Cutting forces and mechanical resistance of pure titanium processed by equal channel angular pressing

Fábio de Oliveira Camposa,*, Fernanda de Castro Monte Schroderb, Anna Carla Araujoab, Juan Garcia de Blasc, Luiz Carlos Pereirac

aPEM/COPPE/UFRJ, Rio de Janeiro, Brazil
bDEM/Poli/UFRJ, Rio de Janeiro, Brazil
cPEMM/COPPE/UFRJ, Rio de Janeiro, Brazil

* Corresponding author. Tel.: +55 21 99649-6316; E-mail address: fo.campos@mecanica.coppe.ufrj.br

Abstract

Implants are usually manufactured in titanium alloys due to their biocompatibility and high corrosion resistance. The additional elements present in titanium alloys increase the mechanical properties but also increase the possibility of infectious-inflammatory processes in the implanted region. Commercially pure titanium (CP Ti) has lower mechanical properties, but it can be processed by severe plastic deformation for grain refining and enhancement of mechanical behavior. This paper compares the machinability of different workpieces, manufactured in CP-Ti and CP-Ti powder processed by Equal Channel Angular Pressing (ECAP), using cutting forces as the reference parameter. Although mechanical properties are improved, cutting force experiments show that extruded specimens presented same level of machinability of CP-Ti bar.

Keywords: Metal Forming, Titanium, End Milling, Force

1. Introduction

Recently, the use of titanium and its alloys on biomedical application has grown, especially in implants, pins and prosthesis. The additional elements make the mechanical properties similar to the bone qualities, enhance the ultimate tension and reduce the Young module, but, on the other hand, the biocompatibility can be compromised. Elements like vanadium present in the Ti-6Al-4V alloy, widely used in implants, can eventually affect biocompatibility [1].

The enhancement of mechanical properties of commercially pure titanium (CP Ti) is needed for biomedical applications, specially orthodontic ones where higher strength is required. The quest for increased mechanical strength for CP Ti focuses on the impact of the average grain size on the mechanical properties of metallic materials. The Hall-Petch relation shows the improvement of the mechanical properties produced by grain refining [2].

Obtaining ultrafine granular structures with severe plastic deformation (SPD) processes has attracted great interest in recent decades. These processes involve high strain values and, consequently, the extreme reduction of the grain size. Among the SPD processes, Valiev et al. [3] claimed that equal channel angular pressing (ECAP) is the most attractive because of its efficient mechanism for reducing grain size, obtaining metallic nanostructured materials. Zhao et al. [4] confirmed that there is excellent strengthening after several ECAP passes with the yield strength increasing from 275 to 710MPa.

The raw material used in angular extrusion may be either solid metal or titanium metal powder. When ECAP is done using metal powder, it has a double objective: to consolidate the particles of powder and to refine the grain. Furthermore, the material presents macro and micro porosities that allow the absorption of bone tissue into the pores, enhancing osteointegration, stability and lifetime of the material, important properties for biomedical implants [5].
Medvedev et al. [6] showed that fatigue performance of ECAP-processed CP Ti was superior to that of conventional Ti-6Al-4V suggesting that ECAP combined with thermomechanical processing provides a useful method to create CP Ti semi-products that are promising substitutes for Ti alloys in medical implants. For example, the spring-loaded ECAP process, proposed by Jin et al. [7], is a sequential process of multi-stage forming to produce a pin-shaped part or shafts with high strength. The ultimate tensile strength of the microstructure-refined bolts formed by the ECAP process was approximately 6.2% higher than of the one manufactured by conventional bolt forming process.

Although threaded implants can be manufactured by plastic deformation, the thread geometry can be produced by machining processes, without affecting the achieved mechanical bulk properties of the workpiece. Also, machining guarantee higher accuracy or precision as in tapping and thread milling [8]. Thread milling allows cutting velocities that are not connected directly to feed velocity, essential when a brittle (and nanostructured) material needs to be machined because it could not support high feed velocities as the thread pitch per revolution. In order to machine threaded implants after ECAP, milling studies need to be done to analyze its machinability in this process.

Titanium alloys are regarded as hard-to-machine materials [9, 10] and although you can find several literature references on the effect of grain refinement in the mechanical behavior of materials, articles regarding the effect on their machinability is almost nonexistent. Arrazola et al. [11] studied the machinability results carried out for Ti555.3, applied to aeronautic industry, compared with the Ti-6Al-4V. They analyzed variables such as cutting forces, chip geometry and tool wear and it is presented the occurrence of the diffusion process leading to the formation of a layer of adhered material composed of Ti and TiC on the rake face for both Ti alloys. Thus, it becomes important to evaluate the machinability of nanostructured titanium comparing the cutting forces during the machining process and verifying if there is remaining Ti adhesion on the tool.

This article is part of a research that aims at the development of nanostructured pure titanium for use in surgical implants. In this work, pure titanium synthesized by powder metallurgy is processed by ECAP in order to consolidate the particulate material and reduce the size of the grains to increase the mechanical properties. A comparison of the machinability, based on the cutting force, of different workpieces produced by ECAP, with different number of passes, using CP-Ti and Ti powder is presented.

2. Equal channel angular pressing technique

Equal channel angular pressing is now the most popular and developed SPD technique and according to Valiev and Landdon [12], it is an especially attractive processing technique for several reasons:

- It is a relatively simple procedure that is easily performed on a wide range of alloys and uses equipment that is available in most laboratories;
- Reasonable homogeneity is attained through most of the as-pressed billet;
- The process may be scaled-up for pressing relatively large samples.

Conventional ECAP process is shown schematically in Fig. 1a. The metal sample is pressed by a plunger into the die through a channel that is bent by an abrupt angle and has the same cross sectional area through the whole extension. The material is plastically deformed by simple shear as it passes on the intersection of the channels and the more abrupt is the angle, the greater the strain imposed to the metal billet. Sample can be fabricated in the form of a rod or a bar and it is machined to fit within the channel. Despite the introduction of a very large strain when the sample passes through the shear plane, it emerges from the die without experiencing any change in the cross-sectional dimensions, as illustrated by the figure. This figure also defines three separate orthogonal planes: X is the transverse plane, perpendicular to the flow direction; Y is the flow plane which is parallel to the side face of the billet; and Z is the longitudinal plane parallel to the top surface of the billet.

![Figure 1. a) Schematic illustration of a typical ECAP facility: the X, Y and Z planes denote the transverse, the flow and the longitudinal plane, respectively [12]. b) Cartridge assembly for processing the compressed powder in the titanium ECAP matrix.](image)

3. Experimental set-up and test procedure

3.1. Workpiece description

Two workpiece materials are used for comparison: commercial pure Ti taken from a slab rolled and annealed is used as reference, (sample CP Ti); and Ti powder pressed and deformed in two ECAP passes, (sample Ti 2x). It was used commercially pure titanium grade 2 [13]. Sample CP Ti presents a granular non refined structure, as showed in Fig. 2a. It is a homogenous grain structured with polygonal crystals, typically equiaxial pure metal with approximately 30 µm grain size in average.

For the Ti 2x sample, a uniaxial pressing is done in room temperature using 730 MPa pressure on pure titanium grade 2 powder from Instituto Nacional de Tecnologia (INT) with granulometry smaller than 149 µm and chemical composition according to grade 2 [13].
As it is presented in Fig. 1b, the material to be processed by ECAP is inserted in a SAE1020 steel casing with square section with 12.7 mm size. An internal cavity of 6.3 mm height is filled by the pressed powder. After two stages of processing its grain size is reduced to 1.32 µm. The porosity was reduced from 4% to 0.82% after ECAP. Figure 2b presents its microstructure.

As it is presented in Fig. 1b, the material to be processed by ECAP is inserted in a SAE1020 steel casing with square section with 12.7 mm size. An internal cavity of 6.3 mm height is filled by the pressed powder. After two stages of processing its grain size is reduced to 1.32 µm. The porosity was reduced from 4% to 0.82% after ECAP. Figure 2b presents its microstructure.

Figure 2. a) CP-Ti, 200x; b) CP-Ti processed by ECAP

3.2. Mechanical Properties

Separate samples from CP Ti and Ti 2x were submitted to flexure tests following standard ASTM B 528-12 [14], using Instron 3382. The Ti 2x specimen showed a brittle behavior with transverse rupture strength equal to 350 MPa whereas the CP Ti presented a ductile behavior with 852 MPa 0.2 offset yield stress.

Hardness were also measured. The CP Ti hardness is around 161 HV and the hardness after two ECAP passes (Ti-2x) increased to 264 HV.

It is clear that when submitted to compression stresses, as during the hardness test, the material presented improved properties. However, when tensile stress is active, as during the flexure test, the cohesion between compressed powder particles is not enough to resist and the brittle behavior is observed.

3.3. Experimental setup and cutting force acquisition

The workpiece is fixed in a 9256C2 dynamometer (Kistler), which is placed on the CNC Mini-Mill/GX, as showed in Fig. 3. The data signals are amplified using a 5070 amplifier (Kistler) and a data acquisition board NI USB-6551 (National Instruments) is used to send information to the computer.

Figure 3. Force Measurement during milling process of CP Ti.

A 3 mm carbide end milling tool (Performance Micro Tool) with 2 flutes was used. Cutting parameters are 5000 rpm spindle speed (V_s=47.12 m/min), 0.012 mm feed per tooth (V_f=120 mm/min) and 0.1 mm depth of cut. Full immersion slot milling was performed for the experiments.

4. The influence of the Ti structure on the cutting forces

Figure 4 presents the force measurements during milling of CP Ti and Ti 2x workpieces, corresponding to four tool revolutions. It can be seen that the amplitude is very similar in both cases, but the Ti 2x presents irregularities that are not common in metal cutting of homogeneous material.

Figure 4. Comparison of Machining Forces (a) CP Ti; (b) Ti 2x.

Directions x and y are not characteristic of the milling process, therefore the resultant forces in x-y plane are calculated and they substitute the analysis of F_x and F_y in separate. Figure 5 presents the comparison of those forces while milling CP Ti and Ti 2x. It is clear the difference between the two cases in periodicity. The maximum forces per revolution are taken in both cases and the results are presented in Tab. 1 and graphically in Fig. 6a. 99% confidence interval of F_x and F_y by revolution is presented.

Figure 5. Resultant forces in 4 tool revolutions: a) CP Ti; b) Ti 2x

Table 1. Maximum Value per Revolution - Average for 40 revolutions

<table>
<thead>
<tr>
<th></th>
<th>F_x [N]</th>
<th>F_y [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Ti</td>
<td>11.478 ± 0.786</td>
<td>13.476 ± 0.775</td>
</tr>
<tr>
<td>Ti 2x</td>
<td>16.249 ± 4.257</td>
<td>16.579 ± 6.743</td>
</tr>
</tbody>
</table>
In order to reduce the effect of the run-out in the analysis, the two cutting edges were separate and presented in Tab. 2 and graphically compared in Fig. 6b. It can be seen that the error bars are bigger in ECAP workpiece, using both cutting edges, confirming the heterogeneity of the material. Observing the maximum cutting force values, it is possible to see that the values are slightly higher for the Ti 2x samples, but as the error bars for this sample are also bigger, it can not be defined with certainty that the machinability of the CP Ti is better.

Figure 6. Comparison of resultant forces in xy plane and Fz [N]: a) Both cutting edges; b) Separated cutting edges.

Table 2. Maximum force value per tooth [N]

<table>
<thead>
<tr>
<th></th>
<th>Cutting edge 1</th>
<th>Cutting edge 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Ti</td>
<td>9.972 ± 2.116</td>
<td>11.454 ± 1.999</td>
</tr>
<tr>
<td>Ti 2x</td>
<td>11.771 ± 6.267</td>
<td>13.912 ± 8.819</td>
</tr>
</tbody>
</table>

5. Conclusions

This study aimed to evaluate the mechanical characteristics and machinability of the resulting nanostructured titanium processed in two steps: compacting titanium powder (powder metallurgy) and channel angular extrusion. Therefore, it is performed a comparative study of mechanical behavior and machining forces on pure Ti grade 2 nanostructured and commercially solid pure titanium grade 2.

The results were positive in relation to the efficiency of the Angular Extrusion Channel technique to consolidate metal powder and in obtaining titanium with refined granular structure.

The cutting forces indicate that there was no significant increase in effort required for machining of pure titanium produced by powder metallurgy and ECAP compared to the effort required for machining of commercially pure titanium. The behavior of the machining forces of nanostructured titanium proved only to be irregular, probably because it is a particulate material whose microstructure presented discontinuities.

Antoniali et al. [15] showed a reduction of machinability of solid titanium processed by ECAP requiring cutting forces almost twice higher than the unprocessed titanium. However, in this study, it is not possible to conclude on the influence of ECAP technique on the machinability of consolidated titanium powder as it was not observed pronounced increase on the cutting forces.

Acknowledgements

The authors would like to acknowledge INT, CNPq for the research resources (Proc. 481406/2013-1) and FAPERJ.

References