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Abstract 

The aim of this paper is to present a self-contained proof of the spectacular recent achieve- 
ment that NP = PCP (log n, 1). We include, as consequences, results concerning nonapproxima- 
bility of the clique number, as well as of the chromatic number of graphs, and of MAX-SNP 
hard problems. 
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1. Introduction 

On April 7, 1992, The New York Times published an article entitled 'New Short 
Cut Found for Long Math Proofs'. The aim of this article was to popularize a new 
characterization of the class NP, obtained by Arora et al. [-3], which can formally be 
phrased as NP = PCP(log n, 1). This is indeed an amazing result - -  with far-reaching 
consequences in discrete mathematics. 

In order to roughly explain this result, let us first recall the definition of the class 
NP. A language (decision problem) is in the class NP if, for every input x which 
belongs to this language, there exists a membership proof, say ~x, which can be 
checked in polynomial time by some Turing machine. Typical decision problems in 
N P  are the satisfiability problem, the Hamiltonian cycle problem and the 3-coloring 
problem. Membership proofs for problems in NP are usually concise and simple. 
They just consist, for example, of a satisfying assignment, a Hamiltonian cycle, or 
a 3-coloring, respectively. Surely, to distinguish a proper 3-coloring from a coloring 
that is proper on all but one of the vertices, one really has to read the color of every 
vertex, i.e., the whole proof! 

This is not the case with probabilistically checkable proofs. Here we give just an 
intuitive idea of this notion; a precise definition is given in the next section. 
Probabilistically checkable proofs are inspected by verifiers (polynomial time Turing 
machines) which proceed as follows. After reading the input x and a string v of random 
bits, they decide which bits (positions) of the proof they want to read. Subsequently, 
they either accept the input x or reject it - -  only on the knowledge of the (few) queried 
bits! A language (a decision problem) is said to have a probabilistically checkable 
proof if, for all x in the language, there exists a proof 7rx which the verifier accepts for 
all random strings ~, while, for all x not in the language, the verifier rejects all proofs 
for a majority of the random strings. 

As we will see, it is fairly easy to construct a probabilistically checkable proof for 
problems in NP which can be checked by reading only a constant number of bits - -  if 
we allow the verifier to use polynomially many random bits. But, as a consequence, 
these proofs may be of exponential length. Highly nontrivial and surprising, however, 
is the fact that every problem in NP has even a proof of polynomial length with the 
same property. More precisely, every input x of length n admits a proof of polynomial 
length which can be checked probabilistically by reading only a constant number of 
bits from it, using random strings ~ of length at most (_9(log n). This is, roughly, the 
essence of the ' N P =  PCP(logn, 1)' result. 

Just as amazing as this result itself are the consequences in the seemingly unrelated 
area of approximation algorithms - -  resolving several long-standing open problems. 
Here, we will just mention two of them. First, consider the problem of finding 
a maximum clique in a graph. The corresponding decision problem, namely to decide, 
for a given graph G and a number k, whether the clique number of G is at least k, is one 
of the classical NP-complete problems. Until the N P = P C P ( I o g n ,  1) result was 
proved, no nontrivial lower bound for the approximation guarantee of a polynomial 
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time algorithm for the clique-number in a given graph was known. As a consequence 

of their characterization result for the class NP, Arora et al. [-3] deduced from 

a result of Feige et al. [15] that there exists a constant e > 0  such that no 

polynomial time approximation algorithm for the clique number of a graph on 
n vertices can be guaranteed to come within a factor of n ~ of the right answer - -  unless 
P = N P .  

Second, we take a look at the problem of finding the chromatic number of a given 
graph. This problem is also known to be NP-hard. Even more, an old result of Garey 

and Johnson [17] states that for any e>0,  no polynomial time algorithm can 

approximate the chromatic number within a factor of 2 - e, unless P = NP. Now, using 
an appropriate transformation from the clique-problem, Lund and Yannakakis [28] 
have been able to show that the chromatic number of a graph is just as hard to 

approximate as the clique number. More precisely, there exists a constant e > 0 such 

that no polynomial time approximation algorithm for the chromatic number of 
a graph on n vertices can have a performance guarantee that is n ~ - -  unless P - -NP .  

For constant chromatic number, Khanna et al. [25] proved that it is even NP-hard to 

color a 3-colorable graph with four colors. 

The NP = PCP(Iog n, 1) result, but even more its consequences on approximation 
algorithms, have astonished many people working in discrete mathematics and 

have had considerable impact on their work. The methods for proving this result 
have been developed in computer science during the last few years. The idea of 

writing this paper was to collect and explain the ingredients (some of them not 

being easily accessible), to present a self-contained proof of the N P = P C P  
(logn, 1) result, and to explore some of its applications. The paper should be, 

we hope, a readable guide to these results for people who are not experts in this field, 

but rather view this exciting development more from the angle of a discrete 

mathematician. 

2. Probabilistically checkable proofs 

A verifier V is a polynomial-time Turing machine with access to an input x and 
a string z of random bits. Furthermore the verifier has access to a proof n via an 

oracle, which takes as input a position of the proof the verifier wants to query and 

outputs the corresponding bit of the proof n (cf. Fig. 1). 
The result of V's computation, usually denoted by V(x,z,n), is either ACCEPX 

or REJECX. For clarity let us explicitly state, that we always assume verifiers to be 
non-adaptive, that is we assume that the bits a verifier queries solely depend on the 

input x and the random string z, but not on the outcome of any previously queried 
bits. 

An (r(n), q(n))-restricted verifier is a verifier that for inputs x of length n uses at most 

~(n) random bits and queries at most c)(n) bits from n, where ?(n) and O(n) are integral 
functions such that ~(n)=C(r(n)) and c~(n)= (9(q(n)). 
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[ input  x / J  I r andom bits "r / J  [ proof  r / 

ACCEPT/REJECT 

Fig. 1. A verifier for probabilistically checkable proofs. 

Definition 2.1. A language L is in PCP(r(n), q(n) ) iff there exists an (r(n), q(n))-restricted 
verifier V such that: 

(i) For all x 6 L  there exists a proof nx such that 

Prob~ [ V(x, z, nx) = ACCEPT] = 1, 

(ii) while for all x ¢ L  every proof n satisfies 

Probe [ V(x, z, r0 = accept]  < ¼. 

Here the notation Probe[. . .]  means that the probability is taken over all random 
strings the verifier may read (that is, over all 0-1 strings of length t(lx])), where every 
string is equally likely. In other words, the probability is computed with respect to the 
uniform distribution on {0, lff  tlxl). 

Note. In slight abuse of notation we will allow the functions r(n) and q(n) to be of the 
form poly(n), polylog(n)) and so on. (Here we assume that, for example, every 
polynomial function p(n) satisfies p(n)= C(poly(n)).) 

The reader is invited to observe that the constant ¼ in Definition 2.1 may be 
replaced by any constant c¢ between 0 and 1. 

With these definitions in hand we are now able to interpret the new characterization: 
every language in NP has a membership proof n which can be checked probabilisti- 
cally by using (9(log n) random bits and querying only (_9(1) bits of the proof. 

Theorem 2.2 (Arora et al. [3]). 

NP = PCP(log n, 1). 

Note t h a t  one inclusion of Theorem 2.2 is trivial. Namely, the inclusion 
PCP(Iog n, 1) c NP follows immediately from the fact that there exist only polynomially 
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many different random strings of length C(logn). The other inclusion is proven in 
Section 4. 

3. Consequences in combinatorial optimization 

Our main motivation for being interested in the NP = PCP(log n, 1) result are its 
startling consequences in combinatorial  optimization. In this section we will state the 
three most important  consequences: the nonapproximabili ty of the clique number, of 
the chromatic number and of MAX-SNP-hard problems. 

The quality of an approximation algorithm is measured by its performance guaran- 
tee which is defined as follows. Let A be an approximation algorithm and I be an 
instance for the algorithm. By OPT(I) we denote the value of an optimal solution and 
by A(I) the value of the solution found by the approximation algorithm A. Then the 
performance ratio of A on input I is defined as the quotient A(I)/OPT(I) resp. 
OPT(I)/A(I) whatever of the two values is larger. Now the performance guarantee of 
the algorithm A is the supremum of all performance ratios for instances I with 
OPT(I)>n o for some integer no. 

Until recently the three above mentioned optimization problems shared the same 
status: the best known polynomial time approximation algorithms - -  even though 
they are quite intricate - -  had very poor approximation ratios compared to the best 
known lower bounds. For  example the best known polynomial time approximation 
algorithm for the chromatic number of a graph on n vertices has a performance 
guarantee of C(n(loglogn)2/log 3 n) [21]. On the other hand the best known lower 

bound is 2 - e ,  i.e., no polynomial time algorithm for approximating the chromatic 
number can have a performance guarantee better than 2 - e ,  unless P = N P  [17]. 

The usual way to prove the nonapproximabili ty of an optimization problem P is to 
reduce the instances of some NP-complete  language L to instances of the problem 
P with a large gap in their cost functions. That is, for elements of L one has to 
construct instances of P that have a value of at least, say c in the cost function of P, 
while for all other instances the value of the cost function is at most some constant 
fraction of c. The difficulty in constructing such a transformation is that it is possible 
that two strings x and y differ in only one bit even though x is an element of L and y is 
not. A main feature of the NP = PCP(log n, 1) result is that it provides a robust way to 
compute instances with the desired gap. 

3.1. Nonapproximability of the clique number 

A clique of a graph G is a set of pairwise adjacent vertices in G. The clique number 
of G is defined as the size of a largest clique contained in G and is denoted by re(G). 
The problem C L I Q U E  is to decide for a graph G and a number k whether the 
clique number of G is at least k. This problem is one of the classical NP-complete 
problems [24]. 
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The NP-completeness of CLIQUE leads naturally to the question whether the 
underlying optimization problem - -  finding a maximum size clique - -  has at least 
a 'good' polynomial time approximation algorithm. For the clique number, the best 
known performance guarantee of a polynomial time approximation algorithm is 
achieved by an algorithm due to Boppana and Halld6rsson [-13]. It has a performance 
guarantee of Cg(n/log 2 n). 

Before the N P = P C P ( l o g n ,  1) result (Theorem 2.2) was proved, no nontrivial 
lower bound for the performance guarantee of a polynomial time approximation 
algorithm for the clique number of a graph was known. The only result in this 
direction, due to Garey and Johnson [18], is that the existence of a polynomial time 
approximation algorithm for the clique number of a graph with a constant 
performance guarantee implies the existence of a polynomial time approximation 
scheme (PTAS for short; a PTAS is a family of algorithms, one for each ~ > 0, which 
are polynomial in time, and achieve an approximation ratio of 1 + 5) for the clique 
number. 

As a first step we will show in Section 3.1.1 how the N P = P C P ( l o g n ,  1) result 
together with a result of Feige et al. [15] implies that, unless P = NP, no polynomial 
time approximation algorithm for the clique number problem can achieve a constant 
performance guarantee. Further results of Feige et al. [15], using random walk 
techniques of Ajtai et al. [1-] resp. Impagliazzo and Zuckerman [22], give in combina- 
tion with the N P = P C P ( l o g n ,  1) result a much stronger statement: there exists 
a constant ~ such that no polynomial time approximation algorithm for the clique 
number can have a performance guarantee that is n ~ - -  unless P =  NP. This will be 
shown in Section 3.1.2. 

3.1.1. Nonapproximability up to any constant factor 
Feige et al. [15] were the first who used results in the theory of interactive proofs to 

obtain some nonapproximability results for the clique number. They showed that 
NP _~ PCP (log n log log n, log n log log n) and used this result to prove that the clique 
number of a graph cannot be approximated in polynomial time up to any constant 
factor unless NP = DTIME(n~1°~°g")). Their proof can immediately be applied to the 
N P  = PCP (log n, 1) result to get the following theorem. 

Theorem 3.1. Unless P = NP, the clique number of a graph cannot be approximated in 
polynomial time up to a factor of 2. 

Proof. Based on the existence of a (log n, 1)-restricted verifier (Theorem 2.2) for any 
language in NP we will construct for a given language L e N P  and any input x of 
length n a graph Gx with the following property: 

x e L  =~ o(Gx)=f(n),  

xq~L ~ og(G~,)<¼f(n), 
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where the function f will be specified later. Thus a polynomial time algorithm that 
approximates the clique number of a graph up to a factor of 2 could be used to 
recognize any language in NP  in polynomial time. 

We now describe the construction of the graph Gx. Let V be the (log n, 1)-restricted 
verifier for the language L and r(n)=(_9(logn) resp. c(n)=(_9(1) be the maximum 
number of random bits resp. query bits used by V on inputs of length n. The vertex set 
of Gx will consist of all accepting runs of V on input x. Each of these can be described 

by a tuple (~, al,  a2 . . . . .  act.)) where ~ is the random string of length r(n) used for the 
computat ion and ai is the answer to the ith queried bit of ~z. The length of the whole 
tuple is (9(log n) which implies that the size of Gx is polynomially bounded. To decide 
whether a given tuple is a vertex of Gx one just has to verify that V accepts the input 
x with random string z and answers ai. 

Two different vertices ( z, a 1 . . . . .  ac~,)) and (g, 81 . . . . .  ci~.)) of G~ are adjacent if there 
exists at least one proof 7z that is consistent with both tuples, i.e., if there is a position 
p of the proof string that was queried in both runs then the returned bits, say a~ and 8j, 
have to have the same value. Obviously for any pair of vertices in G~ this can be 
checked in polynomial time. Observe that G~ is a 2 '~"~ partite graph. 

For a fixed proof 7r any two vertices of Gx that are consistent with ~ (i.e., the 
returned bits a~ equal the corresponding bits of rr) are adjacent. Thus for all proofs 
7t we have 

co(Gx)/> number of accepting runs of V with respect to 

= 2 r~"). Prob~ [ V(x, ~, ~) = ACCEPT]. 

On the other hand, if C is a clique in G~ then all vertices in C that query a position 
p must get the same answer a and thus there exists one proof  ~ that is consistent with 
all vertices of C. Since this is especially true for a clique of size ~o(G~) we know that 

there exists some go such that 

co(Gx)~<number of accepting runs of V with respect to ~o 

= 2 '~"). Probe [ V(x, z, no) = ACCEPT]. 

Combining the two inequalities we get 

co(Gx) = 2 '~")' max Probe [ V(x, ~, g) ~- ACCEPT]. 
/ t  

By the definition of a restricted verifier the value of max ,  Prob~ [ V(x, ~, ~ )=  ACCEPT] is 
either 1 or less than ¼ depending on whether xeL or xq~L. This proves the above- 
stated property of the graph Gx. [] 

The reader is invited to observe that we did not make use of the fact that the verifier 
reads only a constant number of bits from ~. The same proof works if the verifier 
would be allowed to read (9(log n) bits. 
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As already remarked in Section 2 the constant ¼ in the definition of the class 
PCP( . , . )  may be replaced by any other constant between 0 and 1. If we choose instead 
of ¼ the constant e, then in the above theorem we have to replace the number 2 by 

1/v/~. We therefore get the following corollary. 

Corollary 3.2. Unless P = NP, the clique number of  a graph cannot be approximated in 

polynomial time up to any constant factor. 

3.1.2. Nonapproximabil i ty  up to n ~ 

Let PCP~(.,.) denote the class of languages defined in the same way as PCP( . , . )  
except that the constant ¼ in Definition 2.1 is replaced by e. As observed already 
above we have PCP~( . , . )=PCP( . , . )  for any constant e. This follows from the 
fact that by repeating the run of the restricted verifier a (suitable) constant number of 
times, the probability of getting a wrong answer can be made arbitrarily (but 
constantly) small. 

If we want to use the proof of Theorem 3.1 to show that the clique number cannot 
be approximated up to a factor of n ~ we would need to prove that PCP(log n, 1) equals 
PCP,-,(logn, 1) for some 6 depending on e. Unfortunately, to show this one had to 
rerun the restricted verifier k times with k satisfying (½)k< n ~. This means k/> ~ log n 
and thus we would need (9(log 2 n) random bits and (9(log n) query bits which gives 
only N P _  PCP,  ,(log 2 n, log n). However, relying on a method of Ajtai et al. [1] resp. 
Impagliazzo and Zuckerman [22] that makes use of random walks on expanders it 
can be shown that in fact (9(logn) random bits are sufficient (i.e., one can show 
NP ___ PCP,  ~(log n, log n)). 

The idea behind this technique is as follows. Instead of using truly random bits one 
generates pseudo-random bits by taking a special d-regular graph (d is a constant) that 
has a vertex for every possible 0-1 string of length r(n)=(9(logn) and chooses an 
arbitrary vertex of this graph as a starting point of a random walk where each of the 
d edges incident to a vertex is chosen with probability 1/d. Every cth step of the 
random walk (c is a constant) one uses the string that is associated to the just 
reached vertex as a pseudo-random string. Obviously, in this way only a constant 
number of random bits are needed to generate a pseudo-random string of length r(n). 

Thus the total number of random bits used to get (9(log n) pseudo-random strings of 
length r(n) is (9(log n). The following lemma gives the theoretical background for this 
method. 

Lemma 3.3. Let  ~e be an infinite family  of  d-regular graphs with the following property: 

I f  G = ( V, E) is a member of  f~ e and A denotes its adjacency matrix multiplied by 1/d then 
all but the largest eigenvalue o f  A are less than 1 - 6  and positive. 

Then for  every subset C o f  V with I CI ~<1VW16 there exists a constant c such that the 

probability that a random walk on G o f  length k .  c arrives in every cth step in a vertex of  
C is at most 2 -k. 
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Proof. Let 1 =21 >22 >--23 >~ .-. >~2,~>0 be the eigenvalues of A. Note that since G is 
d-regular the largest eigenvalue of A is 1. Since 2z is bounded away from 1 by 
a constant there exists a constant c such that (22)c~<¼. Let p be a vector with 
a component for every vertex of G containing the probability of being at that vertex. 
By Po we denote the vector whose entries are all 1/I VI. The vector Ap gives for each 
vertex of G the probability of being at that vertex after one single step of the random 
walk. Similarly ACp gives these probabilities after c steps of the random walk. Let N be 
the matrix whose entries are all zero except for the diagonal, where Nu is 1 if i6C. 
Then NACp gives the probabilities of being in a vertex of C after c steps of the random 
walk. Let I-} denote the Ll-norm. Then ](NAC)kpl is the probability that every cth step 
the random walk is in a vertex of C. To estimate this value, we first compute an upper 
bound for the Lz-norm []'[I of NACp: 

1] NACp 1[ ~<½ ]l P 11- (1) 

To prove this inequality we first decompose p into the sum of two vectors v and 
w where v is a multiple ofpo and w is a vector orthogonal to v. Since v is an eigenvector 
of A belonging to the eigenvalue 1 we have 

j 1 
ilgAcvll=llgvll= Ni~i=lV2 ~ 1 ~ v2=~ ilvll, 

Similarly we get for the vector w using that it is orthogonal to v: 

II NA%, Iq ~ II ACw II ~<(22) ~ II w II ~<¼ II w [I. 

Using the triangle inequality and the fact that the sum of the L2-norms of two 
orthogonal vectors is bounded by v /2  times the L2-norm of the sum of these vectors 
we get by combining these two inequalities: 

rINA~PII <-II NA~vII + IINACwII ~<¼ (ll vii + ]l wll)~<¼ v/2 Ilprl <½ Ilpll 

and thus have proved (1). 
Now making use of a well-known inequality between the L1- and the L2-norm and 

applying (1) k times we get 

I(NAC)kpo14 1 ~ / ~ '  II(NA¢)kpo II 

~< Ix /~ (½)k l lPo l l  

= 2  -k. [] 

The proof of the existence of families c~ satisfying the requirements of the above 
lemma is based on the existence of constant degree expanders. An (n, d, c)-expander is 
a d-regular bipartite graph G = (A, B, E) with J A I = [BI = n such that for every set X c A 
with ]Xl<~n/2 its neighborhood has size at least [XI(l+c(1-]X]/n)). A family of 
(ni, d, c)-expanders is an infinite set of graphs Gi that are (n, d, c)-expanders with n i ~  
and ni+ l/ni~ l. 
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The explicit construction of families of expanders was first achieved by Margulis 
[29]. He constructed a class of 5-regular expanders as follows: 

Let m be an integer and Zm := Z/mZ  be the ring of residues modulo m. The vertex 
set of the expander is partitioned into sets Am and Bm both being Zm x Zm. Each 
vertex (x,y) of Am is connected to the vertices (x,y), (x+ 1,y), (x ,y+  1), ( x+y ,y )  and 
( - y , x )  of Bin. The proof that the graphs constructed in this way are indeed 
expanders can be found in Margulis [29]. Another construction is given by Gabber 

and Galil [163. 
If G is a d-regular expander then let A be its adjacency matrix multiplied by lid. 

Alon [2] has shown that for every family of d-regular expanders there exists a constant 
0 such that for any member of this family all but the largest eigenvalue of A have 
a value of less than 1 - O. 

Let G be a d-regular expander belonging to some family ~o and let G' denote the 
graph that is obtained from G by adding d loops to every vertex of G. Let A resp. A' be 
the adjacency matrices of G resp. G' multiplied by 1/d resp. ½d. If 2 is an eigenvalue of 
A then (1 + 2)/2 will be an eigenvalue of A'. Since the eigenvalues of G lie all between 
- 1 and 1, we know that the eigenvalues of G' are between 0 and 1. Thus the family 
~ consisting of all the graphs G' satisfies the requirements of the above lemma. 
Obviously the graphs G' are constructable in polynomial time. 

We can therefore apply Lemma 3.3 to derive the following corollary. 

C o r o l l a r y  3.4. NP ~ PCP,  ,(log n, log n). 

Proof. Let N o be a family of 5-regular expanders satisfying the requirements of 
Lemma 3.3. Let G be a member of rg o that has a vertex for every possible 0-1-string 
of length (9(log n). 

By performing a random walk on G one takes the 0-1-string associated to every cth 
vertex as a pseudo-random string for a (log n, 1)-restricted verifier with error probabil- 
ity less than 1 .  Lemma 3.3 shows that the probability that this verifier gives k times 
a wrong answer is less than 2 -k. Choosing k>~elogn proves the corollary. [] 

Now by plugging the (log n, log n)-restricted verifier with error probability n-E into 
the proof of Theorem 3.1 one gets the following theorem. 

T h e o r e m  3.5. Unless P =  NP, there exists a constant 6 > 0  such that the clique number 
of a graph cannot be approximated in polynomial time up to n ~. 

3.2. Nonapproximability of  the chromatic number 

A coloring of a graph is an assignment of colors to the vertices of the graph such that 
no two adjacent vertices get the same color. The chromatic number of a graph G is the 
minimum number of colors needed in a coloring of G. It is denoted by x(G). 
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The problem C O L O R I N G  is to decide for a graph G and a number k whether the 
chromatic number of G is at most k. Like CLIQUE,  this problem was shown to be 
NP-complete  in the famous paper of Karp  [24]. In contrast to CLIQUE,  the problem 
C O L O R I N G  remains NP-complete even for any constant k ~> 3. 

The NP-completeness of C O L O R I N G  leads to the question of the best possible 
performance guarantee of an approximation algorithm for the chromatic number. 
The best algorithm known is due to Halld6rsson [21] and has a performance 
guarantee of (9(n(log log n)2/log 3 n). 

On the other hand it has been shown by Garey and Johnson 1-18] that no 
polynomial time algorithm for approximating the chromatic number can have a per- 
formance guarantee better than 2 - e ,  unless P = NP. 

Like for C L I Q U E  the N P = P C P ( I o g n ,  1) result can also be used to prove some 
nonapproximabili ty results for the chromatic number. Lund and Yannakakis [28] 
have shown that it is NP-hard to approximate the chromatic number of a graph up to 
a factor of n 6, for some constant 6 > 0. Their proof is based on the corresponding result 
for the clique number (Theorem 3.5). Khanna  et al. [25] have simplified this proof in 
a recent paper. Moreover they have shown that even 4-coloring a 3-chromatic graph 
is NP-hard.  The next two sections are devoted to these results. 

3.2.1. Nonapproximability.for arbitrary chromatic numbers 
The proof of Lund and Yannakakis [28] for the nonapproximabili ty of the 

chromatic number up to a factor of n 6 is based on the graph Gx used in the proof of 

Theorem 3.5. Recall that the graph Gx is an s-partite graph with s = 2 '("~ and classes of 
size q where both s and q are polynomial in n, the length of x. The special property of 
the graph Gx was that its clique number is either s or at most s/nt Starting from this 
graph G~, Lund and Yannakakis [28] constructed a new graph H~ having the 
property that the large gap in the possible values of the clique number of Gx is 
transformed into a large gap of the clique covering number of H~. Since the clique 
covering number of H~ equals the chromatic number of its complement this finishes 
the proof. 

Khanna et al. [25] have used the same ideas for constructing the graph Hx but 
found a simpler transformation. We are now going to describe their proof. 

Theorem 3.6. There exists an ~ > 0 such that the chromatic number of a graph cannot be 

approximated in polynomial time up to a factor of n ~, unless P = N P .  

Proof. The proof of Theorem 3.5 shows that it is NP-hard  given an s-partite graph 
G with classes of size q=(9(poly(s)) to distinguish between the cases ~o(G)=s and 
co(G) < s t -6. We will now construct an s-partite graph H with classes of size q' := (sq) s 
such that co(H)= co(G). Moreover if the clique number of G is s then the graph H can 
be covered by q' cliques of size s. The clique covering number of a graph is 
at least as large as its number of vertices divided by the size of a largest clique. 
Therefore the clique covering number of H is either q' or at least q's ~. Since q' is 
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polynomial in s this means that approximating the clique covering number of a graph 
up to a factor of n * for some e depending on 6 is NP-hard.  Since the clique covering 
number of H equals the chromatic number of its complement this finishes the proof  of 
the theorem. 

We are now going to describe the construction of/4.  Let the vertices of the graph 
G be arranged in s rows each consisting of the q elements of one of the s classes of G. 
Thus each row is a stable set and if G has a clique of size s then this clique has 
a representative in each row. 

The graph H is constructed in the following way: For each row of G there is a row in 
H consisting of a stable set of q' vertices. The vertices in each row are arranged into 
columns numbered 0, 1 , . . . , q ' - 1 .  Later we will describe a mapping between the 
vertices of one row of G to the vertices of the corresponding row of H. For  every edge 
(u, v) from G we add an edge (u', v') in H where u' resp. v' are the images of u resp. 
v under this mapping. 

Furthermore the graph H will be made invariant under rotation, i.e. if the ith vertex 
in row a is connected to the j th vertex in row b then we also add the q ' - 1  edges 
connecting the ( i+k)th vertex of row a with the ( j+k) th  vertex of row b for 
k = 1,2 . . . . .  q ' - 1 ,  where the sums are taken modulo q'. 

This property of H implies that if we find a clique of size s in H then there are q ' -  1 
other cliques in H arising from the first clique under rotation, such that all these 
cliques cover H. Therefore if the clique number of H is s then its clique covering 
number is q'. 

We will now describe how the vertices of each row of G are mapped to the vertices 
of a corresponding row of H. This mapping is based on the existence of a special 
function T. 

Lemma 3.7. For every integer n there exists an injective mapping 
T: {0, 1 . . . . .  n--  1 }--* {0, 1,. . . ,  m--  1 } with m = n 5 such that the sums T (a )+  T(b) + T(c) 

are all distinct modulo m for  different multisets {a, b, c} with a, b, c~{0, 1 . . . . .  n - 1 } .  

The proof  of this lemma is straightforward. If T is defined for all values up to n -  2 
then one just has to define the value of T ( n -  1) appropriately. Note that the mapping 
T has also the property that for all distinct multisets {a,b} of size two the sums 
T(a) + T(b) are distinct. 

Using the mapping T we define a map between the vertices of G and H by 
just mapping the ith vertex of the j th row of G to the T ( j q + i ) t h  vertex of the 
j th row of H. 

We claim that co(G) equals co(H), which concludes the proof as outlined above. To 
see this, observe first that by construction every edge in H has at least one 'origin' in G, 
namely the one which created it. Using the definition of T it follows immediately that 
in fact this origin is uniquely defined and that consequently every clique in H has an 
origin in G which is also a clique. This shows ~o(H)<~co(G). The reverse inequality 
follows trivially from the construction of H. [] 
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3.2.2. Nonapproximability for  constant chromatic numbers 
Lund and Yannakakis [28] also proved some nonapproximability results for 

graphs with constant chromatic number. Namely, they showed that for every constant 
h there exists a constant Ch such that it is NP-hard to color ch-colorable graphs with 
less than h. Ch colors. Unfortunately the dependence of Ch on h did not allow them to 
get any implication for 'small' constant chromatic numbers, like for example 
3-colorable graphs. 

Khanna et al. [25] however where able to extend the proof in such a way that they 
could derive nonapproximability results also for such small constant chromatic 
numbers. Especially for 3-chromatic graphs, they where able to prove the following 
result which we state here without proof. 

Theorem 3.8. Unless P = NP, it is not possible to color a 3-colorable graph with 4 colors 
in polynomial time. 

By substituting every vertex of a clique of size k by a 3-colorable graph, one 
immediately shows that a 3kocolorable graph cannot be colored with 5 k -  1 colors in 
polynomial time, unless P = N P .  Thus we obtain as a corollary, for any constant 
chromatic number k: 

Corollary 3.9. Unless P = N P ,  it is not possible to color a k-colorable graph with 

k + 2 r k/3 7 -  1 colors in polynomial time. 

Even though Theorem 3.8 is considered a breakthrough, it is, for example, still 
unknown whether it is possible to 5-color 3-colorable graphs in polynomial time. 
This seems to be very unlikely since the best performance ratio in coloring 3-colorable 
graphs is due to an algorithm of Blum [ 11] that achieves a ratio of n am log 5/~ n. Thus it 
is probably the case that coloring 3-colorable graphs is NP-hard for any constant 
number of colors. It might even be true that coloring a 3-colorable graph with n" 
colors is NP-hard for some e> 0. 

3.3. Nonapproximability o f  M A X - S N P  hard problems 

The development of the notion of NP-completeness was mainly motivated by the 
study of apparently intractable optimization problems [24, 18]. Nevertheless by defini- 
tion only decision problems can belong to the class NP. Certainly every optimization 
problem can easily be converted into a decision problem by just imposing some 
bound on its cost function. But the particular property of being an optimization 
problem is not covered by the notion of NP-completeness. 

As a consequence the polynomial time reductions used for defining the complete- 
ness of a problem in NP do not reflect intrinsic properties of optimization 
problems like the value of the cost function or its approximability. While by 
definition all NP-complete problems are equivalent under polynomial time 
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reductions, the difficulty of the underlying optimization problems may vary tremen- 
deously with regard to their approximability. According to present knowledge the 
optimization problems corresponding to NP-complete problems fall into three classes: 

(1) Problems that can be approximated in polynomial time up to any desired 
constant (e.g. BIN-PACKING).  

(2) Problems that can be approximated in polynomial time up to some constant 
factor (e.g. euclidean TSP). 

(3) Problems for which no polynomial time constant factor approximation 
algorithm can exist, unless P = NP (e.g. CLIQUE). 

Until recently only a few singular results were known about separating the second 
class from the first. That is, ruling out the existence of a polynomial time approxima- 
tion scheme (PTAS). One famous example is the graph coloring where Garey and 
Johnson [17] have shown that unless P = N P ,  no polynomial time approximation 
algorithm can achieve a factor of 2 - e .  

To overcome this situation Papadimitriou and Yannakakis [30] introduced the 
class MAX-SNP together with an approximation preserving reduction, called 
L-reduction. This reduction has the property that if a problem A is L-reducible to 
a problem B for which a polynomial time constant factor approximation algorithm is 
known then such an algorithm also exists for problem A with some other constant. 
A problem in MAX-SNP (cf. [-30] for a precise definition) that is complete for this 
class relative to L-reductions is called MAX-SNP complete. If any MAX-SNP 
complete problem would allow a polynomial time approximation scheme (PTAS) 
then by definition of L-reductions every problem in MAX-SNP would have a PTAS. 
On the other hand if one could prove for some MAX-SNP complete problem that it 
cannot have a PTAS then no MAX-SNP complete problem can have one (unless 
P = N P ) .  

Papadimitriou and Yannakakis [30] have shown that several well known approxi- 
mation problems are MAX-SNP complete: 

M A X - S A T :  Given a SAT instance find a truth assignment that satisfies as many 
clauses as possible. This problem remains MAX-SNP complete even if every clause is 
allowed to contain at most two variables. 

STABLE-SET-B: Given a graph whose maximum degree is bounded by some 
constant B find a maximum stable set. 

NODE-CO VER-B: Given a graph whose maximum degree is bounded by a con- 
stant B find a minimum node cover. 

DOMINATING-SET-B:  Given a graph whose maximum degree is bounded by 
a constant B find a minimum dominating set (i.e., a set of nodes that is adjacent to all 
other nodes). 

M A X - C U T :  Partition the nodes of a graph into two sets A and B such that the 
number of edges between A and B is maximized. 

E U C L I D E A N  TSP: For a set of points in the plane find a shortest tour that visits 
all the points. 
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While all of the above problems can be approximated in polynomial time up to 

some constant factor, no PTAS for any of these problems was known. The following 

theorem shows that such a PTAS cannot exist (modulo P :¢-NP). 

Theorem 3.10 (Arora et al. [-3]). Unless P = NP, no M A X - S N P  complete problem has 

a PTAS. 

Proof. We will show that the existence of a PTAS for MAX-3SAT implies P = NP. 

Since MAX-3SAT is MAX-SNP complete this proves the theorem. 
Let L be an arbitrary language from NP and let V be the (log n, 1)-restricted verifier 

for L (whose existence is guaranteed by Theorem 2.2). 

For any x e 2 *  we will construct a 3SAT instance St such that St is satisfiable if and 
only if x is an element of L. Moreover if x does not belong to L then at most some 

constant fraction of the clauses in St can simultaneously be satisfied. Therefore 

a PTAS for MAX-3SAT could be used to recognize the language L in polynomial 
time, i.e. we would have P = NP. 

For every position in a proof it we introduce a variable whose values TRUE and 

FALSE correspond to the values 1 and 0 of the bit at this position. By using these 

variables the 3SAT instance Sx is obtained as follows: 
• For any possible random string ~ let S~ denote the Boolean formula that 

expresses which proofs n are accepted by V on input x. Since V queries 

only a constant number of bits from a proof, the formulas S, have each constant 
size. 

• Let S'~ be the formula St written as a 3SAT formula. Let k denote the maximum 
number of clauses that appear in a S'~. Note that k is a constant. 

• Now let St be the conjunction of all the S',. 
If x is an element of L then by definition of a restricted verifier there exists a proof n~ 

such that V accepts x for every random string z. This means that this proof n~ is 
a satisfying assignment of S~. 

If x is not an element of L then for every proof the verifier V accepts x for at most 

¼th of all possible random strings z. This means that at most ¼th of the formulas S'~ are 
simultaneously satisfiable. Since every S', consists of at most k clauses we get that at 

most 1 - 3/4 k of the clauses of St are simultaneously satisfiable. 

The existence of a PTAS for MAX-3SAT would therefore allow to distinguish 

between these two cases and thus it would be possible to recognize every language in 
NP in polynomial time. [] 

4. A proof of NP =PCP(iogn, 1) 

The second part of our paper is devoted to a proof of Theorem 2.2. The proof which 

we present here is self-contained and despite of its inherit algebraic nature - -  we try 

to formulate it in a 'combinatorial'  language. We hope that this formulation makes the 
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pioneering new characterization of NP more easily accessible to all interested discrete 
mathematicians, even if they have not followed the new developments in theoretical 
computer science during the last few years. 

4.1. Overview and structure of the proof 

The proof of Theorem 2.2 combines several recent developments in theoretical 
computer science. Most notably, these are the theory of interactive proofs, the 
arithmetization of Boolean formulas, and the area of self-testing/self-correcting of 
computer programs. 

The theory of interactive proofs originates in the work of Goldwasser et al. [20] and 
of Babai [6]. Two of its major achievements are the characterizations IP = PSPACE 
(cf. Shamir [34]) and M I P =  NEXPTIME (cf. Babai et al. [10]). Both of these results 
are based on the work of Lund et al. [27], who showed that IP, the class of languages 
recognizable by polynomial-time interactive proof systems, contains the polynomial 
hierarchy. Due to lack of space we will not give a detailed account on the history of 
interactive proofs in this paper. We even omit a precise definition of interactive proofs 
and the class IP as we will not need them. The only fact from the theory of interactive 
proofs that we directly apply in this paper is a proof system from Lund et al. [27]. For 
sake of completeness this is included in Appendix A. For more information on 
interactive proofs the interested reader is referred to Babai [7] for an amusing 
introduction to this topic. A comprehensive survey together with some applications 
may also be found in Johnson [23]. 

A key ingredient of probabilistically checkable proofs is the following simple and 
well known fact: if two polynomials of degree at most d coincide in at least d +  1 
points, then they are identical. In order to apply this idea and related algebraic 
concepts one needs to place 'combinatorial' problems in an °algebraic' setting. This is, 
for example, achieved by the arithmetization of Boolean formulas. A brief introduc- 
tion into this area is given in Section 4.3. 

Another simple but important property of polynomials is that they are very robust: 
Even if, say, 1% of all values of a (low degree) polynomial are erroneous, it is not 
difficult to reconstruct the correct values. Self-testing and self-correcting plays a major 
role in the proof of Theorem 2.2. In particular, the proof relies on efficient testers for 
linear functions and low-degree polynomials. A more detailed introduction to this 
area is given throughout the subsequent sections, in particular in Section 4.5. In 
addition, Appendix B contains the theoretical background for the existence of efficient 
testers for low-degree polynomials. 

Constructing a probabilistically checkable proof which can be checked by reading 
only a constant number of bits is not too difficult if we allow the proof to be of 
exponential length. We will do this in Section 4.4. In Section 4.6 on the other hand we 
develop a probabilistically checkable proof of polynomial size, which can be checked 
by reading only a constant number of 'blocks'  from the proof, but where every such 
block contains polylogarithmic many bits. 
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The existence of a probabilistically checkable proof which can be verified by 
reading only a constant number of bits follows from these two proof systems by 
applying them recursively. Roughly speaking this is done by also using these proof 
systems to encode the 'blocks' of such proofs. More precisely, we proceed as follows. 
Using the second proof system recursively we first obtain a new probabilistically 
checkable proof, which can be verified by reading a constant number of blocks, but 
this time each block consists of only polydoublylogarithmic many bits. Subsequently, 
we use the first proof system to encode the blocks of this new proof system. This then 
gives the desired probabilistically checkable proof showing that NP ~ PCP(log n, 1). 
The other inclusion follows easily from the fact that there exist only polynomially 
many random strings of length (9(log n). 

It is worthwhile to observe that the definition of the class PCP(r(n), q(n)) or, more 
generally, that of probabilistically checkable proofs, very nicely reflects an important 
property of NP. The definition of NP by nondeterministic Turing machines requires 
the existence of a 'p roof  (or solution) which can be verified in polynomial time, but 
places absolutely no restriction on how such a proof can be found. Similarly, the 
verifier is willing to accept an input, if it is convinced that there exists a solution 
- -  even without having an idea what the solution looks like. 

Often, however, just knowing of the existence of a solution does not suffice. In 
particular, for the recursive application of proof systems indicated above, we need 
more. There the verifier has to check, with help of a specified proof, that a given string 
y is a solution - -  and it should do that without reading the solution completely. 
That is, the solution is subject to the same restrictions as the proof: the verifier may 
only query a few bits from it. 

Having in mind the example of a 3-coloring and an almost 3-coloring mentioned in 
the introduction, we easily conclude that such a clever verifier cannot exist. Something 
slightly weaker, however, turns out to be true. If instead of the string y we give the 
verifier a string y' which supposedly corresponds to the encoding of y according to 
some fixed, predetermined encoding scheme (or function) E, then the verifier can 
decide whether y' is close to E(y) for some solution y - -  by probing y' as well as the 
proof at only a few places. 

In Section 4.2 we give the formal definition of this idea. There we introduce the 
classes PCS(r(n), q(n), b(n)) which are defined similarly to the sets PCP(r(n), q(n)), the 
main differences being that the new classes contain p-relations together with encoding 
schemes for the solutions, instead of simply languages, and have a third parameter 
indicating the sizes of the blocks read from the proof. 

Fig. 2 contains an overview of the proof of Theorem 2.2 together with an indication 
of where the various tools like arithmetization, low-degree and LFKN-tests enter the 
proof. 

We would like to mention that our proof of Theorem 2.2 is based on the 
papers of Arora and Safra [5] Arora et al. [3,4], Phillips and Safra [31], and 
Sudan [35]. We combine their ideas into a, we hope, streamlined and self-contained 
proof. 
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Fig. 2. Structure of the proof of Theorem 2.2. 

4.2. Probabilistically checkable solutions 

While complexity classes such as NP are usually defined for languages L~_S*, 
a notation that is closer to intuition is that of relations R___S*×Z* which 
associate with every problem instance x a finite set R(x) of'solutions'. As an example 
consider 

R3SAT = {(x,y)lxeS* encodes a Boolean formula F in conjunctive 
normal form with exactly three literals per clause, 
y e S *  encodes a satisfying assignment of F}. 

(Here and in the following we assume without loss of generality S = {0, 1 }.) A relation 
R c 2;* x S* is called a p-relation iff 

(i) There exists a polynomial p such that lYl ~<p(Ixl) for all (x,y)~R. 
(ii) The predicate (x, y)eR can be tested in time polynomial in I xl +lyl- 

It is well known, that the class of existence problems associated with p-relations may 
be identified with the class NP. In particular, the relation R3SAT introduced above is 
a p-relation. 
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Fig. 3. A solution verifier for p-relations. 

/ 

Let x, y e Z *  be two strings such that Ixl =IY]. Then x and y are called h-close if and 

only if the fraction of bits on which they differ is less than 6. An encoding scheme is 
a function E : Z * ~ X *  such that for all x , x ' e X * ,  x v ~ x'  with I x l = l x ' l  the encodings 
E(x) and E(x')  have the same length and coincide in at most  ½ of  their bits, that is they 

are not ½-close. 
A solution verifier V is a verifier which in addit ion has access to a solution s, which it 

can query via an oracle in the same way as the membership  p roof  n (cf. Fig. 3). 

An (r(n), q(n), b(n))-restricted solution verifier is a solution verifier which for inputs 

x of length n uses at most  ~(n) r andom bits and queries at most  4(n) blocks of  length 
/~(n) from s and n, where the starting positions of such blocks are all congruent  one 

modulo/~(n) 1 and ?(n), O(n), and/~(n) are integral functions such that  P(n)=(9(r(n)), 

dl(n) = •(q(n)), and/~(n) = (9(b(n)). 

Definition 4.1. Let R be a p-relation and E be an encoding-scheme. Then (R, E) is in 

PCS(r(n), q(n), b(n)) iff there exists an (r(n), q(n), b(n) )-restricted solution verifier V such 

that 

(i) For all x, yeZ'* with ( x , y )~R  there exists a proof  nx, y such that 

Prob~[ V(x, ~, E(y), nx, y)= ACCEPT] = 1, 

(ii) For all x, s e X *  such that s is not ¼-close to the encoding E(y)  o f  a solution y e R ( x )  

every proof  n satisfies 

Probe [- V(x, r, s, n) = ACCEPT] < ¼. 

The next proposi t ion establishes the intuitive idea that solution verifiers are at least 

as powerful as ordinary verifiers. 

t That is, we assume that the membership proof n and the solution s are partitioned into blocks of length 
/~(n) and the verifier may read at most ~(n) of these blocks. 
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Proposition 4.2. Let R be a p-relation and E be an encoding-scheme, and let L denote the 
language defined by x e L if and only if R (x) 50.  Then (R, E)~ PCS(r(n), q(n), b(n) ) implies 
LEPCP(r(n), q(n). b(n)). 

4.3. Arithmetization 

The concept of arithmetization of the intrinsically Boolean process of computation 
by using multivariate polynomials was introduced simultaneously and independently 
by Bahai and Fortnow [-8] and Shamir [34]. It has been a key tool in determining the 
power of interactive proof systems culminating in the results IP = PSPACE [34] and 
MIP = NEXPTIME [10]. One reason for the dramatic success of arithmetization is 
that it opened the way for the application of a variety of algebraic concepts and 
methods, such as the degree of polynomials, interpolation and field extensions within 
complexity theory. 

In [8] Babai and Fortnow describe the technique of arithmetization in a very 
general setting. For our purposes, however, it suffices to restrict our attention to the 
arithmetization of Boolean formulas, in fact even to the arithmetization of conjunctions. 

A Boolean formula is an expression built from variables xl and their negations ~'~ 
using the operations v and A. A conjunction (disjunction) is a Boolean formula using 
only the operation ^ ( v ) .  A Boolean formula in conjunctive normal form, finally, is 
obtained by joining several disjunctions by the operator ^ .  

An arithmetic formula is an expression built from the constants 0, 1 and variables x~ 
using the operations +,  - and . An arithmetic formula represents a multivariate 
polynomial function over any field in the obvious way. 

The arithmetization of a Boolean formula is obtained by replacing every negated 
variable ff~ by 1 -  x~, every conjunction ~ A j3 by ~-p, and every disjunction ~ v/~ by 
1 - ( 1 - ~ ) ( 1  -/ /) .  One easily checks that a Boolean formula B has a satisfying assign- 
ment (an assignment such that the formula evaluates to true), if and only if its 
arithmetization A(B) is not identically zero. Even more is true. Considered as a poly- 
nomial over D: z the value of A (B) coincides with the value of B (identifying 0 with false 
and 1 with true). 

Recall that the input of a 3SAT-problem is a Boolean formula in conjunctive 
normal form, in which every disjunction (usually called a clause) contains exactly three 
(potentially negated) variables. In the following we always assume that the input of 
such a satisfiability problem contains exactly n clauses C1 . . . . .  Ca using m variables 
xl, ..., x,,, where without loss of generality (by adding dummy variables or clauses) we 
may also assume that n--m. 

The arithmetization c£(x)=((~1 x) . . . . .  (~,(x)) of a satisfiability problem C1 A ... A Ca 
is obtained by letting C~ be the arithmetization of the complement of the ith clause. 
Then the following observation is immediate. 

Observation 4.3. A vector a~D:"2 corresponds to a satisfyin9 assignment of C1 A ... A Ca 
if and only if ~(a)=((~l (a) . . . . .  C,(a)) is identically zero. 
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Despite its simplicity Observation 4.3 forms the basis of the proof of 
N P- - P C P ( log  n, 1). In particular, it enters the proof at two places. In the next section 
we will use it to develop a (n 3, 1)-restricted verifier for 3SAT, while in Section 4.6 it is 
used to show that 3SAT is contained in PCP(Iog n, poly(log n)). 

4.4. NP~_PCP(poly(n), 1) 

In this section we will show that 3SAT has an (n 3, 1, 1)-restricted solution verifier, 
thereby establishing that NP is a subset of PCP(poly(n), 1). 

While at first sight the existence of any polynomial time verifier for 3SAT reading 
only a constant number of bits from the proof seems rather surprising (even if we allow 
access to an arbitrary number of random bits), such a verifier can in fact be quite easily 
constructed from the arithmetization of the previous section. The key idea here is that 
testing whether a given vector xE Dz~ is identically zero can easily be done by choosing 
a random vector re U:~ and considering the product xTr. While this product is always 
zero if x = 0, it is nonzero with probability ½, whenever x :~ 0. 

The only other observation we need is that the product of the arithmetiz- 
ation (t~(x) . . . . .  C,(x)) of a satisfiability problem with a vector rEU:~ can be 
written as 

r,d,lx)=c(r)+ Y x,+ y,  ,xj+ x,x x , 
i = 1 I~$1 (r) (i,j)~S2(r) (i,j,k)eS3(r) 

where the sets Sl(r), S2(r), S3(r) and the constant c(r) depend only on the given 3SAT 
formula and the vector r, but not on the assignment x. In particular, this shows that if 
for some fixed assignment aEDz~ the verifier would have some 'magical' access to the 

sums ~i~s,a~, ~(i,j)es2alaj and ~(i,j,k)es3alajak for given sets Sx, $2 and $ 3 ,  resp., it 
would indeed need to make only a constant number of enquiries to decide whether a is 
a satisfying assignment or not. 

The rest of this section is devoted to turning these rough ideas into a precise 
description of an (n 3, 1)-restricted verifier. We start with some notations. For a vector 
aEB:~ we define three linear functions as follows: 

A'Dz~U:2, A(x):= ~ alxl, 
i = 1  

n2 

i = 1  j = l  

C' ~3----~ []22, C(z):= ~ ~ ~ alajak2ij k . 
i = l j = l k = l  

The verifier interprets every proof n as n=A/~(~, where A has length 2" and is 
considered as a function ,4: ~ F 2 .  Similarly, /~ and (7 have length 2 "2 and 2 "3, 
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respectively, and are interpreted as functions / 3 : . 2  .3 ~2 " ~ 2  and (~: ~2 ""~2" Ideally, 
A, B, C correspond to the functions A, B and C from above, defined with respect to 
some vector aeQ:~ corresponding to a satisfying assignment. 

The verifier needs to achieve two tasks: 
(A) Verify that A, B, C are what they are supposed to be, namely linear functions 

defined with respect to the same vector ac~:~, and 
(B) verify that this vector a corresponds to a satisfying assignment. 
We first consider task (A). By reading only a constant number of bits from the proof 

7t it is clearly impossible to verify that A,/~, and C are linear functions. (Assume for 
example A differs from a linear function in just one bit. So the verifier can detect this 
with probability one only if it reads all bits from ,4, and with high probability only by 
reading a substantial fraction of all bits.) So the best we can hope for is to assure that 
,4 corresponds to a linear function at all but a constant fraction of ~:~. We make this 
precise as follows. Let F and G be two arbitrary finite fields. Two functions f, g : F---,G 
are called 6-close, iff the number of vectors x~F for which f ( x )=g(x )  is at least 
(1-8) IFI .  Using the language of probability theory, the later condition can also be 
written as 

Prob~[-f(x) = g(x)] ~> 1 - 6 .  

We will henceforth use this notation quite often. (Note that correctly we should write 
P ro b~ , v [ . . . ]  instead of Prob~E.--], where X~R F denotes a random element chosen 
uniformly from F. We use the short notation for conciseness whenever there is no risk 
of confusion). 

During the last few years the problem of detecting whether a given function is 
6-close to a polynomial of some given degree has been intensively studied. In 
Appendix B we give an account of the results obtained. There we also prove the 
following lemma. 

Lemma B.1. Let 6<13 be a constant and let g: ~:"2~:2 be a function such that 

Probx.y[0(x) + g(Y) ¢O(x + y)] ~< ½ 6. 

Then there exists he~-"2 so that the functions g(x)=hTx and 0 are J-close. 

With Lemma B.1 at hand, a linearity test is easily designed. 

LINEARITY TEST 
t n Pick x, x ER 11:2, 

verify that A(x) + A(x') = A(x + x'). 

Pick y, Y'eR ~:~2, 
verify that /3(y) +/~(y') =/3(y + y'). 

Pick z, Z'~R ~:~3, 
verify that C'(z) + C(z') = C(z + z'). 
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Observe that  Lemma B.1 immediately implies that if at least one of the functions 
,4,/~ and (~ is not b-close to a homogeneous  linear function, then LINEARrTV TEST fails 
with probabil i ty at least ½6. Repeating this test a constant  number  of times we can 
therefore push the failure probabil i ty arbitrari ly close to one. 

Corollary 4.4. Let 0 < b < a  1 be a fixed constant. Then there exists a constant k=k(b)  
such that, if there do not exist vectors a~U:"2, b~:n2 ~, and ce~:~2 ~ so that A is b-close to A, 
is b-close to B, and C is b-close to C, where A, B and C are the functions given by 
A(x) = arT, B(y)= bTy, and C(z)= CTZ, resp., then with probability at least 1 - 3  at least 
one of k calls of LINEARITY TEST fails. 

To conclude task (A), it remains to assure that the vectors a=(ai), b=(b~j), and 
c = (Cijk) of Corol lary 4.4 are consistent, i.e. satisfy bij = alaj and Cljk = a~ajak. Observe 
that if for x, x'eD:"2 we let x o x' denote  the vector ye~:~ 2 given by y~j=xi'x~, then the 
functions A(x)=arx  and B(y)=bry  satisfy 

A(x ) .A(x ' )=B(x~x ' )  for all x, x'eD:~ (2) 

if and only if b=ao a. Similarly, if for xe[]:~ and yeD:~ ~ we let x o y  denote  the vector 
ze  []:~3 given by zij k = X i " Yjk, then A(x) = arT, B(y) = bTy, and C(z) = cTz satisfy 

A(x ) -B(y )=C(xoy )  for all xeD:~ and yeV:~: (3) 

if and only if c = a o b. 
In principle, (2) and (3) are natural  candidates for a test whether  the functions A, B, 

and ~" are consistent. In the analysis of such a test one problem occurs, however. 
For  x, x 'e~ I:~, for example, the vector x o x '  is not a random element from ~ .  So of 
hand we cannot use the 6-closeness of /3  and B to bound Probx.x, [/~(x o x ' ) =  B(x o x')] 
by 1 - 6 .  

We resolve this problem by using so called self-correcting functions. (This not ion 
was introduced independently by Lipton [26] and Blum et al. [12]. For  more 
information on this topic we refer the interested reader to these articles.) 

SELF-CORRECTING FUNCTIONS 

SC-,4(x): Pick rERD:~, return A(r+x)--A(r) .  
SC-/~(y): Pick r~R~:~ 2, return B(r+y)--B(r).  
SC-(~(z): Pick r~RU:~ 3, return C(r+z) -C(r ) .  

Note  that Sc-/T(x), SC-/3(x) and SC-C(x) are random functions which is not 
reflected in the notation. 

Observation 4.5. If A is b-close to a linear function A" ~:~D:2, then 

Prob[SC-A(x)= A(x)] >>. 1 - 2 6  Jor every x~:~. 

Analogous results hold for IB and C. 
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Combin ing  the ideas from above  with the self-correcting functions we can now state 
a consistency test f o r /~ , /~  and (~. 

CONSISTENC Y TEST 

Pick ' " X , X  ER ~22, 

verify that  SC-A(x ) -SC- ,4 (x ' )=  SC-/~(x o x'). 
712 Pick x~R [F~, Y~R 1:2, 

verify that  SC-/~(x). SC-/~(y) = SC-C(x  o y). 

Lemma 4.6. Let 0 < b < 2J4 be a f i xed  constant. Then there exists a constant k = k(b) such 
that, i f  there does not exist a vector a~ ~:"2 so that A is b-close to A (x)= aTx, B is b-close 
to B ( y ) = ( a  o a)Ty, and t~ is b-close to C(z )=(a  o a o a)Tz, then with probability at least 

1 - b  at least one of  k calls Of LINEARITY TEST and CONSISTENCY WEST fails. 

Proof.  By Corol la ry  4.4 we may  assume that  ,4, B, and t~ are b-close to linear 
functions A(x)=aXx ,  B ( y ) = b X y  and C(z)=cTz.  If b = a o a  and c = a o b ,  there is 
nothing to show. So we assume without  loss of generali ty that  b # a o a. (The case that  
c # a o b is treated similarly.) Recall that  for vectors a ¢ & e ~  one has 

Probx~, ~7 [ ~Tx 4: ~Tx] = ½. (4) 

In part icular,  this implies that  matrices fl :/:/~slF~ 2 satisfy 

P r o b ~ ,  ~ [flTx :~ flTX ] >~ ½. (5) 

Combin ing  (4) and (5) we deduce, that  if b # a  o a then (considering b as a matrix) 

Prob,,~,~, ~ [xT(a ° a)T x ' ~ xV bx '] ~ 144. 

As xT(ao a ) T x ' = A ( x ) . A ( x  ') and x T b x ' = B ( x o x ' ) ,  this together  with the b-closeness 

and Observa t ion  4.5 implies 

Prob~,,,~, ~ [SC-,4(x) • SC-A(x ' )  # SC-/~(x o x ' ) ]  ~> ¼ -  66 > 0, 

concluding the p roof  of L e m m a  4.6. [] 

It remains to design a procedure  which enables the verifier to achieve task (B). This 
procedure,  however,  is an immedia te  consequence of Observa t ion  4.3 and the remarks  
at the beginning of this section. 

SATISFIABILITY TEST 

Pick rbR ~ ,  compute  c = c(r)e ~2, S1 = SI (r)~ ~ ,  Sz = $2 (r)~ ~ ,  and 
n3 S3=S3(r)e~:2 , verify that  c + A(S1)+ B(S2)+C(S3)=O.  

Lemma 4.7. Let  b > 0  be a f i xed  constant and assume that A is b-close to A (x )=aTx ,  
is b-close to B ( y ) = ( a  o a)Ty, and ( is b-close to C(z )=(a  oa o a)Tz. Then there exists 
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a constant k = k ( 6 )  such that with probability at least 1 - 6  at least one of  k calls o f  

SATISFIABIL1TY TEST fails if the vector a does not correspond to a satisfying assignment. 

Combining Lemmas 4.6 and 4.7 concludes the proof of the desired result. 

Theorem 4.8. There exists a constant k such that repeating LINEARITY TEST, CONSISTENCY 
TEST and SATISEIABILITY TEST k times and rejecting whenever one of  the tests fails, forms 

a (n s, 1)-restricted verifier for  3SAT. 

Corollary 4.9. NP_~ PCP(poly(n),  1). 

If we consider the function A not as part of the proof, but as an (encoded) 
solution, Theorem 4.8 also implies the existence of a (n a, 1, 1)-restricted solution 
verifier. 

Corollary 4.10. Let Eo denote the encoding scheme given by Eo : y~-~ {yTz}zey/Yl. Then 

(R3sAT , Eo)6PCS(n 3, l, 1). 

4.5. Low degree tests and low degree extensions 

Despite its relative simplicity the proof of N P =  PCP(poly(n),  1) of the previous 
section is not only just an example of a proof system which can be checked 
probabilistically by reading only a constant number of bits, it also contains already 
the major ideas required in the remaining (more technical) part of the proof of 
Theorem 2.2. Before we continue with this proof we will elaborate these ideas more 
clearly. 

Traditional membership proofs for an NP-problem usually consist just of a 3- 
coloring, a satisfying assignment, etc. While these proofs are very concise they 
are at the same time also 'unstructured'  in the sense that every single bit matters. 
Therefore, in order to check the proof, one really has to read the whole proof. 
As we have seen in the previous section, the picture changes if the proof contains 
instead of simply, say, a satisfying assignment a, all values of the function x ~ aTx. 

Not only does the 'structure' inherent to such a proof allow to check its correctness 
(more precisely, the correctness of all but a 6-fraction of the bits) by quering 
only a constant number of bits, but at the same time such a proof contains 2" bits of 
(useful) information (which can be used to check that the vector a is a satisfying 
assignment). 

A main drawback, however, of encoding a vector a by the homogeneous linear 
function aVx is that the obtained proofs are of exponential size and therefore require 
poly(n) many random bits for checking it. The aim of this section is to introduce 
a better encoding scheme. This is based on polynomials, whose degree is allowed to 
depend on the length of the encoded vector. 
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The first problem which arises is that every straightforward generalization of the 
linearity test of the previous section to polynomials whose total degree depends on 
n would have to read more than constantly many bits - -  as every polynomial of 
degree d is determined only by d + 1 points. So, in order to define a test procedure for 
arbitrary polynomials one has to add a new idea. In fact, one which was also 
contained in the proof of the previous section works here as well. 

A straightforward way of testing whether a vector a is identically zero would be to 
read every bit and check whether it is zero. By adding additional information (the 
values of the function x w-~ aTX), however, we were able to avoid reading every bit of a. 
To construct a tester for polynomials whose degree is small compared to the size of the 
field (in the sequel such polynomials are simply called low degree polynomials) we 
proceed similarly. To formally state such a test procedure, the following theorem, 
whose proof is contained in Appendix B, is extremely useful. 

Theorem B.2. Let 0 < 6 <  1144sl and d, m e n  be constants and p>>-64d 3 a prime. Let 
m n - m  r r - d +  1 0 : ~:'~ ~ : p  be a function, and let T: g:p x r p--*u-p be a function such that the degree 

d polynomials P~,h over g:p given by P: , ,h( t )=~+~ T(x,h)," t ' -1 satisfy 

Prob~.h,,[ P~.h(t)=O(X + th ) ] >1 1 --16.  

Then there exists a (unique) polynomial 9" f~--*gzp of total degree d so that g and 0 are 
&close. 

With Theorem B.2 at hand, it is now straightforward to design a test procedure if 
we provide it with access to a table containing all values of the function T. 

LOW DEGREE TEST 

Repeat -- 2/log(l -- 6/8) times: 

• Pick x, h ~R U:p and t ~R D:p, 
• if x-a+ 1 T(x, h)i" t i-  x ¢O(x  + th) then REJECT. .¢.., i = 1 

The following theorem shows that the procedure LOW DEGREE TEST he desired 
properties. 

Theorem 4.11. Let 0 < 6 < ~ 1 1  448 and d, m 6 N  be constants and p~>64 d 3 a prime and 
suppose the procedure LOW DEGREE TEST has access to the values of  a function ~: ~:p ~ U:p 
and to a table T containing I Ozpl 2" entries of  size (d + 1)[-log II:~l-]. Then the followin 9 is 
true: 

• I fO: ~-"~O:p is a polynomial of total degree d then there exists a table T =  Tg such 
that the procedure LOW DEGREE TEST always accepts. 

• I f  on the other hand 0 is not 6-close to such a polynomial then LOW DEGREE TEST 
rejects with probability at least ~4, for all tables T. 

• LOW DEGREE TEST queries only (9(1) values from ~, reads (9(1) entries from T, and 
uses (9(m log I Dzp]) random bits. 
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While the procedure Low Degree Test provides us with a test of whether a given 
function is 6-close to a low degree polynomial, in order to apply it we will have to 
describe a way to transform an arbitrary vector into a low degree polynomial. This is 
done by the so called low deyree extensions. Let F be a finite field, H be an arbitrary 
subset of F and f :  Hm~{0, 1} be a function. Then there exists a unique polynomial 
f ' :  Fm--*F of degree at most I HI in each variable that agrees with f on H m. Namely, the 
one given by 

z fin f '  (xl . . . . .  Xm) = 

(h . . . . . .  hm)En m i= l y~hi  hl-  Y " f (hl 
hm). 

yeH 

To exhibit the usefulness of these low degree extensions more clearly, assume that 
a is an arbitrary string of bits of length n. Let p = O(poly(log n)) be a prime number, let 
H G Yp be an arbitrary subset of size In[ = F log n "], and let m = [- log n/log log n ]. Then 
[Hlm~n and we can therefore interpret a as a functionfa from H "  to {0, 1}. If we now 
require a proof n to contain all values of the low degree extension f'a (instead of simply 
the string a) the proof has length poly(n) (instead of just n), but now contains the 
information a in a structured form, whose 'correctness' can be checked by the Low 
Degree Test from Theorem 4.11 by using (9(m log lFv[)= (9 (log n) random bits and 
querying only (_9(1) values of size log 10:pl = (9(poly(log n)) of this proof and (9(1) values 
of size m lHI log ] Fpl = (9(poly(log n)) of an additional table also of size (9(poly(n)). This 
approach will be used heavily in the following section. 

4.6. (R 3 SAT, El )E PCS(Iog n, 1, poly(log n)) 

In this section we will show that every language in NP has a solution verifier that 
uses only (9(log n) random bits and queries only (9(1) blocks of size poly(log n) from the 
proof rt and the solution s. 

A preliminary result (querying poly(logn) instead of (9(1) blocks) was first 
proved by Babai et al. [9], cf. Section 4.6.1. The main tools used for proving this 
result are an extended version of a test designed by Lund, Fortnow, Karloff and Nisan 
[27] (henceforth called the LFKN-test), which is described in more details in 
Appendix A, and the low degree extension of functions, introduced in the previous 
section. 

4.6.1. NP_~ PCP(log n, poly(log n)) 
We will show that 3SAT is in PCS(log n, poly(log n), poly(log n)) which yields the 

desired result for NP because of the NP-completeness of 3SAT. 
Let S = C I ^ C 2 ^ ' " ^ C ,  be a 3SAT instance with variables ~ and let 

cg=(~" 1 . . . . .  C,) denote the arithmetization of S as described in Section 4.3. Observe 
that ~ contains at most four different types of polynomials. Namely, PI :=xyz, 
Pz:=Xy(1-z),  P3 : = x ( 1 - y ) ( 1 - z )  and P 4 : = ( 1 - x ) ( 1 - y ) ( 1 - z ) .  According to these 
four polynomials we partition the set of all clauses into sets cgj, j = 1, 2, 3, 4 such that 
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C ~ j  if and only if C is of type Pj. Then - -  as already shown in Observation 4.3 
- -  a function W: ~ { 0 ,  1} will be a satisfying assignment of S if and only if for all 
j =  1,2,3,4: 

Pj(W(x),  W(y), W(z))=0 whenever there exists a C~Cgj 

with (~ = Pj(x, y, z). (6) 

For j = 1, 2, 3, 4 we define a function Z j: ~3--*{ 0, 1} with Zj(x, y, z )=  1 if there exists 
a clause C ~ j  with variables x, y and z such that C is of the type Pj. Otherwise gj has 
value 0. Using the functions Z j, we can reformulate condition (6) as follows: 

Zj(x,y,z) 'Pj(W(x),  W(y), W(z))=0 for all ( x , y , z ) ~  3. (7) 

Thus, the problem of verifying that W is a satisfying assignment for S is reduced to the 
task of checking that a certain function is identical zero. At this point Babai et al. [9] 
extended a test of Lund et al. [27] (which tests whether a certain sum is zero). This 
extension (as well as the original LFKN-test) is described in detail in the Appendix A. 
Here we only state the result. 

Theorem A.2. Let f: g:"-*F be a polynomial of degree at most d in every variable with 
F being a finite field such that [F[ ~> 4m (d + [H[), where H ~_ F is an arbitrary subset ofF. 
Then there exists a procedure EXTENDED LFKN-TEST, which has access to f and an 
additional table T containing (9 (d[ F[ 2m) values each of length r (m + 1) log [ F[ 7, that has 
the following properties: 

• I f f  satisfies the equation 

f ( u ) = 0  for all u~H" (8) 

then there exists a table T= T I such that EXTENDED LEKN-TEST always accepts. 
• l f f  does not satisfy Eq. (8) then EXTENDED LFKN-TEST rejects with probability 

at least a4 for all tables T. 
• EXXENDED LFKN-TEST queries f at only five points, randomly chosen from F", reads 

(9(md) entries from T, and uses (9(mlog [F[) random bits. 

In order to apply Theorem A.2 we interpret a truth assignment no longer as a vector 
of length n=[~V'l over IF2, but instead we identify ~ with H"  and encode the low 
degree extension of a satisfying assignment - -  as indicated at the end of the previous 
section. More precisely, let p be the smallest prime such that p ~>(log n) 3, let F =  IFp 
and let H~_F be an arbitrary subset of order IHl=[ - logn-  ]. (Note that p can be 
computed in polynomial time and that (log n)3<~p<~2(logn)3.) Furthermore, let 

m=rlogn/ loglogn ~ and observe that IHl'>~n. So we may identify U with H",  
adding some dummy variables, if necessary. 

We then extend every truth assignment W: H "~{ 0 ,1 }  and the functions 
z j :H3"~ {0 , 1}  introduced above to polynomials W':F"--*F and z~:F3m---,F of 
degree at most ]HI in each variable. For every j = 1 , 2 , 3 , 4  the function 
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f~(x, y, z) := Xj(x, y, z). P j(W'(x), W'(y), W'(z)) is then a polynomial over F 3,. of degree 
at most 4lHl=(9(logn) in each variable. 

With the help of Theorem A.2 the construction of the desired (log n, poly(log n), 
poly(log n))-restricted solution verifier is now easily completed. The verifier interprets 
the solution s as s=  if', where l~ is considered as a function f f /:F3m~F. Ideally, 
if" corresponds to the low degree extension W' of a truth assignment W: H"--. {0, 1}. 
Using the Low DEGREE VEST of the previous section the verifier checks first that if/is at 
least 6-close to a polynomial of degree at most IH I in every variable. Recall that in 
order to perform this test, the verifier needs to read only (9(1) entries from if', but 
requires access to an additional table T. 

The verifier therefore interprets every proof lz as ~z = ABIB2B3B4, where/1 and/~i 
are the tables of Theorem 4.11 (with respect to the function 1~) and of Theorem A.2 
(with respect to the function fi), respectively. 

The verifier needs to check two things: 
(A) that if" is 6-close to a polynomial of degree at most ]HI in each variable and 
(B) that condition (7) is satisfied. 

Task (A) is achieved by the procedure LOW DEGREE TEST of the previous section (which 
queries if" and A). Task (B) on the other hand is achieved by using the procedure 
EXTENDED LFKN-TEST of Theorem A.2, which queries the functionsfj and the tables/~j. 
The functions X) depend only on the 3SAT instance S. Therefore these functions can 
be computed by the verifier. The five queries to the function J~=Zj 'Pj(ff ' ( ' ) ,  I~(.), 
I~(.)) needed for the procedure EXTENDED LFKN-TEST can be replaced by fifteen queries 
to the function I~. By choosing the constant 6 sufficiently small then if test (A) passes 
we know with high probability - -  say at least ~ - -  that all these fifteen values of if/and 
therefore also the five values of J~ are correct. Since the procedure EXTENDED LFKN-TEST 
finds an error in Eq. (7) with probability at least ] in total we have that the error 
probability of the solution verifier is at most ½. By repeating the whole process twice 
this error probability becomes at most ¼ as required. 

We still have to compute the resources consumed by the verifier. For applying 
the procedure LOW DEGREE TEST a constant number of times the verifier needs to 
read (9(1) values from if" of length (9(loglFI) and (9(1) values of length 
(9(m]HI log lFl)=(9(poly(logn)) from the table ,4. The total number of random bits 
needed by the verifier for the LOW DEGREE TEST is (f(log[Fl)=(9(logn). For the 
EXTENDED LFKN-TEST the verifier has to read m]Hl=(9(poly(logn))entries of length 
(9(m log IF I) = (9(log n) from the tables/3~. The number of random bits used for this test 
is again (9(m log IFI)= (9(log n). 

Therefore we have the following theorem. 

Theorem 4.12. Let El denote the encoding scheme defined as.follows. Given a vector 
x~:"2, interpret x as a function x : H"~Zp ,  where p, m, and H are defined as above, and 
let Ea(x): Uz~'~zp be the low deyree extension of x. Then 

(R3 SAT, Ex )~PCS (log n, poly(log n), poly(log n)). 
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Corollary 4.13. NP ~ PCP(log n, poly(log n)). 

In fact we have shown even more. Namely, recall that the procedures Low Degree 
Test and Extended LFKN-Tes t  read only (9(1) values from I~. So we can formulate 
the following slightly stronger version of Theorem A.2, which we will need in the next 
section. 

Corollary 4.14. Let E1 denote the encoding scheme from Theorem 4.12. Then there 
exists a (log n, poly(log n), poly(log n))-restricted solution verifier for (RasAT, El) which 
queries the solution string s only (_0(1) times. 

4.6.2. (R3sAx, EI)~PCS(log n, 1,poly(log n)) 
We will now improve the result of the last section as follows: the verifier is 

still allowed to read poly(logn) bits from a proof rt but these bits are now 
required to be consecutive bits of r~. The idea behind the proof  of this result is 
quite simple: using the proof  rt that the (log n, poly(logn),poly(logn))-restricted 
solution verifier V of Corollary 4.14 would read, we construct a new verifier 
V that uses a proof ~ which contains for every possible random string z the 
sequence of poly(logn) bits that V would read from n on input x and random 
string T. For the verification process the verifier I7" reads a consecutive sequence 
of poly(logn) bits from ~ that depends on z and uses these bits to determine 
what the verifier V would have answered if it had received these bits as answers for his 
queries to zc. 

Theorem 4.15. Let E1 denote the encoding scheme as defined in Theorem 4.12. Then 

(RasAT, E1)~PCS(log n, l, poly(log n)). 

Proof. Let V be the (log n, poly(logn),poly(logn))-restricted solution verifier from 
Corollary 4.14 that queries bits in a proof  7r of length l=(9(poly(n)). Let r be the 
smallest prime larger than log 2 l and let G be the field with r elements. We may assume 

that log I and log log I are integers (otherwise elongate rr by a suitable number of bits). 
Set m := [" log// log log I ]. Let I be a subset of G of size log 1. Then we may interpret the 
proof  zc as a function it: Imp{0,  1}. Let rt': G"~G denote the low degree extension of 
~z which has degree at most II] in each variable. Let q(n)=(9(poly(logn)) denote the 
number of bits that are queried by the verifier V from 7r. Then for a0, al . . . . .  aqc,)eG" 
we define P~ .......... q,,,:G~G" to be the unique polynomial of degree q(n) that 

interpolates the points {(t, al)}i=o. '  q~") 
The verifier l? now assumes that the proof ~ consists of the low degree extension n', 

a table T needed for the Low Degree Test of n' and a table of the coefficients of all the 
polynomials n'(P~o ...... q,,,) where a0 is an arbitrary value of G" and al ... . .  aq~,) are 
positions that can be queried by V. 
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The verifier I ? proceeds as follows: first it uses the procedure LOW DEGREE TEST to 
make sure that the tabulated values ~' are 6-close to a polynomial of total degree mill. 
If this test passes then it determines which positions of ~ the verifier V would have 

queried for a random string ~. Let al . . . . .  aqt.) denote these positions. The verifier now 
chooses a random position ao and computes the polynomial P ............... . It then 
queries the coefficients of the polynomial p : = n ' ( P  ........ q,.,) from the proof  ~ and 
checks that V would have accepted if the answers to its queries al . . . . .  aqt.) had been 

p(1) . . . . .  p(q(n)). Finally, V chooses a random point t ~ G - { O  . . . . .  q(n)} and tests 
whether p(t) = rT(P.o .......... (t)). 

We now show that this verification process enables the verifier I7" to detect 
whether i f / is  a proper encoding of a satisfying assignment of S with the desired 
probability. 

If if" is a proper encoding of a satisfying assignment of S then there exists a proof 
n such that the verifier V accepts with probability 1. Thus if rt consists of n', the table 
T needed for the LOW DEGREE TEST and the correctly tabulated coefficients of the 
polynomials g ' (P ........ ,,.,) then the verifier I? accepts with probability 1. 

Let us now suppose that W is not a proper encoding of a satisfying assignment of S. 
Then for an arbitrary proof  ~ the verifier V accepts with probability at most 14. The 
verifier 12 therefore only needs to detect that the values p(1) . . . .  , p(aqt,)) are wrong with 
probability at least ½. Then for an arbitrary proof  rt the verifier 12 gives the correct 
answer with probability at least ¼ and by repeating the whole verification procedure 
five times this probability can be increased to ¼ as desired. 

The final test p ( t )=  r~'(P ............ (t)) assures that if n' is correctly tabulated then 
p equals n'(P ............ ) with probability >~ 1 - m l l ] / I G ]  >~¼. The point P ............ (t) is 
uniformly distributed over I G I since ao and t are randomly chosen points from G. The 
low degree test of ~' has shown that the tabulated values are 6-close to the low-degree 
extension n'. This implies that the right hand side of the final test will be correctly 
evaluated with probability ~> ¼. Therefore if the values p (1) . . . . .  p (aq ~,~) are not correct, 
this will be detected by the verifier with probability >--1 2 and, as already shown above, 
this suffices to detect with probability > a  that I~ is not a proper encoding of 
a satisfying assignment of S. 

We now show that the consumed resources are as stated in the theorem. For 
the application of the procedure LOW DEGREE TEST to the function if' the verifier 
needs to make (9(1) queries to ~' of size loglGl=(9(poly(logn)) and (9(1) queries 
to the table T of size (9(mll]log[GI)=(9(poly(logn)). Moreover the number of 
random bits needed for the cow DEGREE TEST is ¢(mlogIGI)=(9(logn).  For gene- 

rating the value aoeG"  the verifier needs (J(mloglGI)=(9(logn) random bits. To 
query the coefficients of the polynomial p one query is made of length 

¢(q(n)log I G[)=---(9(poly(logn)). Finally to generate the value t eG the verifier needs 
(9(logl G I)= ~9(log n) random bits and makes two additional queries to the proof r~ for 
the final test. 

Thus in total (9(1) queries of length at most (9(poly(log n)) are made to the proof rt 
The number of random bits needed for the whole verification process is (9(log n). [] 
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4.7. Composing verifiers." recursive proof  checking 

In this section we conclude the proof  of Theorem 2.2. A major tool for doing that is 
Lemma 4.18 which shows how two verifiers can be composed to form a new verifier 
which queries fewer bits. 

In order to state and prove this lemma we need some technical prerequisites. 
Recall that so far we have used just two different encoding schemes. Namely, 
Eo:y~--~{yTz}z~F~Yl and the encoding E~ of Theorem 4.12. For the composition of 
proof systems it will be more convenient to use slight modifications of these encodings. 
Informally speaking these are given by partitioning a given string y first into a (con- 
stant) number of substrings and then using the original encoding scheme to encode 
each of these substrings. For a formal definition let E be an arbitrary but fixed 
encoding scheme, de ~ a constant. We define a new encoding E' with respect to d by 

E ' ( y ) = ( E ( y l )  . . . . .  E(ya)),  (9) 

where y =Y l  "'" Yd and lYxl . . . . .  lYal- 
It is not difficult to show that for Eo and E1 the dashed encoding schemes E~ and 

E'~ behave like the original ones. (Note that formally, the encodings E~ and E'~ are 
only defined for values of n divisible by d. As we may always assume that R3SAT 
consists only of those formulas whose number of variables satisfies such a condition 
this is only a technical restriction which we omit for ease of notation.) 

Corollary 4.16. For all constants de  ~ one has 

(R3sm, E~)ePCS(n 3, 1, 1) and (RasAT, E'I)ePCS(logn,  1, poly(log n) ). 

Proof. We first show that (RasAT , E~)ePCS(n3,1,1). Let V0 be the (n3,1,1) - 
restricted solution verifier from Corollary 4.10. (Recall, that with slight abuse of 
notation we assumed that n denotes the number of variables and the number of 
clauses.) We construct a new verifier V' o as follows. IF o interprets the solution as 

s=(s l  . . . . .  sa) and the proof as (e,n), where the si and e are viewed as functions 
si: F~/a~:2 and e" [F~--*[F2. The new verifier V' 0 first uses the old verifier Vo to check 
whether e is close to an encoding Eo(y') of a string y' and, if so, whether n is a proof  
that y'  is a solution for x. If Vo rejects then V' o also rejects. If  on the other hand Vo 
accepts, then V' o proceeds by checking whether s is close to an encoding E'o(y) for 
a string y and, if so, whether also y = y'. 

These checks are performed by first using the tester LINEARITY TEST of Section 4.4 to 
verify that sl . . . . .  sd are all close to homogeneous linear functions, and then calling the 
procedure CONSISTENCY TEST l, which verifies that y=y ' .  

CONSISTENCY TEST I 

Pick wieR U:"z/a and let w=wa ... w~, 
verify that e(w) = Sl(Wa) + . . .  + sa(wu). 
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By repeating LINEARITY TEST a constant number of times without failure we may 
assume (cf. Lemma 4.4) that with probability l - ~  each of the functions si is (1/8d)- 
close to homogeneous linear functions yT W, for vectors Yl . . . . .  ydE ~:~/d. Let y = Yl ' "  Yn- 
I fy '  4:y, then y,V w ¢yTw for half of the vectors w~lF~z. So in this case CONSISTENCY TEST I 
fails, with probability at least 12_gl _ 1/8 =~ (the probability of choosing a w so that 
y'Tw 4:yTw minus the probability that e(w)¢yTw or at least one of the values si(wl) is 

different from that of the corresponding linear function). By calling CONSISTENCY TEST I 
a constant number of times the probability that no failure is reported even if y and y' 

are different can be reduced to less than 18. 
Combining these facts we observe that the probability that the verifier V~ accepts 

when it should not is bounded by ½ (the sum of the probabilities that V0 failed to reject 
a wrong solution or proof, that Linearity Test failed to reject an erroneous function, 
and that CONSlSTENCY TEST I failed to reject two unequal strings), so repeating V'o twice 
gives the desired result. 

To show that (R3sAT, E'a)ePCS(Iogn, 1,poly(logn)) we assume without loss of 
generality that n is such that [ H I " - l = n / d  and that the low degree extension a' of 
a satisfying assignment a is obtained by appending sufficiently many zeros. If we let 
Zj(x) denote the (unique) polynomial of degree [HI such that ;t~(J)= 1, while zj(h)= 0 
for all h e H \ j  and write a as a=al  . . . . .  ad, then 

d 

a'(x,y)= ~ )~j(x)'a;(y) for all xe[lzp, yE~rg -1. 
j = l  

The rest of the proof  follows tile lines of the one above. The only difference being 
that the linearity tester LINEARJTY TEST has to be replaced by the low degree tester LOW 
OECREE TEST of Section 4.5, and t,%" consistency test between two strings y and y'  is 
performed by the following procedure CONSISTENCY TEST IL 

CONSISTENCY TEST I! 

Pick x~0Zp and yeg:'~- 1, 
verify that e(x, y)=32~= 1 )~j(x).sj(y). 

The correctness follows similarly as above. (Use the fact that by a lemma of 
Schwartz [33] two different (multivariate) polynomials of total degree d can coincide 
only in dllFpl m- 1 points.) We omit the details. 

The key idea of recursive proof checking is to encode the verification procedure 
of one verifier as a Boolean formula. This will be done by using the following 
theorem of Cook, which he used in his famous proof  of the NP-completeness of 
satisfiability. 

Theorem 4.17 (Cook [14]). For every polynomial time Turing machine M there exist 
polynomials p(n) and q(n) and a Turing machine M' such that the following is true. For 
every natural number n the machine M' constructs in time p(n) a 3SAT-formula F~ 
containing variables Yl, . . . ,Yn and q(n) additional variables zi so that there exists 
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a satisfyin9 assignment y~ . . . . .  y.,  z~ . . . . .  Zqt,) for  FM with y~ =x~, i = 1 . . . . .  n, i f  and only i f  

M accepts the input x = x ~  ... x , .  

L e m m a  4.18. Let  ri(n), bi(n) be positive functions. I f ( R 3  SAT,/~)~PCS(rl  (n), 1, b I (n)) f o r  

some encodin9 scheme ff~ and E is an encodin9 scheme such that for  any constant de  [~ the 

encodin9 E '  9iven by Eq. (9) satisfies (RssAr, E ' )6PCS(r2 (n ) ,  1, b2(n)), then 

(R3sAT,/~)G PCS(r l  (n) + r z (poly(bl  (n))), 1, b2 (poly(bx(n)))).  

Proof.  Let L ~ N P  be an arbi t rary  but fixed language and let V1 be an (rx(n), 1, 

ba(n))-restricted solution verifier showing that  (R3sAT,/~)6PCS(rI(n) ,  1, bx(n)), which 
uses f l ( n ) = O ( r l ( n ) )  m a n y  r a n d o m  bits and queries da~l~ m a n y  blocks of  size 
[~a(n)=(9(b1(n)) from the proof. Every p roof  lz for V1 consists of, say vl(n) m a n y  
substrings of  length/~(n) ,  that  is rc = ( rq  . . . .  , r~l~,)) , where wi thout  loss of  generali ty 

vl (n) = dl" 2 ~""). 
By Theorem 4.17 we know that  for every fixed input x of length n and every fixed 

string z of length ia(n) there exists a 3SAT formula  Fx.~ containing variables 
qa~ . . . . .  qn, b,{.~ and Zl . . . . .  z~.) such that  V~ accepts for input  x, r a n d o m  string z and 
queried blocks q~ . . . . .  qdl, where q i = q ,  . . . . .  qii,~,), if and only if there exists an 
assignment  of  zx,...,zq~.~ such that  q l l  . . . .  ,qa~b,(n),Zl . . . . .  Zq(n) is a satisfying 
assignment  for Fx . ,  Wi thout  loss of generali ty we assume in the following that  

q(n)=[~l(n). 
By the second assumpt ion  there exists an (r2(n), 1, b2(n))-restricted solution verifier 

V2 which, given the 3SAT formula  Fx,~ as input, checks whether  a solution given as 

(sl . . . . .  Sd,,S) is ¼-close to an encoding 

( E(  q l 1 . . . . .  qa~ b~ ~.)) . . . . .  E qdl 1 ... qa~b~,) ), E (z l "" Zd~ b~,))) 

of a satisfying assignment  for Fx,~. 
With these nota t ions  at hand, we are now able to define a new verifier Va2 (which 

will be an (rl (n) + r2(poly(bx (n))), 1, bz(poly(bl(n))) ) -res tr ic ted verifier) as follows. V12 
interprets a p roof  as 

(el . . . .  , e~,(,),fx, Pl,f2, P2 . . . .  ). 

U p o n  reading an input x of  length n, the verifier V~2 reads a string z of r andom bits, 

[zl = fl(n), and computes  F . . . .  Then Vt 2 computes  the posit ions r l . . . . .  rd, which the 
verifier V~ would have read on input x and r a n d o m  string z, and calls Vz with input 
F . . . .  solution (e . . . . . . .  e .... f )  and p roof  p~. If V2 outputs  ACCEPT then V~2 accepts x, 

otherwise Vlz  rejects. 
To  see the correctness of V~E assume first that  x ~ L .  By assumpt ion  there exists 

a p roof  ~x=(rc7 . . . . .  n~,(.)) so that  the verifier Vt accepts for every r a n d o m  string z. In 
par t icular  this implies that  for all such z there exists an ass ignment  of z~ . . . . .  zi,,(.) and 
a proof  p, so that  the verifier VE accepts the solution (E(n~,) . . . . .  E(n,~,),  
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E(Zl . . . . .  zi,,c,~)), if rl . . . . .  rd, denote the positions which V1 reads in nx for the random 
string z. By letting 

ei=E(n~), i=1  . . . . .  vl(n), and f~=E(zl . . . . .  Zblt,)), zE~:'21~") 

we have thus constructed a proof for which V12 accepts with probability one. 
Finally assume that xCL. The probability that for a given proof n V~2 fails to reject, 

is obviously bounded by the sum of the probabilities that V1 fails to reject plus the 
probability that V2 fails to reject an unsatisfiable formula and/or an unsatisfying 
assignment. Hence, 

max Prob~,,, [ V12(x, z, z', n) = ACCEPT] 
it 

~< max Prob, [ V1 (x, z, n) = ACCEPT] 
/t 

+ m a x  m a x  Prob~, [ V 2 (x ' ,  "t", n ' )  = ACCEPT] 
x':R~sAHX') =O ~' 

<¼ 1 1 +g=2-  [] 

Theorem 2.2 is now an easy consequence of Corollary 4.16 and Lemma 4.18. 

Proof  o f  Theorem 2.2. From Corollary 4.16 we observe that the requirements of 
Lemma 4.18 are satisfied with respect to the encoding scheme / ~ = E = E t  and the 
functions rx(n)= r2(n)=log n and bl (n)= b2(n)=poly(log n). We therefore deduce that 
(R3 SAT, El)6 PCS (log n, 1, poly(log log n)). 

Applying Lemma 4.18 once more, this time with respect to the encoding schemes 
/~=Ex and E=Eo the functions rx(n)=logn, bx(n)=poly(loglogn), r2(n)=n s, and 
b2(n)= 1, we obtain the desired result N P e P C P l o g  n, 1). [] 

4.8. A corollary: How to verify a theorem without even reading it 

In this final section we state an immediate corollary of the proof presented above. 
Even though no consequences of this result are (yet?) known, it is quite interesting and 
surprising. Essentially it states that all languages in NP can be recognized by verifiers 
which only read a constant number of bits of their input! That is, the modification 
from the definition of NP by polynomial Turing machines to verifiers is fully 
symmetrized as indicated in Fig. 4. More formally, a language verifier is a polynomial- 
time Turing machine with access to a string z of random bits, and a tape containing 
the length n of the input x. Furthermore the verifier has access to the input x and 
a membership proof ~ via oracles. 

Definit ion 4.19. A language L ~ Z* is in PCL iff there exists an encoding scheme E, 
a language verifier V that uses at most (_9(log n) random bits, and queries only (9(1) bits 



210 S. Hougardy et al./ Discrete Mathematics 136 (1994) 175-223 

[ input x / J  

oracle 

[ ]  I r a n d o m  bi ts  r f [ p roof  7r 

T y 

l 
ACCEPT/REJECT 

/ 

Fig. 4. A verifier for probabilistically checkable languages. 

from the input x and the proof zt such that 
(i) For all xEL there exists a proof nx such that 

Prob, [ V(E(x), z, nx) = ACCEPT] = 1, 

(ii) for all seZ* that are not 14 close to the encoding E(x) of an element x~L  every 

proof ~ satisfies 

Prob, [ V(s, z, z0 = ACCEPT] < ¼. 

The idea of considering classes of languages which can be checked by reading only 
a small portion of an (encoded) input and of an appropriate membership proof goes 
back to Babai et al. [9]. They used the phrase probabilistic proof systems with 
theorem-candidates and transparent proofs for such an approach. Phillips and Safra 
[-31] use the term input-efficient verifier. The following theorem is essentially contained 
in Arora et al. [4] and in Sudan [35]. 

Theorem 4.20. The class of languages which can be recognized by verifiers by querying 
only a constant number of bits from an (encoded) input and a (polynomial sized) 
membership proof equals the class of languages recognizable by nondeterministic Turing 
machines. That is 

PCL = NP. 

The proof of Theorem 4.20 hinges on the fact that in the proof of Theorem 2.2 we 
have in fact shown the following slightly stronger result. 

Corollary 4.21. There exists an encoding scheme E such that (R3sAT , E)ePCS(logn, 1, 1). 

Proof  of  Theorem 4.20. Let L be an arbitrary but fixed language in NP. According to 
Theorem 4.17 there exists for every n a 3SAT formula F. with variables x = (xl . . . . .  x.) 



S. Hougardy et al. /  Discrete Mathematics 136 (1994) 175-223 211 

and Y=(Yl . . . . .  Ypo~y~,)) such that for all x~{0, 1}" 

xEL if and only if there exists a y~{0, 1} p°*y~") such that F,(x,y) is true. 

Now consider the encoding scheme E and the solution verifier V of Corollary 4.21. 
Considering the first part  of the solution as input and the remaining part together with 
the old membership proof  as a new membership proof obviously concludes the proof  
of Theorem 4.20. [] 

Appendix A. LFKN-type tests 

The aim of this section is to describe a method for verifying the truth of certain 
equations involving low degree polynomials. This method - -  called L F K N -  
test - -  was invented by Lund et al. [27] to prove that any language in the 
polynomial hierarchy has an interactive proof system. Their test also played 
a fundamental role in proving I P = P S P A C E  [34] and M I P = N E X P T I M E  [10]. 
In the first part  we will describe this test in the form as it was used by Lund et al. 
[27] to prove that the permanent of a square 0-1 matrix has an interactive proof 
system. 

The second part is devoted to the description of an extended version of this test. The 
need of such an extension arose first in [10] and it was further extended in [9]. This 
extended version is an essential ingredient of the NP  _~ PCS(Iog n, 1, polylog n) proof of 
Section 4.6. 

A.1. The LFKN-test for verifying large sums 

The LFKN-tes t  is based on the simple property that two different degree d poly- 
nomials defined over a domain F can agree in at most d points. Thus for a randomly 
chosen point x~F the probability that both polynomials agree at this point is at most 
d/I F]. By a lemma of Schwartz [33] the same reasoning is also valid for multivariate 
polynomials: two different m-variate polynomials of (total) degree d over a field 
F agree in a randomly chosen point of F m with probability d/lF]. Based on this 
property of low degree polynomials, the LFKN-tes t  allows one to verify with high 

probability that a certain sum of values of a polynomial is zero. More precisely, let 
f:  F ' ~ G  be a polynomial of degree at most d in every variable, with F being a finite 
field and G a field extension of F. Furthermore, let H _  F be an arbitrary subset of F, 

and suppose we want to check that 

f (u)=O. (A.1) 
u ~ H  m 

While this, of course, could easily be done in ~([HI")  time by simply computing 
the sum, our goal here is to design a test procedure which evaluates f a t  only one (!) 
point. 
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To achieve this any such test obviously requires access to some additional informa- 
tion. Let g~: F~--,G denote the following partial sums of the sum in (A.1): 

g,(xl) = Z Z "'" Z f ( x l , Y 2 ,  Y3 . . . . .  Ym), 
y2~H y3eH ymeH 

g2(xl ,X2) = ~ "'" ~ f(Xl,X2, ya,"',Ym) 
y3~H y m E H  

g m - l ( X l ' X 2  . . . . .  Xra-1)  ~ E f ( x l ' x 2  . . . . .  X m - I ' Y  m)' 
yn,, ~ H 

gm(Xl,X z . . . . .  Xm) =f (X l ,X2 ,  . . . ,X.).  

Note that g~ and g~+ 1 are related by the following equation: 

E gi+l(X1 'x2  . . . . .  Xi 'X)=gi(Xl 'X2 . . . . .  Xl) for all i=1  . . . . .  m - 1 .  (A.2) 
xc~H 

In particular, the sum we are interested in satisfies: 

f ( x ) =  ~ gl(x1). (A.3) 
x~H m x l~H 

So with the help of a function 0x that is supposed to equal gl the task of checking 
Eq. (A.1) could be reduced to just tg(IHI) queries to the function 01 (instead of 
(9(IHJ m) queries to the function f )  - -  leaving open, however, how to verify that 01 
indeed equals gl. At this point the fact that f is a polynomial of degree d in each 
variable turns out to be extremely useful. 

Suppose the tester has access to functions Oi:F~-~G which are supposed to be the 
polynomials g~ defined above and assume for the moment that the functions 0i are in 
fact polynomials of degree d in every variable. The consistency check then would be 
straightforward. For example, checking whether gm and f are consistent (that is, 
identical) can be done by verifying that f ( r l ,  rz . . . . .  rm)= gm(rl ,r2  . . . . .  rm) at a single 
point (rl . . . . .  rm) randomly chosen from F m, the error probability being at most 
md/[ F [, which is small if the cardinality of the field F is sufficiently large compared to 
the degree and the number of variables o f f  Similarly, checking whether Oi and 0~- t 
are consistent (that is, satisfy relation (A.2)) can be done by evaluating 0~_~ at 
a randomly chosen point in F ~- 1 and comparing it to the corresponding sum of I HI 
values of Oi. 

While in principle one could use the low degree tester from Section 4.5 to assure 
that the functions 0~ are 6-close to polynomials, here a much easier trick works. As we 
will argue in more detail below, the consistency test outlined above can be modified 
such that it uses only that the functions 0~ are polynomials of degree at most d in the 
last variable• So in order to avoid a low degree test, we simply assume that the tester 
has access to a table T containing ~ '= 1 (d + 1)1F [i- 1 entries of size [- log ] G] ], which is 
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supposed to contain the coefficients of  all degree d polynomials  9i(x~ . . . . .  x~_ 1 ," ) for all 
Xa . . . . .  X~-xeF and all 1 <~i<~m. With this nota t ion  the L F K N - t e s t  can be formally 
stated as follows: 

LFKN-TEST 

Choose  rl . . . . .  rm~RF and let 00:=0.  
for i := 1 to m do 

• Let 0~ denote  the degree d polynomial  defined by the d +  1 
values contained in T as the coefficients of 9~(r~ . . . . .  r~_ ~,. ). 

• if L ~ n  0i(x) ~ Oi- 1 (ri - 1)  then REJECT 
if f (rl . . . . .  r,,) 4:O,,(r,,) then REJECT 

The following theorem shows that  the procedure  LFKN-TEST does indeed have the 
desired properties.  

Theorem A.1. Let f: Fm~G be a polynomial of degree at most d in every variable with 
F and G bein9 finite fields such that IFl>>.4md and G is a field extension of F. 
Furthermore, let H ~_ F denote an arbitrary subset of F and let T be a table containin9 
~ir"_ ~ (d + 1) IF I i -  1 values of length V log J G I -]. Then the procedure LEKN-TEST has the 
followin 9 properties: 

• I f f  satisfies Eq. (A.1) then there exists a table T= T: such that the procedure 
LFKN-TEST always accepts. 

• I f  f does not satisfy Eq. (A.1) then LFKN-TEST rejects with probability at least a4 
for all tables T. 

• LVKN-TEST queries f a t  only one point, distributed uniformly over F m, reads m(d + 1) 
entries from T, and uses (9(m log l F I) random bits. 

Proof.  Suppose  first that  Eq. (A.1) holds and assume that  T: contains the coefficients 

of  the functions gi(xx . . . . .  x i -  1," ) defined above. Then 0i(x) equals gi(rl,  r 2  . . . . .  r i -  1 ,  X) 

and therefore equat ion  (A.2) guarantees  that  no error  will be detected. 

N o w  suppose that  Eq. (A.1) does not  hold. If gx =0a  then the test )[xEn 01(x)=0o  
detects the error  in Eq. (A. 1). So assume gl ¢ 01. Then gx (rl)4:01 (rl) with probabi l i ty  
>~ 1-d/IF], as two different degree d polynomials  can agree in at mos t  d points. 

If gl(rx)~Ol(rl) and 0 2 ( r l , . ) = 0 2 ( - )  then ~x~nO2(x)=gl(rl) and the test 
Z x~n O2(x)= 01 (ra) reveals an error. So we may  assume that  g2(rl , ' )~ 92( ' )  for all r l 
such that  gl(rl)¢Ol(ra). 

I terat ing this a rgument  another  m - 2  times we observe that  with probabi l i ty  at 

least (1 - d / [  F I)"-x we may  assume that  either one of the tests Z x~n Oi(x)= 9 i - l ( r i - 1 )  
detects an error  or 0m('):,~g,,(rl . . . . .  r , ,_l ,"  ). But in the latter case the final test 

f (r l  . . . . .  r,,) ¢ 0,,(r,,) fails with probabi l i ty  1 -  d/I F [. Summariz ing,  this shows that  the 
procedure  LFKN-TEST rejects with probabi l i ty  at least (1 - d/]F[) m >~ 1 - md/] F [. As by 
assumpt ion  I F I >1 4rod, this probabi l i ty  is />~ as claimed. 

Finally, we have to ensure that  the resources consumed by the procedure  are as 
stated in the theorem. For  generat ing the r a n d o m  points  r l , r  2 . . . . .  rm~F one needs 
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(9(m log IF I) r a n d o m  bits. Each i teration of the for- loop requires d + 1 queries to the 
table T, while the function f itself is evaluated only in the final test at exactly one point  
distr ibuted uniformly over  F".  [] 

A.2. The LFKN-test for everywhere vanishing functions 

Let f :  F ' ~ F  be a polynomial  of degree at most  d in every variable, where F again 
denotes a finite field. Ins tead of checking a sum to be zero we are now interested in 
knowing  that  the function f is identically zero at a certain par t  of  its domain:  

f ( u ) = 0  for all u e H "  (A.4) 

with H being an arb i t ra ry  subset of F. If we were working  over  a field like N then (A.4) 
would be equivalent  to checking whether  the sum y.u~nf(u) 2 is zero. Thus (A.4) could 
be reduced to an appl icat ion of Theo rem A.1 for the p o l y n o m i a l f  2. Fo r  finite fields, 
however,  this simple approach  does not  work. With some more  effort it is nevertheless 
possible to reduce the test of (A.4) to a constant  number  of appl icat ions of  
Theorem A. 1. 

Theorem A.2. Let f: F" ~ F  be a polynomial of degree at most d in every variable with 
F being afinitefield such that I FI~> 4m(d + I H  I), where H ~_ F is an arbitrary subset ofF. 
Then there exists a procedure EXTENDED LFKN-TEST, which has access to f and an 
additional table T containing (9 (dlFI 2m) values of length [- (m + 1) log I F I -], that has the 
following properties: 

• Iffsatisfies Eq. (A.4) then there exists a table T= Ty such that EXTENDED LFKN-TEST 
always accepts. 

• I f  f does not satisfy Eq. (A.4) then EXTENDED EFKN-TEST rejects with probability at 
least ¼for all tables T. 

• EXTENDED LEKN-TEST queries f at only five points, randomly chosen from F", reads 
(9 (md) entries from T, and uses (9(m log I F I ) random bits. 

Proof.  Let K be a field extension of F satisfying 21HI'<<.IKI~2rHI'IFI and let 
p : H ~ { 0 ,  1 . . . . .  I H I - 1  } be an arb i t ra ry  bijection. Then for u = (Uo . . . . .  u,,_ x)eH m we 

define a m a p p i n g  a : H m ~ { 0 ,  1 . . . . .  l H I ' - 1  } by setting a (u) :=  ~ ' - o  1 I Hli'p(uO. Note  
that  a again is a bijection. 

N o w  the function 9 : K ~ K  defined as g(t):=Zx~u~f(u) . t  ~ is a polynomial  of 
degree at most  I HI".  Thus  either (A.4) holds or  g has at most  l H I "  zeroes. As 
IKI ~>21Hl", we therefore have: 

if (A.4) does not hold then P rob ,~ r [ -g ( t )=0 ]  ~<½. tA.5) 

In part icular,  if g is different f rom the zero-function on K then the probabi l i ty  that  the 
function g is zero at five r a n d o m  points  from K is at most  (½)5= ~ .  Even if g can be 
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evaluated correctly only with probability ¼ then this probability is still less than 
(3)5 <¼. Thus the probability t h a t f i s  different from the zero-function and all the five 
queries of g yield the value zero is less than ¼ and a so-constructed tester would detect 
an error with the required probability. 

We want to use Theorem A.1 to test whether g evaluated at a random point t ~ K  is 
zero. Therefore we have to check that all the requirements of Theorem A. 1 are fulfilled. 
First we show that the function f ( u ) t  ~tu) is a polynomial in u. This can be seen as 
follows for all u~Hm: 

f (u)"  t °~u~=f(u)" 1-I tlnl'P~"')=f(u)" f I  t tul'pth)" Lk(ui) , 
i = 0  i = 0  

where Lh(X ) is defined to have value l if x = h  and 0 otherwise. Thus viewing 
f ( u ) t  ~ as a function from F m to K this shows that it is a polynomial of degree 
d +  ]H I in every variable ui. 

By assumption the field F has size at least 4m(d+lH])  and thus satisfies 

the condition from Theorem A.1. The value of the function f ( u ) t  ~ )  needed in 
Theorem A.1 can easily be computed from the function f Thus we may use the 
procedure LFKN-TEST to verify that the function g is zero at five randomly chosen 
points ~K. As already shown above this procedure will find out whether (A.4) holds 
with probability at least ¼. 

The table T has to contain the tables from Theorem A.1 for the functions 

f ( u ) ' t  ~ )  for every t e K .  As IKI<~21HI"IFI, it therefore contains at most 
2[HlmlFlm(d+ 1)lEt m-1 =C(dlF[ 2") many entries of size, say, [-(m+ 1)log IF[-]. 

Now we still have to count the resources used by the so-constructed procedure 
EXTENDED LFKN-TEST. For generating the five random points from K the verifier needs 
O ( l o g l K l ) = C ( m l o g l F [ )  random bits. All other resources are consumed by the 
procedure LVKN-TEST which is called five times. Thus in total O(m log IF I) random bits 
are used and m ( d + l H I )  entries are queried from T. [] 

Appendix B. Low degree tests 

In this appendix we describe an efficient test for checking whether a given function 
is 6-close to a polynomial of degree at most d. We start by illustrating the main ideas 
of such testers at the simplified problem of checking whether a given function is 
6-close to a homogeneous linear function. 

B.1. The linear case 

Lemma B.1. Let c~ < ~ be a constant and let (~ : Y"2 ~ D:2 be a function such that 

Probx, r[~(x) + ~(y) :~ ~(x + y)] ~< ½ 6. 

Then there exists heU:~ so that the functions g (x )=hXx  and 0 are 6-close. 
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Proof. The proof is by construction. We will show that the function 9 given by 

O(x) := majorityr { O(x + y) - O(y) } 

(solve ties arbitrarily) has the desired properties. First we show that 9 satisfies 

p, := Probx[g(a)--~(a + x ) - 0 ( x ) ]  >~ 1 - 8  for all a~[F~. 

Fix ael:~. By assumption 

Prob~,y[O(x +a)+O(y)¢O(x  + a +  y)] <<.½8, and 

Probx, y[O(x) + O(y + a) ¢ O(x + y + a) ] <-~ ½ 6. 

Recalling that by definition v," )lz, the above inequalities easily imply (B.1): 

1-6<~Prob~,r[O(x+a)+O(y)=O(x)+O(y+a)]  

(B.1) 

= ~ (Prob~[O(x+a)-O(x)=z])  z 
ze~2 

--P,Z+( 1 -P,)z<~P,(P,+( 1 --Pa))-- P,. 

Next we show that 9 and 0 are 6-close. Assume not. Then Prob~ [0(x)4:O(x)] > 8. 
By the definition of 0 we also have Probr[9(x )=O(x+y) -O(y ) ]  >~½. As both events 
are independent this implies Prob~,r [0(x) = O(x + y ) -  9(Y)] > ½ 8, contradicting the 
assumption of the lemma. 

To show that 9 satisfies the desired linearity condition, fix a, be[F~ and apply (B.1) 
three times to obtain 

Probx [9 (a) + 9 (b) + O(x) ~ O(a + x) + g (b)] ~< 6, 

Probx[y(b) + O(a + x) ¢ O(b + a + x) ] <~ 6, and 

Probx[9(a + b + x) # 9(a + b ) + O(x) ] <~ 6. 

Hence 

Probx [g(a) + g(b) + O(x) = g(a + b) + •(x)] >/1 - 38 > 0. (B.2) 

As the condition on the left hand side of (B.2) is independent of x, the probability is 
either 0 or 1. The positivity therefore implies that 9(a)+ g(b)= 9(a + b) for all a, b ~ Dz~, 
from which the existence of the desired vector h~D:~ follows immediately. [~ 

B.2. The general case 

The reader is invited to observe that the proof of Lemma B.1 easily generalizes to 
arbitrary finite fields F instead of [Fz. For F = [Fp, p a prime, this approach can even be 
generalized to arbitrary, multivariate degree d polynomials. For this one needs the 
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well known fact (cf. e.g. van der Waerden [36]) that a function f :  Uz~'---,Qzp is a poly- 
nomial of total degree d if and only if for all x, he~:'~ the function satisfies 
Ed+l 1),+l(a+t 1 t=0 (-- ) f ( x+ th )=O.  Such a tester was first described in Gemmell et al. 
[19]. It required O(d 2) tests of the form "Pick x, he~:~ at random and verify that 
y a+l ( _  1)t+l (a+l)f(x+th)=O,,  ' adding up to a total of O(d 3) evaluations o f f  This 

t = 0  

bound was later improved to O(d 2) by Rubinfeld and Sudan [32] by a slight 
modification of the tester and an improved analysis. 

While obviously O(d) evaluations are a natural lower bound for any such tester, 
a break-through occurred with the results of Arora and Safra [5] who showed that in 
fact O(1) probes of f suffice, if the tester has also access to an appropriate additional 
function, which it may probe O(d) times. 

In this section we describe a strengthening of the Arora and Safra [5] tester 
due to Arora et al. [4] which requires only O(1) probes o f f  and the additional 
function. 

Theorem B.2. Let 0<~<1-~44s and d, meN be constants and p>/64d a a prime. Let 
m rwm . - d + l  ~" [F'~ ~ : p  be a function, and let T: ~:p x u-p--*u-p be a function such that the degree 

d polynomials fix.h over ~-p given by Px, h(t)=---y'~+~ T(x, h)i" t i-x satisfy 

Prob~,h,,[ P~,h(t)=#(X + th) ] >>- 1 --is 6. (B.3) 

Then there exists a (unique) polynomial g: J:p--,g:p of total degree d so that g and # are 
g-close. 

To the best of our knowledge there does not yet exist a published proof of 
Theorem B.2 in the literature. The proof we are presenting here is based on the one in 
Arora et al. [3] and Sudan [35]. However, here we also include the details left out in 
that version and correct several minor errors. 

The structure of the proof of Theorem B.2 is similar to the one of Lemma B. 1. That 
is, we define the function g explicitly, and show subsequently that g is well defined, is 
6-close to ~, and is a polynomial of total degree at most d. An essential tool in the 
proof is the following technical lemma from [5], known as the Matrix Transposition 
Lemma. 

Lemma B.3. Let 0 < e < ~  and det~ be constants and let F be a finite field such that 
[F[~>64d 3. l f  r~, s~F, and G, t~F, are polynomials over F of degree at most d and 
A =(aa) is an IFI x IFI matrix such that 

Probs, t[as~=rs(t ) and ast=G(s)] >~ l - e .  

Then there exists a bivariate polynomial Q : FE--, F of degree at most d in each variable 
such that the sets S = {seF[rs(.)= Q(s, ")} and T= {teF[G(')= Q(', t)} satisfy 

[S[~>(1-5e)IFI and ITI~>(1-5e)IFI. 
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Proof. Call a pair (s, t) an error-point, if r,( t)~ a~t or ct(s)~ a,t. By our assumption we 
know that there exist at most elF I z error-points. A straightforward average argument 
shows that this implies the existence of sets C~_F and R ~ F  of size ICl=4d and 
IRt =4"[-!81FI-] such that for each s~R there exist at most d many t's in C for which 
(s, t) is an error-point. (Indeed, assume such sets C and R would not exist. Then for 
every set C ___ F of size 4d the columns indexed by C would contain at least ½1F I(d + 1) 
error points. As every error-point is counted at most (4j~ 1) times, this would imply 
(~,~)'½ IFl(d+ 1)~<(4~1)' elFI 2, contradicting the assumptions of the lemma.) 

Assume for the moment, that e, ~ 0 and f~ are polynomials of degree at most d and 
2d, respectively satisfying 

ct(s).e~(t)=f,(t) for all sER, t~C. (B.4) 

We claim that this implies 

ct(s)'e~(t)=r~(t)'e~(t) for all s~R, t~C. 

Indeed, by choice of C and R there exist univariate polynomials e'~(t)~O, s~R of 
degree at most d such that 

c,(s).e'~(t)=r~(t).e'~(t) for all s6R, teC. 

For all tEC such that e',(t)¢O we easily obtain f~(t)=e~(t)'rs(t). As both sides are 
polynomials of degree at most 2d, this implies that both sides are in fact identical for 
all t~C. 

Our goal is to define the polynomials e~ andf~ satisfying (B.4) in such a way that the 
number of pairs (s,t)~R x C with es(t)=0 is at most ½[RI. Observe that this would 
imply that at least ½1R I= ¼1FI of the rows indexed by R contain no error-points within 
the columns indexed by C. In particular this would imply that for any d + 1 elements 

to . . . . .  t a e C 

d 

Q(s, t)= ~ L,,(t). c,,(s) 
i = 0  

forms the desired polynomial, where L,,(t) denotes the unique degree d polynomial 
which is 1 if t = t~ and 0 if t ~ { to . . . . .  tn } \ { t~}. To see this, observe that by definition of 
Q one has Q(., t) = c~(- ) for all t~ { to . . . . .  ta}. As a degree d polynomial is determined by 
specifying the values at d +  1 points, this implies that also Q(s,.)=r~(') for all rows 
seR which contain no error-point within the columns indexed by C. This in turn 
shows that a column t either belongs to the set T or contains at least 
½ l R l - d = ¼ l F l - d  error-points. As the total number of error-points is bounded by 
elFI z this immediately implies that I T[~>(1-58)IFI. By the same reasoning this 
inequality in turn also implies that I SI >/(1 - 5~)lFI. 

e .t i f i t  ~ - ~ 2 a  Let e~(t)=Y~= o ~, ,j~, , -~ i=of~ i t '  and let g(s)=(e~o . . . . .  e,a,f,o . . . . .  f~zd)- Then 
(B.4) can be rewritten as M(s) 'g(s)=O for all s~R, where M is a matrix of dimension 
4d × 3d + 2 whose entries are degree d polynomials in s. Let k be the largest integer for 
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which there exists an so~R and a k x k submatrix of M(so) which is nonsingular. Let 
M'  denote the corresponding submatrix of M and set the e~ andf~ not corresponding 
to columns of M'  to 1. Then there exist k degree d polynomials hi . . . . .  hk such that 
every solution of M'(s)'g'(s)=(hl(s) . . . . .  hk(S)) can be extended to a solution of 
M(s).g(s)= O. Solve the former system by Cramer 's  rule to obtain that the g'~(s) are 
rational functions with common denominator  det(M'(s)), which is a polynomial of 
degree at most kd. That is, M(s).g(s)=O has a solution in which all the es~ are 
polynomials of degree at most kd. Hence, for every teC, es(t) is zero for at most kd 
s-values. By assumption 4kd 2 < 16d 3 ~< ¼ [ F I = ½1R I. This concludes the proof of the 
lemma. [] 

As a corollary we obtain that for families of matrices (A~) and polynomials (rAt)i) 
and (ct(s)~), which satisfy the assumptions of Lemma B.3 with high probability, the two 
degree d polynomials best fitting a fixed row and a fixed column coincide with high 
probability at their intersection. 

Corollary B.4. Let 6 > 0  and d, m e n  be constants, let F be a finite field such that 
[FI>~ 80 d 3, and let So, to eF be fixed. Assume that for every pair hi, ha E F m there exist 
matrices A = (a~t) and degree d polynomials r, and ct over F such that the sets 

ff:--{s~FI Probhl,h2[rA t)=ast] ) l --½ 6 for all te F }, 

and 

T:= { teVJ Probh,,h2[c,(s)=as,] >~ 1-½6for  all ssF},  
satisJ}' 

[ff]j>(1--6)lF[ and liPI>J(1-6)[F]. 

L e t  Prow denote the deoree d polynomial best fitting the So-th row, i.e., the degree 
d polynomial that maximizes the number o f t eF for  which Pro~(t)= asot, and similarly let 
P~oJ denote the degree d polynomial best fitting the to-th column. Then 

Probh~,h2 [P~ow(to) = Pool(So)] t> 1 - 72 6. 

(In order to simplify notation, the dependence of A, rs, ct, P~ow and Pco, o n  h I and h2 is 
not reflected in the notation. It will, however, always be clear from the context.) 

Proof. Let e = ~  and observe that by assumption 

Probh,, h2 [Prob~, t [rAt) = ast and ct(s) = a~t] >~ 1 -- e] >~ 1 - 36/E. 

Thus with probability 1 - 36/e the matrix A satisfies the requirements of Lem'ma B.3. 
In the following let S, T and Q be as defined in Lemma B.3. (For completeness, if 
A does not satisfy the requirements of Lemma B.3 let S =  T = 0  and Q =0.) Then 

Probh,,h2[[S[ ~>(1 -- 5~)IFI and I TI/>(1 - 5~)[FI]/> 1 - 36/e. (B.5) 
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Applying the assumption of the corollary for t = to and s = So, respectively, we obtain 

Probh,,h~[r~(to)=a~o] >~ 1--½6 for all se,~ 

and 

Probh~,h2 [G(So) = a~o,] ~> 1 -- ½ 6 

In particular the sets 

S:={slrAto)=a~,o} 

therefore satisfy 

for all t~ T. 

and "F := { t] c,(so)=a~o, } 

Probh,.h2 [ISI 7>(1-0IFI and I TI ~(1 - e ) lF [ ]  ~> 1-36/e. (B.6) 

Combining (B.5) and (B.6) we deduce that 

Probh,,h2[ISc~S I >/(1 -- 6e)lr[ and I T¢~ 7~1/>(1-601El]/> 1-66/~. 

As IS¢~SI ~>½1FI implies that Q(',to) is the best polynomial fitting the t0-th column, 
and similarly I T¢~ T[ >/½IFI implies that Q(s0,. ) is the best polynomial fitting the so-th 
row, this together with the choice of ~ concludes the proof of Corollary B.4. [] 

Proof of Theorem B.2. For every x, h • [F~' let Px, h denote a polynomial of total degree 
at most d which maximizes the number of points from {x + th] t •  Bzp} at which Px, n and 
0 agree. The function g is then given by (break ties arbitrarily) 

g(x) = majorityh { Px,h(0)}. 

For the proof that g has the desired properties, we first observe that assumption 
(B.3) on the polynomials /~,h induces a similar property on the polynomials Px, n. 
More precisely, we claim that 

Probx,h[P~,h(t)=O(x+th)]) 1-½6 for all t6[Fp. (B.7) 

For the proof of (B.7) fix t•lFp and observe that (B.3) implies that 

Probx, n [Prob, [ i6~.h(t)= O(x + th)] >~] >1 1 - 36/8. 

As Prob,[P~,h(t)=0(x + th)] >2 ~3 can only hold if/~,,h=P~,h, this implies that 

Probx. h [/~x, h = Px, h] ~> 1 - 36/8 

and therefore together with (B.3) also 

PrObx, h,,,[Px,h(t + t')= P,,h(t + t')=O(X +(t + t')h)] >1 1 --½6. 

By definition, Px, h(t+t')=P,+ht',h(t). This together with the fact that x+t 'h  is a 
random element of 0:~' whenever x eR Dz~ ' and t' eR [Fp concludes the proof of (B.7). 
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Next we use Corollary B.4 to show that 

Probh,.h2 [Px+sok,, h2(to) = Px+toh2,hl(So)] 7> 1 -- 72 6 

for all xElZ~ ' and So, to~[]zr (B.8) 

Let A =(a=t) denote the matrix given by a=,t=~(x+shx +th2), and let r=(t)=P=+=h,,h~(t) 
and ct(s)=Px+th~,hl(S), all defined with respect to hl,h2sF". Using (B.7) we 
immediately observe that the requirements of Corollary B.4 are satisfied (with 
S=T=I:p\{0}) .  As by definition Px+sohl,hz(t) and Px+toh2,h,(S) a r e  the polynomials 
best fitting the so-th row and the to-th column, respectively (B.8) follows immediately 
from Corollary B.4. 

An immediate consequence of (B.8) is the following strengthening of (B.7): 

Probh[Px, h(t)=tj(x+th)]>~ 1--736 for all x~l:~' and t~[-p, t~O. (B.9) 

To see (B.9) fix x~I:~' and telZp\{0}. From (B.7) we deduce that 

Probh,.h~[ P=+th2,h~(O)=~(x + th2)] >~ 1 --½6 

and from (B.8) we deduce (letting So=0 and to=t )  that 

PrObh~,h2 [Px+th2,ha (0)  = Px, h2(t)]/> 1 - 72 6. 

Obviously, combining both inequalities proves (B.9). 
Another consequence of (B.8) is 

Probh[g(x)=Px, h(0)]/> 1--726 for all xeY~'. (B.10) 

Indeed, fix an xe[F~' and apply (B.8) for So=to=0.  Then 

1 - 7 2  5<~Probh~,h~[P~,h,(O)=Px, h2(O)] = ~ (Probh[Px.h(O)=a]) 2 
aE~-p 

<-..PrObh[g(x)=P~,h(O)]" ~ Probh[P~,h(O)=a]. 
k a~F  

L 
The f-closeness of g and ~ now follows immediately from (B.7) and (B.10). 
For the proof that 9 is a degree d polynomial we make use of the following 

characterization of polynomials: 

A function f: l:'~l:p is a polynomial of total degree d if and only ifJor all x, h~l:~ the 
point (x,f(x)) lies on the degree d polynomial containing most points of {(x +th, 
f ( x  + th))lt~ IZp}. 

Let x, hsl:~' be fixed. For hl,h2~l:"~ let A' =(a'=,,) denote the matrix given by 

~g(x+sh) if t=O, 

a'=a = { O(x + sh + t(hl + sh2) ) otherwise 
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a n d  let r ' s( t )= Px+~h,h, +sh2(t) a n d  c'~(s)= Px+thl.h+rh2(S). T h e n  (B.7) impl ies  

PrObhl,h2[c't(s)=a's,]>~ 1 - 6  for all s,t~I:~, t ~O.  

By (B.10) we also have  

Probh, ,h2[a 'so--9(x+sh)=Px+sh,  h,+s,2(O)--r's(O)]>~1--726 for all s~[l:p. (B.11) 

F ina l ly ,  we deduce  f rom the 6-closeness a n d  (B.9) tha t  for all s, t6U:p, t ¢ 0 :  

PrObh~. h2 [ a'st -- O(x + sh + thl  + sth2) = Px ++,,n, + ~h2( t ) - -  r'~(t)] >/1 -- 73 6. 

The  a s s u m p t i o n s  of  C o r o l l a r y  B.4 are therefore aga in  satisfied, this  t ime  wi th  "½6" 

replaced  by  796. As the first c o l u m n s  of the mat r i ces  A'  do  no t  d e p e n d  o n  h~ a n d  h2 

and ,  by def in i t ion,  r'o(t) is the best  p o l y n o m i a l  f i t t ing the first row, C o r o l l a r y  B.4 

(appl ied  for So = to = 0) toge ther  wi th  (B. 11) for s = 0 a n d  the a b o v e  cha rac t e r i za t i on  of  

degree d p o l y n o m i a l s  conc ludes  the  p r o o f  of T h e o r e m  B.2. [] 
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