

We would like to mention that our proof of Theorem 2.2 is based on the
papers of Arora and Safra [5] Arora et al. [3,4], Phillips and Safra [31], and
Sudan [35]. We combine their ideas into a, we hope, streamlined and self-contained
proof.

192 S. Hougardy et al. ,,'Discrete Mathematics 136 (1994) 175-223

(arithmetization)

Y

(R3 SAT~ Eo) EPCS(n3, 1, 1) (LFKN-tests

t
i

(R3 SAT, Ea) ePCS(log n, poly(log n), poly(log n)) I
I

Low degree tests

(R3 SAT, El) ePCS(log n, 1, poly(log n))

R3 SAT, Ex) EPCS(log n, 1, poly (log log n))

NP_CPCP(log n, 1)

Fig. 2. Structure of the proof of Theorem 2.2.

4.2. Probabilistically checkable solutions

While complexity classes such as NP are usually defined for languages L~_S*,
a notation that is closer to intuition is that of relations R___S*×Z* which
associate with every problem instance x a finite set R(x) of'solutions'. As an example
consider

R3SAT = {(x,y)lxeS* encodes a Boolean formula F in conjunctive
normal form with exactly three literals per clause,
y e S * encodes a satisfying assignment of F}.

(Here and in the following we assume without loss of generality S = {0, 1 }.) A relation
R c 2;* x S* is called a p-relation iff

(i) There exists a polynomial p such that lYl ~<p(Ixl) for all (x,y)~R.
(ii) The predicate (x, y)eR can be tested in time polynomial in I xl +lyl-

It is well known, that the class of existence problems associated with p-relations may
be identified with the class NP. In particular, the relation R3SAT introduced above is
a p-relation.

S. Hougarc!v et al./ Discrete Mathematics 136 (1994) 175-223 193

input x ~" random bits r / J

1
V(x,

1

[solution s z J

[proof 7r

/

o r a c l e

ACCEPT/REJECT

Fig. 3. A solution verifier for p-relations.

/

Let x, y e Z * be two strings such that Ixl =IY]. Then x and y are called h-close if and

only if the fraction of bits on which they differ is less than 6. An encoding scheme is
a function E : Z * ~ X * such that for all x , x ' e X * , x v ~ x' with I x l = l x ' l the encodings
E(x) and E(x') have the same length and coincide in at most ½ of their bits, that is they

are not ½-close.
A solution verifier V is a verifier which in addit ion has access to a solution s, which it

can query via an oracle in the same way as the membership p roof n (cf. Fig. 3).

An (r(n), q(n), b(n))-restricted solution verifier is a solution verifier which for inputs

x of length n uses at most ~(n) r andom bits and queries at most 4(n) blocks of length
/~(n) from s and n, where the starting positions of such blocks are all congruent one

modulo/~(n) 1 and ?(n), O(n), and/~(n) are integral functions such that P(n)=(9(r(n)),

dl(n) = •(q(n)), and/~(n) = (9(b(n)).

Definition 4.1. Let R be a p-relation and E be an encoding-scheme. Then (R, E) is in

PCS(r(n), q(n), b(n)) iff there exists an (r(n), q(n), b(n))-restricted solution verifier V such

that

(i) For all x, yeZ'* with (x , y)~R there exists a proof nx, y such that

Prob~[V(x, ~, E(y), nx, y)= ACCEPT] = 1,

(ii) For all x, s e X * such that s is not ¼-close to the encoding E(y) o f a solution y e R (x)

every proof n satisfies

Probe [- V(x, r, s, n) = ACCEPT] < ¼.

The next proposi t ion establishes the intuitive idea that solution verifiers are at least

as powerful as ordinary verifiers.

t That is, we assume that the membership proof n and the solution s are partitioned into blocks of length
/~(n) and the verifier may read at most ~(n) of these blocks.

194 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

Proposition 4.2. Let R be a p-relation and E be an encoding-scheme, and let L denote the
language defined by x e L if and only if R (x) 50. Then (R, E)~ PCS(r(n), q(n), b(n)) implies
LEPCP(r(n), q(n). b(n)).

4.3. Arithmetization

The concept of arithmetization of the intrinsically Boolean process of computation
by using multivariate polynomials was introduced simultaneously and independently
by Bahai and Fortnow [-8] and Shamir [34]. It has been a key tool in determining the
power of interactive proof systems culminating in the results IP = PSPACE [34] and
MIP = NEXPTIME [10]. One reason for the dramatic success of arithmetization is
that it opened the way for the application of a variety of algebraic concepts and
methods, such as the degree of polynomials, interpolation and field extensions within
complexity theory.

In [8] Babai and Fortnow describe the technique of arithmetization in a very
general setting. For our purposes, however, it suffices to restrict our attention to the
arithmetization of Boolean formulas, in fact even to the arithmetization of conjunctions.

A Boolean formula is an expression built from variables xl and their negations ~'~
using the operations v and A. A conjunction (disjunction) is a Boolean formula using
only the operation ^ (v) . A Boolean formula in conjunctive normal form, finally, is
obtained by joining several disjunctions by the operator ^ .

An arithmetic formula is an expression built from the constants 0, 1 and variables x~
using the operations +, - and . An arithmetic formula represents a multivariate
polynomial function over any field in the obvious way.

The arithmetization of a Boolean formula is obtained by replacing every negated
variable ff~ by 1 - x~, every conjunction ~ A j3 by ~-p, and every disjunction ~ v/~ by
1 - (1 - ~) (1 -/ /) . One easily checks that a Boolean formula B has a satisfying assign-
ment (an assignment such that the formula evaluates to true), if and only if its
arithmetization A(B) is not identically zero. Even more is true. Considered as a poly-
nomial over D: z the value of A (B) coincides with the value of B (identifying 0 with false
and 1 with true).

Recall that the input of a 3SAT-problem is a Boolean formula in conjunctive
normal form, in which every disjunction (usually called a clause) contains exactly three
(potentially negated) variables. In the following we always assume that the input of
such a satisfiability problem contains exactly n clauses C1 Ca using m variables
xl, ..., x,,, where without loss of generality (by adding dummy variables or clauses) we
may also assume that n--m.

The arithmetization c£(x)=((~1 x) (~,(x)) of a satisfiability problem C1 A ... A Ca
is obtained by letting C~ be the arithmetization of the complement of the ith clause.
Then the following observation is immediate.

Observation 4.3. A vector a~D:"2 corresponds to a satisfyin9 assignment of C1 A ... A Ca
if and only if ~(a)=((~l (a) C,(a)) is identically zero.

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 195

Despite its simplicity Observation 4.3 forms the basis of the proof of
N P- - P C P (log n, 1). In particular, it enters the proof at two places. In the next section
we will use it to develop a (n 3, 1)-restricted verifier for 3SAT, while in Section 4.6 it is
used to show that 3SAT is contained in PCP(Iog n, poly(log n)).

4.4. NP~_PCP(poly(n), 1)

In this section we will show that 3SAT has an (n 3, 1, 1)-restricted solution verifier,
thereby establishing that NP is a subset of PCP(poly(n), 1).

While at first sight the existence of any polynomial time verifier for 3SAT reading
only a constant number of bits from the proof seems rather surprising (even if we allow
access to an arbitrary number of random bits), such a verifier can in fact be quite easily
constructed from the arithmetization of the previous section. The key idea here is that
testing whether a given vector xE Dz~ is identically zero can easily be done by choosing
a random vector re U:~ and considering the product xTr. While this product is always
zero if x = 0, it is nonzero with probability ½, whenever x :~ 0.

The only other observation we need is that the product of the arithmetiz-
ation (t~(x) C,(x)) of a satisfiability problem with a vector rEU:~ can be
written as

r,d,lx)=c(r)+ Y x,+ y, ,xj+ x,x x ,
i = 1 I~$1 (r) (i,j)~S2(r) (i,j,k)eS3(r)

where the sets Sl(r), S2(r), S3(r) and the constant c(r) depend only on the given 3SAT
formula and the vector r, but not on the assignment x. In particular, this shows that if
for some fixed assignment aEDz~ the verifier would have some 'magical' access to the

sums ~i~s,a~, ~(i,j)es2alaj and ~(i,j,k)es3alajak for given sets Sx, $2 and $ 3 , resp., it
would indeed need to make only a constant number of enquiries to decide whether a is
a satisfying assignment or not.

The rest of this section is devoted to turning these rough ideas into a precise
description of an (n 3, 1)-restricted verifier. We start with some notations. For a vector
aEB:~ we define three linear functions as follows:

A'Dz~U:2, A(x):= ~ alxl,
i = 1

n2

i = 1 j = l

C' ~3----~ []22, C(z):= ~ ~ ~ alajak2ij k .
i = l j = l k = l

The verifier interprets every proof n as n=A/~(~, where A has length 2" and is
considered as a function ,4: ~ F 2 . Similarly, /~ and (7 have length 2 "2 and 2 "3,

196 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

respectively, and are interpreted as functions / 3 : . 2 .3 ~2 " ~ 2 and (~: ~2 ""~2" Ideally,
A, B, C correspond to the functions A, B and C from above, defined with respect to
some vector aeQ:~ corresponding to a satisfying assignment.

The verifier needs to achieve two tasks:
(A) Verify that A, B, C are what they are supposed to be, namely linear functions

defined with respect to the same vector ac~:~, and
(B) verify that this vector a corresponds to a satisfying assignment.
We first consider task (A). By reading only a constant number of bits from the proof

7t it is clearly impossible to verify that A,/~, and C are linear functions. (Assume for
example A differs from a linear function in just one bit. So the verifier can detect this
with probability one only if it reads all bits from ,4, and with high probability only by
reading a substantial fraction of all bits.) So the best we can hope for is to assure that
,4 corresponds to a linear function at all but a constant fraction of ~:~. We make this
precise as follows. Let F and G be two arbitrary finite fields. Two functions f, g : F---,G
are called 6-close, iff the number of vectors x~F for which f (x)=g(x) is at least
(1-8) IFI . Using the language of probability theory, the later condition can also be
written as

Prob~[-f(x) = g(x)] ~> 1 - 6 .

We will henceforth use this notation quite often. (Note that correctly we should write
P ro b~ , v [. . .] instead of Prob~E.--], where X~R F denotes a random element chosen
uniformly from F. We use the short notation for conciseness whenever there is no risk
of confusion).

During the last few years the problem of detecting whether a given function is
6-close to a polynomial of some given degree has been intensively studied. In
Appendix B we give an account of the results obtained. There we also prove the
following lemma.

Lemma B.1. Let 6<13 be a constant and let g: ~:"2~:2 be a function such that

Probx.y[0(x) + g(Y) ¢O(x + y)] ~< ½ 6.

Then there exists he~-"2 so that the functions g(x)=hTx and 0 are J-close.

With Lemma B.1 at hand, a linearity test is easily designed.

LINEARITY TEST
t n Pick x, x ER 11:2,

verify that A(x) + A(x') = A(x + x').

Pick y, Y'eR ~:~2,
verify that /3(y) +/~(y') =/3(y + y').

Pick z, Z'~R ~:~3,
verify that C'(z) + C(z') = C(z + z').

S. Hougardy et al./ Discrete Mathematics 136 (1994) 175-223 197

Observe that Lemma B.1 immediately implies that if at least one of the functions
,4,/~ and (~ is not b-close to a homogeneous linear function, then LINEARrTV TEST fails
with probabil i ty at least ½6. Repeating this test a constant number of times we can
therefore push the failure probabil i ty arbitrari ly close to one.

Corollary 4.4. Let 0 < b < a 1 be a fixed constant. Then there exists a constant k=k(b)
such that, if there do not exist vectors a~U:"2, b~:n2 ~, and ce~:~2 ~ so that A is b-close to A,
is b-close to B, and C is b-close to C, where A, B and C are the functions given by
A(x) = arT, B(y)= bTy, and C(z)= CTZ, resp., then with probability at least 1 - 3 at least
one of k calls of LINEARITY TEST fails.

To conclude task (A), it remains to assure that the vectors a=(ai), b=(b~j), and
c = (Cijk) of Corol lary 4.4 are consistent, i.e. satisfy bij = alaj and Cljk = a~ajak. Observe
that if for x, x'eD:"2 we let x o x' denote the vector ye~:~ 2 given by y~j=xi'x~, then the
functions A(x)=arx and B(y)=bry satisfy

A(x) .A(x ')=B(x~x ') for all x, x'eD:~ (2)

if and only if b=ao a. Similarly, if for xe[]:~ and yeD:~ ~ we let x o y denote the vector
ze []:~3 given by zij k = X i " Yjk, then A(x) = arT, B(y) = bTy, and C(z) = cTz satisfy

A(x) -B(y)=C(xoy) for all xeD:~ and yeV:~: (3)

if and only if c = a o b.
In principle, (2) and (3) are natural candidates for a test whether the functions A, B,

and ~" are consistent. In the analysis of such a test one problem occurs, however.
For x, x 'e~ I:~, for example, the vector x o x ' is not a random element from ~ . So of
hand we cannot use the 6-closeness of /3 and B to bound Probx.x, [/~(x o x ') = B(x o x')]
by 1 - 6 .

We resolve this problem by using so called self-correcting functions. (This not ion
was introduced independently by Lipton [26] and Blum et al. [12]. For more
information on this topic we refer the interested reader to these articles.)

SELF-CORRECTING FUNCTIONS

SC-,4(x): Pick rERD:~, return A(r+x)--A(r) .
SC-/~(y): Pick r~R~:~ 2, return B(r+y)--B(r).
SC-(~(z): Pick r~RU:~ 3, return C(r+z) -C(r) .

Note that Sc-/T(x), SC-/3(x) and SC-C(x) are random functions which is not
reflected in the notation.

Observation 4.5. If A is b-close to a linear function A" ~:~D:2, then

Prob[SC-A(x)= A(x)] >>. 1 - 2 6 Jor every x~:~.

Analogous results hold for IB and C.

198 S. Hougardy et al./' Discrete Mathematics 136 (1994) 175-223

Combin ing the ideas from above with the self-correcting functions we can now state
a consistency test f o r /~ , /~ and (~.

CONSISTENC Y TEST

Pick ' " X , X ER ~22,

verify that SC-A(x) -SC- ,4 (x ')= SC-/~(x o x').
712 Pick x~R [F~, Y~R 1:2,

verify that SC-/~(x). SC-/~(y) = SC-C(x o y).

Lemma 4.6. Let 0 < b < 2J4 be a f i xed constant. Then there exists a constant k = k(b) such
that, i f there does not exist a vector a~ ~:"2 so that A is b-close to A (x)= aTx, B is b-close
to B (y) = (a o a)Ty, and t~ is b-close to C(z)=(a o a o a)Tz, then with probability at least

1 - b at least one of k calls Of LINEARITY TEST and CONSISTENCY WEST fails.

Proof. By Corol la ry 4.4 we may assume that ,4, B, and t~ are b-close to linear
functions A(x)=aXx , B (y) = b X y and C(z)=cTz. If b = a o a and c = a o b , there is
nothing to show. So we assume without loss of generali ty that b # a o a. (The case that
c # a o b is treated similarly.) Recall that for vectors a ¢ & e ~ one has

Probx~, ~7 [~Tx 4: ~Tx] = ½. (4)

In part icular, this implies that matrices fl :/:/~slF~ 2 satisfy

P r o b ~ , ~ [flTx :~ flTX] >~ ½. (5)

Combin ing (4) and (5) we deduce, that if b # a o a then (considering b as a matrix)

Prob,,~,~, ~ [xT(a ° a)T x ' ~ xV bx '] ~ 144.

As xT(ao a) T x ' = A (x) . A (x ') and x T b x ' = B (x o x ') , this together with the b-closeness

and Observa t ion 4.5 implies

Prob~,,,~, ~ [SC-,4(x) • SC-A(x ') # SC-/~(x o x ')] ~> ¼ - 66 > 0,

concluding the p roof of L e m m a 4.6. []

It remains to design a procedure which enables the verifier to achieve task (B). This
procedure, however, is an immedia te consequence of Observa t ion 4.3 and the remarks
at the beginning of this section.

SATISFIABILITY TEST

Pick rbR ~ , compute c = c(r)e ~2, S1 = SI (r)~ ~ , Sz = $2 (r)~ ~ , and
n3 S3=S3(r)e~:2 , verify that c + A(S1)+ B(S2)+C(S3)=O.

Lemma 4.7. Let b > 0 be a f i xed constant and assume that A is b-close to A (x)=aTx ,
is b-close to B (y) = (a o a)Ty, and (is b-close to C(z)=(a oa o a)Tz. Then there exists

s. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 199

a constant k = k (6) such that with probability at least 1 - 6 at least one of k calls o f

SATISFIABIL1TY TEST fails if the vector a does not correspond to a satisfying assignment.

Combining Lemmas 4.6 and 4.7 concludes the proof of the desired result.

Theorem 4.8. There exists a constant k such that repeating LINEARITY TEST, CONSISTENCY
TEST and SATISEIABILITY TEST k times and rejecting whenever one of the tests fails, forms

a (n s, 1)-restricted verifier for 3SAT.

Corollary 4.9. NP_~ PCP(poly(n), 1).

If we consider the function A not as part of the proof, but as an (encoded)
solution, Theorem 4.8 also implies the existence of a (n a, 1, 1)-restricted solution
verifier.

Corollary 4.10. Let Eo denote the encoding scheme given by Eo : y~-~ {yTz}zey/Yl. Then

(R3sAT , Eo)6PCS(n 3, l, 1).

4.5. Low degree tests and low degree extensions

Despite its relative simplicity the proof of N P = PCP(poly(n), 1) of the previous
section is not only just an example of a proof system which can be checked
probabilistically by reading only a constant number of bits, it also contains already
the major ideas required in the remaining (more technical) part of the proof of
Theorem 2.2. Before we continue with this proof we will elaborate these ideas more
clearly.

Traditional membership proofs for an NP-problem usually consist just of a 3-
coloring, a satisfying assignment, etc. While these proofs are very concise they
are at the same time also 'unstructured' in the sense that every single bit matters.
Therefore, in order to check the proof, one really has to read the whole proof.
As we have seen in the previous section, the picture changes if the proof contains
instead of simply, say, a satisfying assignment a, all values of the function x ~ aTx.

Not only does the 'structure' inherent to such a proof allow to check its correctness
(more precisely, the correctness of all but a 6-fraction of the bits) by quering
only a constant number of bits, but at the same time such a proof contains 2" bits of
(useful) information (which can be used to check that the vector a is a satisfying
assignment).

A main drawback, however, of encoding a vector a by the homogeneous linear
function aVx is that the obtained proofs are of exponential size and therefore require
poly(n) many random bits for checking it. The aim of this section is to introduce
a better encoding scheme. This is based on polynomials, whose degree is allowed to
depend on the length of the encoded vector.

2 0 0 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

The first problem which arises is that every straightforward generalization of the
linearity test of the previous section to polynomials whose total degree depends on
n would have to read more than constantly many bits - - as every polynomial of
degree d is determined only by d + 1 points. So, in order to define a test procedure for
arbitrary polynomials one has to add a new idea. In fact, one which was also
contained in the proof of the previous section works here as well.

A straightforward way of testing whether a vector a is identically zero would be to
read every bit and check whether it is zero. By adding additional information (the
values of the function x w-~ aTX), however, we were able to avoid reading every bit of a.
To construct a tester for polynomials whose degree is small compared to the size of the
field (in the sequel such polynomials are simply called low degree polynomials) we
proceed similarly. To formally state such a test procedure, the following theorem,
whose proof is contained in Appendix B, is extremely useful.

Theorem B.2. Let 0 < 6 < 1144sl and d, m e n be constants and p>>-64d 3 a prime. Let
m n - m r r - d + 1 0 : ~:'~ ~ : p be a function, and let T: g:p x r p--*u-p be a function such that the degree

d polynomials P~,h over g:p given by P: , ,h(t)=~+~ T(x,h)," t ' -1 satisfy

Prob~.h,,[P~.h(t)=O(X + th)] >1 1 --16.

Then there exists a (unique) polynomial 9" f~--*gzp of total degree d so that g and 0 are
&close.

With Theorem B.2 at hand, it is now straightforward to design a test procedure if
we provide it with access to a table containing all values of the function T.

LOW DEGREE TEST

Repeat -- 2/log(l -- 6/8) times:

• Pick x, h ~R U:p and t ~R D:p,
• if x-a+ 1 T(x, h)i" t i- x ¢O(x + th) then REJECT. .¢.., i = 1

The following theorem shows that the procedure LOW DEGREE TEST he desired
properties.

Theorem 4.11. Let 0 < 6 < ~ 1 1 448 and d, m 6 N be constants and p~>64 d 3 a prime and
suppose the procedure LOW DEGREE TEST has access to the values of a function ~: ~:p ~ U:p
and to a table T containing I Ozpl 2" entries of size (d + 1)[-log II:~l-]. Then the followin 9 is
true:

• I fO: ~-"~O:p is a polynomial of total degree d then there exists a table T = Tg such
that the procedure LOW DEGREE TEST always accepts.

• I f on the other hand 0 is not 6-close to such a polynomial then LOW DEGREE TEST
rejects with probability at least ~4, for all tables T.

• LOW DEGREE TEST queries only (9(1) values from ~, reads (9(1) entries from T, and
uses (9(m log I Dzp]) random bits.

S. Hougardy et al. / Discrete Mathemat i c s 136 (1994) 175-223 201

While the procedure Low Degree Test provides us with a test of whether a given
function is 6-close to a low degree polynomial, in order to apply it we will have to
describe a way to transform an arbitrary vector into a low degree polynomial. This is
done by the so called low deyree extensions. Let F be a finite field, H be an arbitrary
subset of F and f : Hm~{0, 1} be a function. Then there exists a unique polynomial
f ' : Fm--*F of degree at most I HI in each variable that agrees with f on H m. Namely, the
one given by

z fin f ' (xl Xm) =

(h hm)En m i= l y~hi hl- Y " f (hl
hm).

yeH

To exhibit the usefulness of these low degree extensions more clearly, assume that
a is an arbitrary string of bits of length n. Let p = O(poly(log n)) be a prime number, let
H G Yp be an arbitrary subset of size In[= F log n "], and let m = [- log n/log log n]. Then
[Hlm~n and we can therefore interpret a as a functionfa from H " to {0, 1}. If we now
require a proof n to contain all values of the low degree extension f'a (instead of simply
the string a) the proof has length poly(n) (instead of just n), but now contains the
information a in a structured form, whose 'correctness' can be checked by the Low
Degree Test from Theorem 4.11 by using (9(m log lFv[)= (9 (log n) random bits and
querying only (_9(1) values of size log 10:pl = (9(poly(log n)) of this proof and (9(1) values
of size m lHI log] Fpl = (9(poly(log n)) of an additional table also of size (9(poly(n)). This
approach will be used heavily in the following section.

4.6. (R 3 SAT, El)E PCS(Iog n, 1, poly(log n))

In this section we will show that every language in NP has a solution verifier that
uses only (9(log n) random bits and queries only (9(1) blocks of size poly(log n) from the
proof rt and the solution s.

A preliminary result (querying poly(logn) instead of (9(1) blocks) was first
proved by Babai et al. [9], cf. Section 4.6.1. The main tools used for proving this
result are an extended version of a test designed by Lund, Fortnow, Karloff and Nisan
[27] (henceforth called the LFKN-test), which is described in more details in
Appendix A, and the low degree extension of functions, introduced in the previous
section.

4.6.1. NP_~ PCP(log n, poly(log n))
We will show that 3SAT is in PCS(log n, poly(log n), poly(log n)) which yields the

desired result for NP because of the NP-completeness of 3SAT.
Let S = C I ^ C 2 ^ ' " ^ C , be a 3SAT instance with variables ~ and let

cg=(~" 1 C,) denote the arithmetization of S as described in Section 4.3. Observe
that ~ contains at most four different types of polynomials. Namely, PI :=xyz,
Pz:=Xy(1-z), P3 : = x (1 - y) (1 - z) and P 4 : = (1 - x) (1 - y) (1 - z) . According to these
four polynomials we partition the set of all clauses into sets cgj, j = 1, 2, 3, 4 such that

202 S. Hougardy et al./ Discrete Mathematics 136 (1994) 175 223

C ~ j if and only if C is of type Pj. Then - - as already shown in Observation 4.3
- - a function W: ~ { 0 , 1} will be a satisfying assignment of S if and only if for all
j = 1,2,3,4:

Pj(W(x), W(y), W(z))=0 whenever there exists a C~Cgj

with (~ = Pj(x, y, z). (6)

For j = 1, 2, 3, 4 we define a function Z j: ~3--*{ 0, 1} with Zj(x, y, z)= 1 if there exists
a clause C ~ j with variables x, y and z such that C is of the type Pj. Otherwise gj has
value 0. Using the functions Z j, we can reformulate condition (6) as follows:

Zj(x,y,z) 'Pj(W(x), W(y), W(z))=0 for all (x , y , z) ~ 3. (7)

Thus, the problem of verifying that W is a satisfying assignment for S is reduced to the
task of checking that a certain function is identical zero. At this point Babai et al. [9]
extended a test of Lund et al. [27] (which tests whether a certain sum is zero). This
extension (as well as the original LFKN-test) is described in detail in the Appendix A.
Here we only state the result.

Theorem A.2. Let f: g:"-*F be a polynomial of degree at most d in every variable with
F being a finite field such that [F[~> 4m (d + [H[), where H ~_ F is an arbitrary subset ofF.
Then there exists a procedure EXTENDED LFKN-TEST, which has access to f and an
additional table T containing (9 (d[F[2m) values each of length r (m + 1) log [F[7, that has
the following properties:

• I f f satisfies the equation

f (u) = 0 for all u~H" (8)

then there exists a table T= T I such that EXTENDED LEKN-TEST always accepts.
• l f f does not satisfy Eq. (8) then EXTENDED LFKN-TEST rejects with probability

at least a4 for all tables T.
• EXXENDED LFKN-TEST queries f at only five points, randomly chosen from F", reads

(9(md) entries from T, and uses (9(mlog [F[) random bits.

In order to apply Theorem A.2 we interpret a truth assignment no longer as a vector
of length n=[~V'l over IF2, but instead we identify ~ with H" and encode the low
degree extension of a satisfying assignment - - as indicated at the end of the previous
section. More precisely, let p be the smallest prime such that p ~>(log n) 3, let F = IFp
and let H~_F be an arbitrary subset of order IHl=[- logn-]. (Note that p can be
computed in polynomial time and that (log n)3<~p<~2(logn)3.) Furthermore, let

m=rlogn/ loglogn ~ and observe that IHl'>~n. So we may identify U with H",
adding some dummy variables, if necessary.

We then extend every truth assignment W: H "~{ 0 ,1 } and the functions
z j :H3"~ {0 , 1} introduced above to polynomials W':F"--*F and z~:F3m---,F of
degree at most]HI in each variable. For every j = 1 , 2 , 3 , 4 the function

S. Hougardy et al./ Discrete Mathematics 136 (1994) 175-223 203

f~(x, y, z) := Xj(x, y, z). P j(W'(x), W'(y), W'(z)) is then a polynomial over F 3,. of degree
at most 4lHl=(9(logn) in each variable.

With the help of Theorem A.2 the construction of the desired (log n, poly(log n),
poly(log n))-restricted solution verifier is now easily completed. The verifier interprets
the solution s as s= if', where l~ is considered as a function f f /:F3m~F. Ideally,
if" corresponds to the low degree extension W' of a truth assignment W: H"--. {0, 1}.
Using the Low DEGREE VEST of the previous section the verifier checks first that if/is at
least 6-close to a polynomial of degree at most IH I in every variable. Recall that in
order to perform this test, the verifier needs to read only (9(1) entries from if', but
requires access to an additional table T.

The verifier therefore interprets every proof lz as ~z = ABIB2B3B4, where/1 and/~i
are the tables of Theorem 4.11 (with respect to the function 1~) and of Theorem A.2
(with respect to the function fi), respectively.

The verifier needs to check two things:
(A) that if" is 6-close to a polynomial of degree at most]HI in each variable and
(B) that condition (7) is satisfied.

Task (A) is achieved by the procedure LOW DEGREE TEST of the previous section (which
queries if" and A). Task (B) on the other hand is achieved by using the procedure
EXTENDED LFKN-TEST of Theorem A.2, which queries the functionsfj and the tables/~j.
The functions X) depend only on the 3SAT instance S. Therefore these functions can
be computed by the verifier. The five queries to the function J~=Zj 'Pj(ff ' (') , I~(.),
I~(.)) needed for the procedure EXTENDED LFKN-TEST can be replaced by fifteen queries
to the function I~. By choosing the constant 6 sufficiently small then if test (A) passes
we know with high probability - - say at least ~ - - that all these fifteen values of if/and
therefore also the five values of J~ are correct. Since the procedure EXTENDED LFKN-TEST
finds an error in Eq. (7) with probability at least] in total we have that the error
probability of the solution verifier is at most ½. By repeating the whole process twice
this error probability becomes at most ¼ as required.

We still have to compute the resources consumed by the verifier. For applying
the procedure LOW DEGREE TEST a constant number of times the verifier needs to
read (9(1) values from if" of length (9(loglFI) and (9(1) values of length
(9(m]HI log lFl)=(9(poly(logn)) from the table ,4. The total number of random bits
needed by the verifier for the LOW DEGREE TEST is (f(log[Fl)=(9(logn). For the
EXTENDED LFKN-TEST the verifier has to read m]Hl=(9(poly(logn))entries of length
(9(m log IF I) = (9(log n) from the tables/3~. The number of random bits used for this test
is again (9(m log IFI)= (9(log n).

Therefore we have the following theorem.

Theorem 4.12. Let El denote the encoding scheme defined as.follows. Given a vector
x~:"2, interpret x as a function x : H"~Zp , where p, m, and H are defined as above, and
let Ea(x): Uz~'~zp be the low deyree extension of x. Then

(R3 SAT, Ex)~PCS (log n, poly(log n), poly(log n)).

204 S. Hougardy et al./ Discrete Mathematics 136 (1994) 175-223

Corollary 4.13. NP ~ PCP(log n, poly(log n)).

In fact we have shown even more. Namely, recall that the procedures Low Degree
Test and Extended LFKN-Tes t read only (9(1) values from I~. So we can formulate
the following slightly stronger version of Theorem A.2, which we will need in the next
section.

Corollary 4.14. Let E1 denote the encoding scheme from Theorem 4.12. Then there
exists a (log n, poly(log n), poly(log n))-restricted solution verifier for (RasAT, El) which
queries the solution string s only (_0(1) times.

4.6.2. (R3sAx, EI)~PCS(log n, 1,poly(log n))
We will now improve the result of the last section as follows: the verifier is

still allowed to read poly(logn) bits from a proof rt but these bits are now
required to be consecutive bits of r~. The idea behind the proof of this result is
quite simple: using the proof rt that the (log n, poly(logn),poly(logn))-restricted
solution verifier V of Corollary 4.14 would read, we construct a new verifier
V that uses a proof ~ which contains for every possible random string z the
sequence of poly(logn) bits that V would read from n on input x and random
string T. For the verification process the verifier I7" reads a consecutive sequence
of poly(logn) bits from ~ that depends on z and uses these bits to determine
what the verifier V would have answered if it had received these bits as answers for his
queries to zc.

Theorem 4.15. Let E1 denote the encoding scheme as defined in Theorem 4.12. Then

(RasAT, E1)~PCS(log n, l, poly(log n)).

Proof. Let V be the (log n, poly(logn),poly(logn))-restricted solution verifier from
Corollary 4.14 that queries bits in a proof 7r of length l=(9(poly(n)). Let r be the
smallest prime larger than log 2 l and let G be the field with r elements. We may assume

that log I and log log I are integers (otherwise elongate rr by a suitable number of bits).
Set m := [" log// log log I]. Let I be a subset of G of size log 1. Then we may interpret the
proof zc as a function it: Imp{0, 1}. Let rt': G"~G denote the low degree extension of
~z which has degree at most II] in each variable. Let q(n)=(9(poly(logn)) denote the
number of bits that are queried by the verifier V from 7r. Then for a0, al aqc,)eG"
we define P~ q,,,:G~G" to be the unique polynomial of degree q(n) that

interpolates the points {(t, al)}i=o. ' q~")
The verifier l? now assumes that the proof ~ consists of the low degree extension n',

a table T needed for the Low Degree Test of n' and a table of the coefficients of all the
polynomials n'(P~o q,,,) where a0 is an arbitrary value of G" and al aq~,) are
positions that can be queried by V.

S. Hougardv et al. / Discreie Mathematics 136 (1994) 175-223 205

The verifier I ? proceeds as follows: first it uses the procedure LOW DEGREE TEST to
make sure that the tabulated values ~' are 6-close to a polynomial of total degree mill.
If this test passes then it determines which positions of ~ the verifier V would have

queried for a random string ~. Let al aqt.) denote these positions. The verifier now
chooses a random position ao and computes the polynomial P It then
queries the coefficients of the polynomial p : = n ' (P q,.,) from the proof ~ and
checks that V would have accepted if the answers to its queries al aqt.) had been

p(1) p(q(n)). Finally, V chooses a random point t ~ G - { O q(n)} and tests
whether p(t) = rT(P.o (t)).

We now show that this verification process enables the verifier I7" to detect
whether i f / is a proper encoding of a satisfying assignment of S with the desired
probability.

If if" is a proper encoding of a satisfying assignment of S then there exists a proof
n such that the verifier V accepts with probability 1. Thus if rt consists of n', the table
T needed for the LOW DEGREE TEST and the correctly tabulated coefficients of the
polynomials g ' (P ,,.,) then the verifier I? accepts with probability 1.

Let us now suppose that W is not a proper encoding of a satisfying assignment of S.
Then for an arbitrary proof ~ the verifier V accepts with probability at most 14. The
verifier 12 therefore only needs to detect that the values p(1) , p(aqt,)) are wrong with
probability at least ½. Then for an arbitrary proof rt the verifier 12 gives the correct
answer with probability at least ¼ and by repeating the whole verification procedure
five times this probability can be increased to ¼ as desired.

The final test p (t)= r~'(P (t)) assures that if n' is correctly tabulated then
p equals n'(P) with probability >~ 1 - m l l] / I G] >~¼. The point P (t) is
uniformly distributed over I G I since ao and t are randomly chosen points from G. The
low degree test of ~' has shown that the tabulated values are 6-close to the low-degree
extension n'. This implies that the right hand side of the final test will be correctly
evaluated with probability ~> ¼. Therefore if the values p (1) p (aq ~,~) are not correct,
this will be detected by the verifier with probability >--1 2 and, as already shown above,
this suffices to detect with probability > a that I~ is not a proper encoding of
a satisfying assignment of S.

We now show that the consumed resources are as stated in the theorem. For
the application of the procedure LOW DEGREE TEST to the function if' the verifier
needs to make (9(1) queries to ~' of size loglGl=(9(poly(logn)) and (9(1) queries
to the table T of size (9(mll]log[GI)=(9(poly(logn)). Moreover the number of
random bits needed for the cow DEGREE TEST is ¢(mlogIGI)=(9(logn). For gene-

rating the value aoeG" the verifier needs (J(mloglGI)=(9(logn) random bits. To
query the coefficients of the polynomial p one query is made of length

¢(q(n)log I G[)=---(9(poly(logn)). Finally to generate the value t eG the verifier needs
(9(logl G I)= ~9(log n) random bits and makes two additional queries to the proof r~ for
the final test.

Thus in total (9(1) queries of length at most (9(poly(log n)) are made to the proof rt
The number of random bits needed for the whole verification process is (9(log n). []

2 0 6 S. Hougardy et al./Discrete Mathematics 136 (1994) 175 223

4.7. Composing verifiers." recursive proof checking

In this section we conclude the proof of Theorem 2.2. A major tool for doing that is
Lemma 4.18 which shows how two verifiers can be composed to form a new verifier
which queries fewer bits.

In order to state and prove this lemma we need some technical prerequisites.
Recall that so far we have used just two different encoding schemes. Namely,
Eo:y~--~{yTz}z~F~Yl and the encoding E~ of Theorem 4.12. For the composition of
proof systems it will be more convenient to use slight modifications of these encodings.
Informally speaking these are given by partitioning a given string y first into a (con-
stant) number of substrings and then using the original encoding scheme to encode
each of these substrings. For a formal definition let E be an arbitrary but fixed
encoding scheme, de ~ a constant. We define a new encoding E' with respect to d by

E ' (y) = (E (y l) E(ya)), (9)

where y =Y l "'" Yd and lYxl lYal-
It is not difficult to show that for Eo and E1 the dashed encoding schemes E~ and

E'~ behave like the original ones. (Note that formally, the encodings E~ and E'~ are
only defined for values of n divisible by d. As we may always assume that R3SAT
consists only of those formulas whose number of variables satisfies such a condition
this is only a technical restriction which we omit for ease of notation.)

Corollary 4.16. For all constants de ~ one has

(R3sm, E~)ePCS(n 3, 1, 1) and (RasAT, E'I)ePCS(logn, 1, poly(log n)).

Proof. We first show that (RasAT , E~)ePCS(n3,1,1). Let V0 be the (n3,1,1) -
restricted solution verifier from Corollary 4.10. (Recall, that with slight abuse of
notation we assumed that n denotes the number of variables and the number of
clauses.) We construct a new verifier V' o as follows. IF o interprets the solution as

s=(s l sa) and the proof as (e,n), where the si and e are viewed as functions
si: F~/a~:2 and e" [F~--*[F2. The new verifier V' 0 first uses the old verifier Vo to check
whether e is close to an encoding Eo(y') of a string y' and, if so, whether n is a proof
that y' is a solution for x. If Vo rejects then V' o also rejects. If on the other hand Vo
accepts, then V' o proceeds by checking whether s is close to an encoding E'o(y) for
a string y and, if so, whether also y = y'.

These checks are performed by first using the tester LINEARITY TEST of Section 4.4 to
verify that sl sd are all close to homogeneous linear functions, and then calling the
procedure CONSISTENCY TEST l, which verifies that y=y ' .

CONSISTENCY TEST I

Pick wieR U:"z/a and let w=wa ... w~,
verify that e(w) = Sl(Wa) + . . . + sa(wu).

S. Hougarc(v et al./ Discrete Mathematics 136 (1994) 175-223 207

By repeating LINEARITY TEST a constant number of times without failure we may
assume (cf. Lemma 4.4) that with probability l - ~ each of the functions si is (1/8d)-
close to homogeneous linear functions yT W, for vectors Yl ydE ~:~/d. Let y = Yl ' " Yn-
I fy ' 4:y, then y,V w ¢yTw for half of the vectors w~lF~z. So in this case CONSISTENCY TEST I
fails, with probability at least 12_gl _ 1/8 =~ (the probability of choosing a w so that
y'Tw 4:yTw minus the probability that e(w)¢yTw or at least one of the values si(wl) is

different from that of the corresponding linear function). By calling CONSISTENCY TEST I
a constant number of times the probability that no failure is reported even if y and y'

are different can be reduced to less than 18.
Combining these facts we observe that the probability that the verifier V~ accepts

when it should not is bounded by ½ (the sum of the probabilities that V0 failed to reject
a wrong solution or proof, that Linearity Test failed to reject an erroneous function,
and that CONSlSTENCY TEST I failed to reject two unequal strings), so repeating V'o twice
gives the desired result.

To show that (R3sAT, E'a)ePCS(Iogn, 1,poly(logn)) we assume without loss of
generality that n is such that [H I " - l = n / d and that the low degree extension a' of
a satisfying assignment a is obtained by appending sufficiently many zeros. If we let
Zj(x) denote the (unique) polynomial of degree [HI such that ;t~(J)= 1, while zj(h)= 0
for all h e H \ j and write a as a=al ad, then

d

a'(x,y)= ~)~j(x)'a;(y) for all xe[lzp, yE~rg -1.
j = l

The rest of the proof follows tile lines of the one above. The only difference being
that the linearity tester LINEARJTY TEST has to be replaced by the low degree tester LOW
OECREE TEST of Section 4.5, and t,%" consistency test between two strings y and y' is
performed by the following procedure CONSISTENCY TEST IL

CONSISTENCY TEST I!

Pick x~0Zp and yeg:'~- 1,
verify that e(x, y)=32~= 1)~j(x).sj(y).

The correctness follows similarly as above. (Use the fact that by a lemma of
Schwartz [33] two different (multivariate) polynomials of total degree d can coincide
only in dllFpl m- 1 points.) We omit the details.

The key idea of recursive proof checking is to encode the verification procedure
of one verifier as a Boolean formula. This will be done by using the following
theorem of Cook, which he used in his famous proof of the NP-completeness of
satisfiability.

Theorem 4.17 (Cook [14]). For every polynomial time Turing machine M there exist
polynomials p(n) and q(n) and a Turing machine M' such that the following is true. For
every natural number n the machine M' constructs in time p(n) a 3SAT-formula F~
containing variables Yl, . . . ,Yn and q(n) additional variables zi so that there exists

208 S. Hougardl' et al. / Discrete Mathematics 136 (1994) 175-223

a satisfyin9 assignment y~ y., z~ Zqt,) for FM with y~ =x~, i = 1 n, i f and only i f

M accepts the input x = x ~ ... x , .

L e m m a 4.18. Let ri(n), bi(n) be positive functions. I f (R 3 SAT,/~)~PCS(rl (n), 1, b I (n)) f o r

some encodin9 scheme ff~ and E is an encodin9 scheme such that for any constant de [~ the

encodin9 E ' 9iven by Eq. (9) satisfies (RssAr, E ')6PCS(r2 (n) , 1, b2(n)), then

(R3sAT,/~)G PCS(r l (n) + r z (poly(bl (n))), 1, b2 (poly(bx(n)))).

Proof. Let L ~ N P be an arbi t rary but fixed language and let V1 be an (rx(n), 1,

ba(n))-restricted solution verifier showing that (R3sAT,/~)6PCS(rI(n) , 1, bx(n)), which
uses f l (n) = O (r l (n)) m a n y r a n d o m bits and queries da~l~ m a n y blocks of size
[~a(n)=(9(b1(n)) from the proof. Every p roof lz for V1 consists of, say vl(n) m a n y
substrings of length/~(n) , that is rc = (rq , r~l~,)) , where wi thout loss of generali ty

vl (n) = dl" 2 ~"").
By Theorem 4.17 we know that for every fixed input x of length n and every fixed

string z of length ia(n) there exists a 3SAT formula Fx.~ containing variables
qa~ qn, b,{.~ and Zl z~.) such that V~ accepts for input x, r a n d o m string z and
queried blocks q~ qdl, where q i = q , qii,~,), if and only if there exists an
assignment of zx,...,zq~.~ such that q l l ,qa~b,(n),Zl Zq(n) is a satisfying
assignment for Fx . , Wi thout loss of generali ty we assume in the following that

q(n)=[~l(n).
By the second assumpt ion there exists an (r2(n), 1, b2(n))-restricted solution verifier

V2 which, given the 3SAT formula Fx,~ as input, checks whether a solution given as

(sl Sd,,S) is ¼-close to an encoding

(E(q l 1 qa~ b~ ~.)) E qdl 1 ... qa~b~,)), E (z l "" Zd~ b~,)))

of a satisfying assignment for Fx,~.
With these nota t ions at hand, we are now able to define a new verifier Va2 (which

will be an (rl (n) + r2(poly(bx (n))), 1, bz(poly(bl(n)))) -res tr ic ted verifier) as follows. V12
interprets a p roof as

(el , e~,(,),fx, Pl,f2, P2).

U p o n reading an input x of length n, the verifier V~2 reads a string z of r andom bits,

[zl = fl(n), and computes F Then Vt 2 computes the posit ions r l rd, which the
verifier V~ would have read on input x and r a n d o m string z, and calls Vz with input
F solution (e e f) and p roof p~. If V2 outputs ACCEPT then V~2 accepts x,

otherwise Vlz rejects.
To see the correctness of V~E assume first that x ~ L . By assumpt ion there exists

a p roof ~x=(rc7 n~,(.)) so that the verifier Vt accepts for every r a n d o m string z. In
par t icular this implies that for all such z there exists an ass ignment of z~ zi,,(.) and
a proof p, so that the verifier VE accepts the solution (E(n~,) E(n,~,),

S. Hougardy et al./ Discrete Mathematics 136 (1994) 175-223 209

E(Zl zi,,c,~)), if rl rd, denote the positions which V1 reads in nx for the random
string z. By letting

ei=E(n~), i=1 vl(n), and f~=E(zl Zblt,)), zE~:'21~")

we have thus constructed a proof for which V12 accepts with probability one.
Finally assume that xCL. The probability that for a given proof n V~2 fails to reject,

is obviously bounded by the sum of the probabilities that V1 fails to reject plus the
probability that V2 fails to reject an unsatisfiable formula and/or an unsatisfying
assignment. Hence,

max Prob~,,, [V12(x, z, z', n) = ACCEPT]
it

~< max Prob, [V1 (x, z, n) = ACCEPT]
/t

+ m a x m a x Prob~, [V 2 (x ' , "t", n ') = ACCEPT]
x':R~sAHX') =O ~'

<¼ 1 1 +g=2- []

Theorem 2.2 is now an easy consequence of Corollary 4.16 and Lemma 4.18.

Proof o f Theorem 2.2. From Corollary 4.16 we observe that the requirements of
Lemma 4.18 are satisfied with respect to the encoding scheme / ~ = E = E t and the
functions rx(n)= r2(n)=log n and bl (n)= b2(n)=poly(log n). We therefore deduce that
(R3 SAT, El)6 PCS (log n, 1, poly(log log n)).

Applying Lemma 4.18 once more, this time with respect to the encoding schemes
/~=Ex and E=Eo the functions rx(n)=logn, bx(n)=poly(loglogn), r2(n)=n s, and
b2(n)= 1, we obtain the desired result N P e P C P l o g n, 1). []

4.8. A corollary: How to verify a theorem without even reading it

In this final section we state an immediate corollary of the proof presented above.
Even though no consequences of this result are (yet?) known, it is quite interesting and
surprising. Essentially it states that all languages in NP can be recognized by verifiers
which only read a constant number of bits of their input! That is, the modification
from the definition of NP by polynomial Turing machines to verifiers is fully
symmetrized as indicated in Fig. 4. More formally, a language verifier is a polynomial-
time Turing machine with access to a string z of random bits, and a tape containing
the length n of the input x. Furthermore the verifier has access to the input x and
a membership proof ~ via oracles.

Definit ion 4.19. A language L ~ Z* is in PCL iff there exists an encoding scheme E,
a language verifier V that uses at most (_9(log n) random bits, and queries only (9(1) bits

210 S. Hougardy et al./ Discrete Mathematics 136 (1994) 175-223

[input x / J

oracle

[] I r a n d o m bi ts r f [p roof 7r

T y

l
ACCEPT/REJECT

/

Fig. 4. A verifier for probabilistically checkable languages.

from the input x and the proof zt such that
(i) For all xEL there exists a proof nx such that

Prob, [V(E(x), z, nx) = ACCEPT] = 1,

(ii) for all seZ* that are not 14 close to the encoding E(x) of an element x~L every

proof ~ satisfies

Prob, [V(s, z, z0 = ACCEPT] < ¼.

The idea of considering classes of languages which can be checked by reading only
a small portion of an (encoded) input and of an appropriate membership proof goes
back to Babai et al. [9]. They used the phrase probabilistic proof systems with
theorem-candidates and transparent proofs for such an approach. Phillips and Safra
[-31] use the term input-efficient verifier. The following theorem is essentially contained
in Arora et al. [4] and in Sudan [35].

Theorem 4.20. The class of languages which can be recognized by verifiers by querying
only a constant number of bits from an (encoded) input and a (polynomial sized)
membership proof equals the class of languages recognizable by nondeterministic Turing
machines. That is

PCL = NP.

The proof of Theorem 4.20 hinges on the fact that in the proof of Theorem 2.2 we
have in fact shown the following slightly stronger result.

Corollary 4.21. There exists an encoding scheme E such that (R3sAT , E)ePCS(logn, 1, 1).

Proof of Theorem 4.20. Let L be an arbitrary but fixed language in NP. According to
Theorem 4.17 there exists for every n a 3SAT formula F. with variables x = (xl x.)

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 211

and Y=(Yl Ypo~y~,)) such that for all x~{0, 1}"

xEL if and only if there exists a y~{0, 1} p°*y~") such that F,(x,y) is true.

Now consider the encoding scheme E and the solution verifier V of Corollary 4.21.
Considering the first part of the solution as input and the remaining part together with
the old membership proof as a new membership proof obviously concludes the proof
of Theorem 4.20. []

Appendix A. LFKN-type tests

The aim of this section is to describe a method for verifying the truth of certain
equations involving low degree polynomials. This method - - called L F K N -
test - - was invented by Lund et al. [27] to prove that any language in the
polynomial hierarchy has an interactive proof system. Their test also played
a fundamental role in proving I P = P S P A C E [34] and M I P = N E X P T I M E [10].
In the first part we will describe this test in the form as it was used by Lund et al.
[27] to prove that the permanent of a square 0-1 matrix has an interactive proof
system.

The second part is devoted to the description of an extended version of this test. The
need of such an extension arose first in [10] and it was further extended in [9]. This
extended version is an essential ingredient of the NP _~ PCS(Iog n, 1, polylog n) proof of
Section 4.6.

A.1. The LFKN-test for verifying large sums

The LFKN-tes t is based on the simple property that two different degree d poly-
nomials defined over a domain F can agree in at most d points. Thus for a randomly
chosen point x~F the probability that both polynomials agree at this point is at most
d/I F]. By a lemma of Schwartz [33] the same reasoning is also valid for multivariate
polynomials: two different m-variate polynomials of (total) degree d over a field
F agree in a randomly chosen point of F m with probability d/lF]. Based on this
property of low degree polynomials, the LFKN-tes t allows one to verify with high

probability that a certain sum of values of a polynomial is zero. More precisely, let
f: F ' ~ G be a polynomial of degree at most d in every variable, with F being a finite
field and G a field extension of F. Furthermore, let H _ F be an arbitrary subset of F,

and suppose we want to check that

f (u)=O. (A.1)
u ~ H m

While this, of course, could easily be done in ~([HI") time by simply computing
the sum, our goal here is to design a test procedure which evaluates f a t only one (!)
point.

212 S. Hougardy et al./ Diserete Mathematics 136 (1994) 175-223

To achieve this any such test obviously requires access to some additional informa-
tion. Let g~: F~--,G denote the following partial sums of the sum in (A.1):

g,(xl) = Z Z "'" Z f (x l , Y 2 , Y3 Ym),
y2~H y3eH ymeH

g2(xl ,X2) = ~ "'" ~ f(Xl,X2, ya,"',Ym)
y3~H y m E H

g m - l (X l ' X 2 Xra-1) ~ E f (x l ' x 2 X m - I ' Y m)'
yn,, ~ H

gm(Xl,X z Xm) =f (X l ,X2 , . . . ,X.).

Note that g~ and g~+ 1 are related by the following equation:

E gi+l(X1 'x2 Xi 'X)=gi(Xl 'X2 Xl) for all i=1 m - 1 . (A.2)
xc~H

In particular, the sum we are interested in satisfies:

f (x) = ~ gl(x1). (A.3)
x~H m x l~H

So with the help of a function 0x that is supposed to equal gl the task of checking
Eq. (A.1) could be reduced to just tg(IHI) queries to the function 01 (instead of
(9(IHJ m) queries to the function f) - - leaving open, however, how to verify that 01
indeed equals gl. At this point the fact that f is a polynomial of degree d in each
variable turns out to be extremely useful.

Suppose the tester has access to functions Oi:F~-~G which are supposed to be the
polynomials g~ defined above and assume for the moment that the functions 0i are in
fact polynomials of degree d in every variable. The consistency check then would be
straightforward. For example, checking whether gm and f are consistent (that is,
identical) can be done by verifying that f (r l , rz rm)= gm(rl ,r2 rm) at a single
point (rl rm) randomly chosen from F m, the error probability being at most
md/[F [, which is small if the cardinality of the field F is sufficiently large compared to
the degree and the number of variables o f f Similarly, checking whether Oi and 0~- t
are consistent (that is, satisfy relation (A.2)) can be done by evaluating 0~_~ at
a randomly chosen point in F ~- 1 and comparing it to the corresponding sum of I HI
values of Oi.

While in principle one could use the low degree tester from Section 4.5 to assure
that the functions 0~ are 6-close to polynomials, here a much easier trick works. As we
will argue in more detail below, the consistency test outlined above can be modified
such that it uses only that the functions 0~ are polynomials of degree at most d in the
last variable• So in order to avoid a low degree test, we simply assume that the tester
has access to a table T containing ~ '= 1 (d + 1)1F [i- 1 entries of size [- log] G]], which is

S. Hougardy et at. / D&crete Mathematics 136 (1994) 175-223 213

supposed to contain the coefficients of all degree d polynomials 9i(x~ x~_ 1 ,") for all
Xa X~-xeF and all 1 <~i<~m. With this nota t ion the L F K N - t e s t can be formally
stated as follows:

LFKN-TEST

Choose rl rm~RF and let 00:=0.
for i := 1 to m do

• Let 0~ denote the degree d polynomial defined by the d + 1
values contained in T as the coefficients of 9~(r~ r~_ ~,.).

• if L ~ n 0i(x) ~ Oi- 1 (ri - 1) then REJECT
if f (rl r,,) 4:O,,(r,,) then REJECT

The following theorem shows that the procedure LFKN-TEST does indeed have the
desired properties.

Theorem A.1. Let f: Fm~G be a polynomial of degree at most d in every variable with
F and G bein9 finite fields such that IFl>>.4md and G is a field extension of F.
Furthermore, let H ~_ F denote an arbitrary subset of F and let T be a table containin9
~ir"_ ~ (d + 1) IF I i - 1 values of length V log J G I -]. Then the procedure LEKN-TEST has the
followin 9 properties:

• I f f satisfies Eq. (A.1) then there exists a table T= T: such that the procedure
LFKN-TEST always accepts.

• I f f does not satisfy Eq. (A.1) then LFKN-TEST rejects with probability at least a4
for all tables T.

• LVKN-TEST queries f a t only one point, distributed uniformly over F m, reads m(d + 1)
entries from T, and uses (9(m log l F I) random bits.

Proof. Suppose first that Eq. (A.1) holds and assume that T: contains the coefficients

of the functions gi(xx x i - 1,") defined above. Then 0i(x) equals gi(rl, r 2 r i - 1 , X)

and therefore equat ion (A.2) guarantees that no error will be detected.

N o w suppose that Eq. (A.1) does not hold. If gx =0a then the test)[xEn 01(x)=0o
detects the error in Eq. (A. 1). So assume gl ¢ 01. Then gx (rl)4:01 (rl) with probabi l i ty
>~ 1-d/IF], as two different degree d polynomials can agree in at mos t d points.

If gl(rx)~Ol(rl) and 0 2 (r l , .) = 0 2 (-) then ~x~nO2(x)=gl(rl) and the test
Z x~n O2(x)= 01 (ra) reveals an error. So we may assume that g2(rl , ')~ 92(') for all r l
such that gl(rl)¢Ol(ra).

I terat ing this a rgument another m - 2 times we observe that with probabi l i ty at

least (1 - d / [F I)"-x we may assume that either one of the tests Z x~n Oi(x)= 9 i - l (r i - 1)
detects an error or 0m('):,~g,,(rl r , ,_l ,"). But in the latter case the final test

f (r l r,,) ¢ 0,,(r,,) fails with probabi l i ty 1 - d/I F [. Summariz ing, this shows that the
procedure LFKN-TEST rejects with probabi l i ty at least (1 - d/]F[) m >~ 1 - md/] F [. As by
assumpt ion I F I >1 4rod, this probabi l i ty is />~ as claimed.

Finally, we have to ensure that the resources consumed by the procedure are as
stated in the theorem. For generat ing the r a n d o m points r l , r 2 rm~F one needs

214 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

(9(m log IF I) r a n d o m bits. Each i teration of the for- loop requires d + 1 queries to the
table T, while the function f itself is evaluated only in the final test at exactly one point
distr ibuted uniformly over F". []

A.2. The LFKN-test for everywhere vanishing functions

Let f : F ' ~ F be a polynomial of degree at most d in every variable, where F again
denotes a finite field. Ins tead of checking a sum to be zero we are now interested in
knowing that the function f is identically zero at a certain par t of its domain:

f (u) = 0 for all u e H " (A.4)

with H being an arb i t ra ry subset of F. If we were working over a field like N then (A.4)
would be equivalent to checking whether the sum y.u~nf(u) 2 is zero. Thus (A.4) could
be reduced to an appl icat ion of Theo rem A.1 for the p o l y n o m i a l f 2. Fo r finite fields,
however, this simple approach does not work. With some more effort it is nevertheless
possible to reduce the test of (A.4) to a constant number of appl icat ions of
Theorem A. 1.

Theorem A.2. Let f: F" ~ F be a polynomial of degree at most d in every variable with
F being afinitefield such that I FI~> 4m(d + I H I), where H ~_ F is an arbitrary subset ofF.
Then there exists a procedure EXTENDED LFKN-TEST, which has access to f and an
additional table T containing (9 (dlFI 2m) values of length [- (m + 1) log I F I -], that has the
following properties:

• Iffsatisfies Eq. (A.4) then there exists a table T= Ty such that EXTENDED LFKN-TEST
always accepts.

• I f f does not satisfy Eq. (A.4) then EXTENDED EFKN-TEST rejects with probability at
least ¼for all tables T.

• EXTENDED LEKN-TEST queries f at only five points, randomly chosen from F", reads
(9 (md) entries from T, and uses (9(m log I F I) random bits.

Proof. Let K be a field extension of F satisfying 21HI'<<.IKI~2rHI'IFI and let
p : H ~ { 0 , 1 I H I - 1 } be an arb i t ra ry bijection. Then for u = (Uo u,,_ x)eH m we

define a m a p p i n g a : H m ~ { 0 , 1 l H I ' - 1 } by setting a (u) := ~ ' - o 1 I Hli'p(uO. Note
that a again is a bijection.

N o w the function 9 : K ~ K defined as g(t):=Zx~u~f(u) . t ~ is a polynomial of
degree at most I HI". Thus either (A.4) holds or g has at most l H I " zeroes. As
IKI ~>21Hl", we therefore have:

if (A.4) does not hold then P rob ,~ r [-g (t)=0] ~<½. tA.5)

In part icular, if g is different f rom the zero-function on K then the probabi l i ty that the
function g is zero at five r a n d o m points from K is at most (½)5= ~ . Even if g can be

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 215

evaluated correctly only with probability ¼ then this probability is still less than
(3)5 <¼. Thus the probability t h a t f i s different from the zero-function and all the five
queries of g yield the value zero is less than ¼ and a so-constructed tester would detect
an error with the required probability.

We want to use Theorem A.1 to test whether g evaluated at a random point t ~ K is
zero. Therefore we have to check that all the requirements of Theorem A. 1 are fulfilled.
First we show that the function f (u) t ~tu) is a polynomial in u. This can be seen as
follows for all u~Hm:

f (u)" t °~u~=f(u)" 1-I tlnl'P~"')=f(u)" f I t tul'pth)" Lk(ui) ,
i = 0 i = 0

where Lh(X) is defined to have value l if x = h and 0 otherwise. Thus viewing
f (u) t ~ as a function from F m to K this shows that it is a polynomial of degree
d +]H I in every variable ui.

By assumption the field F has size at least 4m(d+lH]) and thus satisfies

the condition from Theorem A.1. The value of the function f (u) t ~) needed in
Theorem A.1 can easily be computed from the function f Thus we may use the
procedure LFKN-TEST to verify that the function g is zero at five randomly chosen
points ~K. As already shown above this procedure will find out whether (A.4) holds
with probability at least ¼.

The table T has to contain the tables from Theorem A.1 for the functions

f (u) ' t ~) for every t e K . As IKI<~21HI"IFI, it therefore contains at most
2[HlmlFlm(d+ 1)lEt m-1 =C(dlF[2") many entries of size, say, [-(m+ 1)log IF[-].

Now we still have to count the resources used by the so-constructed procedure
EXTENDED LFKN-TEST. For generating the five random points from K the verifier needs
O (l o g l K l) = C (m l o g l F [) random bits. All other resources are consumed by the
procedure LVKN-TEST which is called five times. Thus in total O(m log IF I) random bits
are used and m (d + l H I) entries are queried from T. []

Appendix B. Low degree tests

In this appendix we describe an efficient test for checking whether a given function
is 6-close to a polynomial of degree at most d. We start by illustrating the main ideas
of such testers at the simplified problem of checking whether a given function is
6-close to a homogeneous linear function.

B.1. The linear case

Lemma B.1. Let c~ < ~ be a constant and let (~ : Y"2 ~ D:2 be a function such that

Probx, r[~(x) + ~(y) :~ ~(x + y)] ~< ½ 6.

Then there exists heU:~ so that the functions g (x)=hXx and 0 are 6-close.

216 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

Proof. The proof is by construction. We will show that the function 9 given by

O(x) := majorityr { O(x + y) - O(y) }

(solve ties arbitrarily) has the desired properties. First we show that 9 satisfies

p, := Probx[g(a)--~(a + x) - 0 (x)] >~ 1 - 8 for all a~[F~.

Fix ael:~. By assumption

Prob~,y[O(x +a)+O(y)¢O(x + a + y)] <<.½8, and

Probx, y[O(x) + O(y + a) ¢ O(x + y + a)] <-~ ½ 6.

Recalling that by definition v,")lz, the above inequalities easily imply (B.1):

1-6<~Prob~,r[O(x+a)+O(y)=O(x)+O(y+a)]

(B.1)

= ~ (Prob~[O(x+a)-O(x)=z]) z
ze~2

--P,Z+(1 -P,)z<~P,(P,+(1 --Pa))-- P,.

Next we show that 9 and 0 are 6-close. Assume not. Then Prob~ [0(x)4:O(x)] > 8.
By the definition of 0 we also have Probr[9(x)=O(x+y) -O(y)] >~½. As both events
are independent this implies Prob~,r [0(x) = O(x + y) - 9(Y)] > ½ 8, contradicting the
assumption of the lemma.

To show that 9 satisfies the desired linearity condition, fix a, be[F~ and apply (B.1)
three times to obtain

Probx [9 (a) + 9 (b) + O(x) ~ O(a + x) + g (b)] ~< 6,

Probx[y(b) + O(a + x) ¢ O(b + a + x)] <~ 6, and

Probx[9(a + b + x) # 9(a + b) + O(x)] <~ 6.

Hence

Probx [g(a) + g(b) + O(x) = g(a + b) + •(x)] >/1 - 38 > 0. (B.2)

As the condition on the left hand side of (B.2) is independent of x, the probability is
either 0 or 1. The positivity therefore implies that 9(a)+ g(b)= 9(a + b) for all a, b ~ Dz~,
from which the existence of the desired vector h~D:~ follows immediately. [~

B.2. The general case

The reader is invited to observe that the proof of Lemma B.1 easily generalizes to
arbitrary finite fields F instead of [Fz. For F = [Fp, p a prime, this approach can even be
generalized to arbitrary, multivariate degree d polynomials. For this one needs the

S. Hougardy et at./Discrete Mathematics 136 (1994) 175-223 2 1 7

well known fact (cf. e.g. van der Waerden [36]) that a function f : Uz~'---,Qzp is a poly-
nomial of total degree d if and only if for all x, he~:'~ the function satisfies
Ed+l 1),+l(a+t 1 t=0 (--) f (x+ th)=O. Such a tester was first described in Gemmell et al.
[19]. It required O(d 2) tests of the form "Pick x, he~:~ at random and verify that
y a+l (_ 1)t+l (a+l)f(x+th)=O,, ' adding up to a total of O(d 3) evaluations o f f This

t = 0

bound was later improved to O(d 2) by Rubinfeld and Sudan [32] by a slight
modification of the tester and an improved analysis.

While obviously O(d) evaluations are a natural lower bound for any such tester,
a break-through occurred with the results of Arora and Safra [5] who showed that in
fact O(1) probes of f suffice, if the tester has also access to an appropriate additional
function, which it may probe O(d) times.

In this section we describe a strengthening of the Arora and Safra [5] tester
due to Arora et al. [4] which requires only O(1) probes o f f and the additional
function.

Theorem B.2. Let 0<~<1-~44s and d, meN be constants and p>/64d a a prime. Let
m rwm . - d + l ~" [F'~ ~ : p be a function, and let T: ~:p x u-p--*u-p be a function such that the degree

d polynomials fix.h over ~-p given by Px, h(t)=---y'~+~ T(x, h)i" t i-x satisfy

Prob~,h,,[P~,h(t)=#(X + th)] >>- 1 --is 6. (B.3)

Then there exists a (unique) polynomial g: J:p--,g:p of total degree d so that g and # are
g-close.

To the best of our knowledge there does not yet exist a published proof of
Theorem B.2 in the literature. The proof we are presenting here is based on the one in
Arora et al. [3] and Sudan [35]. However, here we also include the details left out in
that version and correct several minor errors.

The structure of the proof of Theorem B.2 is similar to the one of Lemma B. 1. That
is, we define the function g explicitly, and show subsequently that g is well defined, is
6-close to ~, and is a polynomial of total degree at most d. An essential tool in the
proof is the following technical lemma from [5], known as the Matrix Transposition
Lemma.

Lemma B.3. Let 0 < e < ~ and det~ be constants and let F be a finite field such that
[F[~>64d 3. l f r~, s~F, and G, t~F, are polynomials over F of degree at most d and
A =(aa) is an IFI x IFI matrix such that

Probs, t[as~=rs(t) and ast=G(s)] >~ l - e .

Then there exists a bivariate polynomial Q : FE--, F of degree at most d in each variable
such that the sets S = {seF[rs(.)= Q(s, ")} and T= {teF[G(')= Q(', t)} satisfy

[S[~>(1-5e)IFI and ITI~>(1-5e)IFI.

218 S. Hougardy et al./Discrete Mathematics 136 (1994) 175 223

Proof. Call a pair (s, t) an error-point, if r,(t)~ a~t or ct(s)~ a,t. By our assumption we
know that there exist at most elF I z error-points. A straightforward average argument
shows that this implies the existence of sets C~_F and R ~ F of size ICl=4d and
IRt =4"[-!81FI-] such that for each s~R there exist at most d many t's in C for which
(s, t) is an error-point. (Indeed, assume such sets C and R would not exist. Then for
every set C ___ F of size 4d the columns indexed by C would contain at least ½1F I(d + 1)
error points. As every error-point is counted at most (4j~ 1) times, this would imply
(~,~)'½ IFl(d+ 1)~<(4~1)' elFI 2, contradicting the assumptions of the lemma.)

Assume for the moment, that e, ~ 0 and f~ are polynomials of degree at most d and
2d, respectively satisfying

ct(s).e~(t)=f,(t) for all sER, t~C. (B.4)

We claim that this implies

ct(s)'e~(t)=r~(t)'e~(t) for all s~R, t~C.

Indeed, by choice of C and R there exist univariate polynomials e'~(t)~O, s~R of
degree at most d such that

c,(s).e'~(t)=r~(t).e'~(t) for all s6R, teC.

For all tEC such that e',(t)¢O we easily obtain f~(t)=e~(t)'rs(t). As both sides are
polynomials of degree at most 2d, this implies that both sides are in fact identical for
all t~C.

Our goal is to define the polynomials e~ andf~ satisfying (B.4) in such a way that the
number of pairs (s,t)~R x C with es(t)=0 is at most ½[RI. Observe that this would
imply that at least ½1R I= ¼1FI of the rows indexed by R contain no error-points within
the columns indexed by C. In particular this would imply that for any d + 1 elements

to t a e C

d

Q(s, t)= ~ L,,(t). c,,(s)
i = 0

forms the desired polynomial, where L,,(t) denotes the unique degree d polynomial
which is 1 if t = t~ and 0 if t ~ { to tn } \ { t~}. To see this, observe that by definition of
Q one has Q(., t) = c~(-) for all t~ { to ta}. As a degree d polynomial is determined by
specifying the values at d + 1 points, this implies that also Q(s,.)=r~(') for all rows
seR which contain no error-point within the columns indexed by C. This in turn
shows that a column t either belongs to the set T or contains at least
½ l R l - d = ¼ l F l - d error-points. As the total number of error-points is bounded by
elFI z this immediately implies that I T[~>(1-58)IFI. By the same reasoning this
inequality in turn also implies that I SI >/(1 - 5~)lFI.

e .t i f i t ~ - ~ 2 a Let e~(t)=Y~= o ~, ,j~, , -~ i=of~ i t ' and let g(s)=(e~o e,a,f,o f~zd)- Then
(B.4) can be rewritten as M(s) 'g(s)=O for all s~R, where M is a matrix of dimension
4d × 3d + 2 whose entries are degree d polynomials in s. Let k be the largest integer for

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 219

which there exists an so~R and a k x k submatrix of M(so) which is nonsingular. Let
M' denote the corresponding submatrix of M and set the e~ andf~ not corresponding
to columns of M' to 1. Then there exist k degree d polynomials hi hk such that
every solution of M'(s)'g'(s)=(hl(s) hk(S)) can be extended to a solution of
M(s).g(s)= O. Solve the former system by Cramer 's rule to obtain that the g'~(s) are
rational functions with common denominator det(M'(s)), which is a polynomial of
degree at most kd. That is, M(s).g(s)=O has a solution in which all the es~ are
polynomials of degree at most kd. Hence, for every teC, es(t) is zero for at most kd
s-values. By assumption 4kd 2 < 16d 3 ~< ¼ [F I = ½1R I. This concludes the proof of the
lemma. []

As a corollary we obtain that for families of matrices (A~) and polynomials (rAt)i)
and (ct(s)~), which satisfy the assumptions of Lemma B.3 with high probability, the two
degree d polynomials best fitting a fixed row and a fixed column coincide with high
probability at their intersection.

Corollary B.4. Let 6 > 0 and d, m e n be constants, let F be a finite field such that
[FI>~ 80 d 3, and let So, to eF be fixed. Assume that for every pair hi, ha E F m there exist
matrices A = (a~t) and degree d polynomials r, and ct over F such that the sets

ff:--{s~FI Probhl,h2[rA t)=ast]) l --½ 6 for all te F },

and

T:= { teVJ Probh,,h2[c,(s)=as,] >~ 1-½6for all ssF},
satisJ}'

[ff]j>(1--6)lF[and liPI>J(1-6)[F].

L e t Prow denote the deoree d polynomial best fitting the So-th row, i.e., the degree
d polynomial that maximizes the number o f t eF for which Pro~(t)= asot, and similarly let
P~oJ denote the degree d polynomial best fitting the to-th column. Then

Probh~,h2 [P~ow(to) = Pool(So)] t> 1 - 72 6.

(In order to simplify notation, the dependence of A, rs, ct, P~ow and Pco, o n h I and h2 is
not reflected in the notation. It will, however, always be clear from the context.)

Proof. Let e = ~ and observe that by assumption

Probh,, h2 [Prob~, t [rAt) = ast and ct(s) = a~t] >~ 1 -- e] >~ 1 - 36/E.

Thus with probability 1 - 36/e the matrix A satisfies the requirements of Lem'ma B.3.
In the following let S, T and Q be as defined in Lemma B.3. (For completeness, if
A does not satisfy the requirements of Lemma B.3 let S = T = 0 and Q =0.) Then

Probh,,h2[[S[~>(1 -- 5~)IFI and I TI/>(1 - 5~)[FI]/> 1 - 36/e. (B.5)

220 S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223

Applying the assumption of the corollary for t = to and s = So, respectively, we obtain

Probh,,h~[r~(to)=a~o] >~ 1--½6 for all se,~

and

Probh~,h2 [G(So) = a~o,] ~> 1 -- ½ 6

In particular the sets

S:={slrAto)=a~,o}

therefore satisfy

for all t~ T.

and "F := { t] c,(so)=a~o, }

Probh,.h2 [ISI 7>(1-0IFI and I TI ~(1 - e) lF [] ~> 1-36/e. (B.6)

Combining (B.5) and (B.6) we deduce that

Probh,,h2[ISc~S I >/(1 -- 6e)lr[and I T¢~ 7~1/>(1-601El]/> 1-66/~.

As IS¢~SI ~>½1FI implies that Q(',to) is the best polynomial fitting the t0-th column,
and similarly I T¢~ T[>/½IFI implies that Q(s0,.) is the best polynomial fitting the so-th
row, this together with the choice of ~ concludes the proof of Corollary B.4. []

Proof of Theorem B.2. For every x, h • [F~' let Px, h denote a polynomial of total degree
at most d which maximizes the number of points from {x + th] t • Bzp} at which Px, n and
0 agree. The function g is then given by (break ties arbitrarily)

g(x) = majorityh { Px,h(0)}.

For the proof that g has the desired properties, we first observe that assumption
(B.3) on the polynomials /~,h induces a similar property on the polynomials Px, n.
More precisely, we claim that

Probx,h[P~,h(t)=O(x+th)]) 1-½6 for all t6[Fp. (B.7)

For the proof of (B.7) fix t•lFp and observe that (B.3) implies that

Probx, n [Prob, [i6~.h(t)= O(x + th)] >~] >1 1 - 36/8.

As Prob,[P~,h(t)=0(x + th)] >2 ~3 can only hold if/~,,h=P~,h, this implies that

Probx. h [/~x, h = Px, h] ~> 1 - 36/8

and therefore together with (B.3) also

PrObx, h,,,[Px,h(t + t')= P,,h(t + t')=O(X +(t + t')h)] >1 1 --½6.

By definition, Px, h(t+t')=P,+ht',h(t). This together with the fact that x+t 'h is a
random element of 0:~' whenever x eR Dz~ ' and t' eR [Fp concludes the proof of (B.7).

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175-223 221

Next we use Corollary B.4 to show that

Probh,.h2 [Px+sok,, h2(to) = Px+toh2,hl(So)] 7> 1 -- 72 6

for all xElZ~ ' and So, to~[]zr (B.8)

Let A =(a=t) denote the matrix given by a=,t=~(x+shx +th2), and let r=(t)=P=+=h,,h~(t)
and ct(s)=Px+th~,hl(S), all defined with respect to hl,h2sF". Using (B.7) we
immediately observe that the requirements of Corollary B.4 are satisfied (with
S=T=I:p\{0}) . As by definition Px+sohl,hz(t) and Px+toh2,h,(S) a r e the polynomials
best fitting the so-th row and the to-th column, respectively (B.8) follows immediately
from Corollary B.4.

An immediate consequence of (B.8) is the following strengthening of (B.7):

Probh[Px, h(t)=tj(x+th)]>~ 1--736 for all x~l:~' and t~[-p, t~O. (B.9)

To see (B.9) fix x~I:~' and telZp\{0}. From (B.7) we deduce that

Probh,.h~[P=+th2,h~(O)=~(x + th2)] >~ 1 --½6

and from (B.8) we deduce (letting So=0 and to=t) that

PrObh~,h2 [Px+th2,ha (0) = Px, h2(t)]/> 1 - 72 6.

Obviously, combining both inequalities proves (B.9).
Another consequence of (B.8) is

Probh[g(x)=Px, h(0)]/> 1--726 for all xeY~'. (B.10)

Indeed, fix an xe[F~' and apply (B.8) for So=to=0. Then

1 - 7 2 5<~Probh~,h~[P~,h,(O)=Px, h2(O)] = ~ (Probh[Px.h(O)=a]) 2
aE~-p

<-..PrObh[g(x)=P~,h(O)]" ~ Probh[P~,h(O)=a].
k a~F

L
The f-closeness of g and ~ now follows immediately from (B.7) and (B.10).
For the proof that 9 is a degree d polynomial we make use of the following

characterization of polynomials:

A function f: l:'~l:p is a polynomial of total degree d if and only ifJor all x, h~l:~ the
point (x,f(x)) lies on the degree d polynomial containing most points of {(x +th,
f (x + th))lt~ IZp}.

Let x, hsl:~' be fixed. For hl,h2~l:"~ let A' =(a'=,,) denote the matrix given by

~g(x+sh) if t=O,

a'=a = { O(x + sh + t(hl + sh2)) otherwise

222 S. Hougardy et al./Discrete Mathematics 136 (1994) 175-223

a n d let r ' s(t)= Px+~h,h, +sh2(t) a n d c'~(s)= Px+thl.h+rh2(S). T h e n (B.7) impl ies

PrObhl,h2[c't(s)=a's,]>~ 1 - 6 for all s,t~I:~, t ~O.

By (B.10) we also have

Probh, ,h2[a 'so--9(x+sh)=Px+sh, h,+s,2(O)--r's(O)]>~1--726 for all s~[l:p. (B.11)

F ina l ly , we deduce f rom the 6-closeness a n d (B.9) tha t for all s, t6U:p, t ¢ 0 :

PrObh~. h2 [a'st -- O(x + sh + thl + sth2) = Px ++,,n, + ~h2(t) - - r'~(t)] >/1 -- 73 6.

The a s s u m p t i o n s of C o r o l l a r y B.4 are therefore aga in satisfied, this t ime wi th "½6"

replaced by 796. As the first c o l u m n s of the mat r i ces A' do no t d e p e n d o n h~ a n d h2

and , by def in i t ion, r'o(t) is the best p o l y n o m i a l f i t t ing the first row, C o r o l l a r y B.4

(appl ied for So = to = 0) toge ther wi th (B. 11) for s = 0 a n d the a b o v e cha rac t e r i za t i on of

degree d p o l y n o m i a l s conc ludes the p r o o f of T h e o r e m B.2. []

References

[1] M. Ajtai, J. Koml6s and E. Szemer6di, Deterministic simulation in LOGSPACE, in: STOC (1987)
132-140.

[-2] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83-96.
[3] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, On the intractability of approximation

problems (1992) early draft.
[4] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and the intractability of

approximation problems, in: FOCS (1992) 14-23.
[5] S. Arora and S. Safra, Probabilistic checking of proofs; a new characterization of NP, in: FOCS (1992)

2 13.
[6] L. Babai, Trading group theory for randomness, in: STOC (1985) 421-429.
[7] L. Babai, E-mail and the unexpected power of interaction, in: Proc. Structure in Complexity Theory

(1990) 30-44.
[8] L. Babai and L. Fortnow, Arithmetization: a new method in structural complexity theory, Comput.

Complexity 1 (1991)41-66.
[9] U 8abai, L. Fortnow, L. Levin and M. Szegedy, Checking computations in polylogarithmic time, in:

STOC (1991) 21 31.
[10] L. Babai, L. Fortnow and C. Lund, Non-deterministic exponential time has two-prover interactive

protocols, Comput. Complexity 1 (1991) 3-40.
[11] A. Blum, Some tools for approximate 3-coloring, in: FOCS (1990) 554-562.
[12] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to numerical problems,

in: STOC (1990) 73-83.
[13] R. Boppana and M.M. Halldorsson, Approximating maximum independent set by excluding sub-

graps, BIT 32 (1992) 180-196.
[14] S.A. Cook, The complexity of theorem-proving procedures, in: STOC (1971) 151-158.
[15] U. Feige, S. Goldwasser, L. Lov~isz S. Safra and M. Szegedy, Approximating clique is almost

NP-complete, in: FOCS (1991) 2-12.
[-16] O. Gabber and Z. Galil, Explicit constructions of linear-sized superconcentrators, J. Comput. System

Sci. 22 (1981) 407-420.
[-17] M.R. Garey and D.S. Johnson, The complexity of near-optimal graph coloring, J. Assoc. Comput.

Mach. 23 (1976) 43-49.
[18] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness (Freeman, San Francisco, CA 1979).

S. Hougardy et al. / Discrete Mathematics 136 (1994) 175 223 223

[19] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan and A. Wigderson. Self-testing/correcting for
polynomials and for approximate functions, in: STOC (1991) 32~,2.

[20] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive proof systems,
SIAM J. Comput. 18 (1) (1989) 186-208.

[21] M. Halld6rsson, A still better performance guarantee for approximate graph coloring, Inform.
Process. Lett. 45 (1993) 19-23.

[22] T. Impagliazzo and D. Zuckerman, How to recycle random bits, in: FOCS (1989) 248-253.
[23] D.S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 13 (1992)

502 524.
[24] R. Karp, Reducibility among combinatorial problems, in: R. Miller, J.W. Thatcher, eds. Complexity of

Computer Computations (Plenum Press, New York, 1972) 85-103.
[25] S. Khanna, N. Linial and S. Safra, On the hardness of approximating the chromatic number, in Proc.

Israel Symp. on Theoretical Computer Science (1993) 250-260.
[26] R. Lipton, New directions in testing, in: Distributed Computing and Cryptography, D1MACS

Series in Discrete Mathematics and Theoretical Computer Science, Vol. 2, Amer. Math. Soc. (1991)
191-202.

[27] C. Lund, L. Fortnow, H. Karloff and N. Nisan, Algebraic methods for interactive proof systems,
J. Assoc. Comput. Mach. 39 (4) (1992) 859 868.

[28] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, in: STOC
(1983) 286293.

[29] G.A. Margulis, Explicit construction of concentrators, Problemy Peredachi Informatsii 9 (4) (1973)
71-80. English translation in: Problems of Information Transmission (Plenum Press, New York,
1975).

[30] Chr. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,
J. Comput. System Sci. 43 (1991) 425~,40.

[31] S. Phillips and S. Safra, On efficient probabilistic verification, manuscript, 1993.
[32] R. Rubinfeld and M. Sudan, Self-testing polynomial functions efficiently and over rational domains,

in: SODA (1992) 23-32.
[33] J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc.

Comput. Mach. 27 (1980) 701-717.
[34] A. Shamir, IP=PSPACE, J. Assoc. Comput. Mach. 39 (4) (1992) 86%877.
[35] M. Sudan, Efficient checking of polynomials and proofs and the hardness of approximation problems,

Ph.D. Thesis, University of California at Berkeley, 1992.
[36] B.L. van der Waerden, Algebra I (Springer, Berlin, 8 ed, 1971).

