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Abstract

An n× n matrix is called totally nonnegative if every minor ofA is nonnegative.
The problem of interest is to describe the Perron complement of a principal submatrix
of an irreducible totally nonnegative matrix. We show that the Perron complement of a
totally nonnegative matrix is totally nonnegative only if the complementary index set is
based on consecutive indices. We also demonstrate a quotient formula for Perron comple-
ments analogous to the so-called quotient formula for Schur complements, and verify an
ordering between the Perron complement and Schur complement of totally nonnegative
matrices, when the Perron complement is totally nonnegative. © 2001 Elsevier Science
Inc. All rights reserved.
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1. Introduction

An n× nmatrixA is calledtotally positive, TP (totally nonnegative, TN) if every
minor of A is positive (nonnegative). Such matrices arise in a variety of applica-
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tions [6], have been studied most of the 20th century, and have received increasing
attention of late (see also [1,4,5,11]).

Let A = [aij ] be ann× n matrix, and letα, β be nonempty ordered subsets of
〈n〉 :={1,2, . . . , n}, both consisting of strictly increasing integers. ByA[α, β] we
shall denote the submatrix ofA lying in rows indexed byα and columns indexed by
β. Similarly,A(α, β) is the submatrix obtained fromA by deleting the rows indexed
by α and columns indexed byβ. If, in addition,α = β, then the principal subma-
trix A[α, α] is abbreviated toA[α], and the complementary principal submatrix is
A(α). For anyn-vector,x andα ⊂ 〈n〉, we letx[α] denote the subvector ofx whose
coordinates are indexed byα.

Let β ⊂ 〈n〉. If A[β] is nonsingular, then theSchur-complement of A[β] in A is
given by

S(A/A[β]) = A[α] − A[α, β](A[β])−1A[β, α], (1)

whereα = 〈n〉\β. Schur complements have been well-studied for various classes
of matrices, including: positive definite, M-matrices, inverse M-matrices (see, for
example, [8,9]), and TN matrices (see [1]). In particular, it is known that the classes
of positive definite, M- and inverse M-matrices are all closed under arbitrary Schur
complementation. The situation is slightly more subtle for TN matrices. Recall that
the dispersion of a given setS = {i1, i2, . . . , ik}, whereij < ij+1(j = 1, . . . , k − 1)
is defined to bed(S) = ik − i1 − (k − 1), with the convention thatd(S) = 0 when-
everS is a singleton. Thusd(S) = 0, wheneverS is based on consecutive indices,
i.e., S is a contiguous index set. For TN matrices it is known thatS(A/A[β]) is
TN if α = 〈n〉\β is a contiguous set (see [1,4]). Otherwise,S(A/A[β]) need not be
TN in general (see [1]). IfA is TN and invertible, then a routine calculation using
Jacobi’s identity (see [8]) reveals thatSA−1S is TN, for S = diag(1,−1, . . . ,±1).

In connection with a divide and conquer algorithm for computing the stationary
distribution vector for a Markov chain, Meyer [12] introduced, for ann× n nonneg-
ative and irreducible matrixA, thePerron complement of A[β] in A, which is given
by

P(A/A[β]) = A[α] + A[α, β](ρ(A)I − A[β])−1A[β, α], (2)

whereβ ⊂ 〈n〉, α = 〈n〉\β andρ(·) denotes the spectral radius of a matrix. Recall
that sinceA is irreducible and nonnegative,ρ(A) > ρ(A[β]), so that the expression
on the right-hand side of (2) is well-defined. Meyer proved many interesting results
regardingP(A/A[β]) including,P(A/A[β]) is nonnegative andρ(P(A/A[β])) =
ρ(A). (Observe that the matrix(ρ(A)I − A[β])−1 is an inverse M-matrix.) To avoid
any difficulties we will assume throughout thatA is irreducible. We also remark that
Perron complements have been studied in [10,14]. Some of the results proved in [14]
(see also Section 2) motivated this study on Perron complements of TN matrices.

Throughout this paper we will work with a slight extension of the notion of a
Perron complement. For anyβ ⊂ 〈n〉 and for anyt � ρ(A), let theextended Perron
complement at t be the matrix
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Pt (A/A[β]) = A[α] + A[α, β](tI − A[β])−1A[β, α], (3)

which is also well-defined sincet � ρ(A) > ρ(A[β]).
We conclude this introductory section with a few (needed) preliminary facts. The

first is an identity for the minors of certain Schur complements. Fixk (2 � k � n).
Then for any subsetsγ, δ ⊆ 〈k − 1〉 with |γ | = |δ|, we have (see [3])

detS(A/A[{k, . . . , n}])[γ, δ] = detA[γ ∪ {k, . . . , n}, δ ∪ {k, . . . , n}]
detA[{k, . . . , n}] . (4)

It is the case that there exist similar formulae for the minors of more general Schur
complements, although we do not need them here (see [1, (1.35)]). The next fact is
Fischer’s inequality. IfA is ann× n TN matrix andα, β ⊆ 〈n〉 with α ∩ β = ∅, then

detA[α ∪ β] � detA[α] detA[β]
(see [1,4,5]).

For a givenm× n matrix A we denote byCk(A) the
(
m
k

) × (
n
k

)
matrix whose

general entry is detA[α, β]; it is called thekth compound matrix of A. Hereα ⊆ 〈m〉
andβ ⊆ 〈n〉 are index sets of cardinalityk, 1 � k � min{m,n}, usually ordered lex-

icographically. LetA andB be twom× n real matrices. We sayA
(c)

� B if and only
if

detA[α, β] � detB[α, β]

for all α ⊂ 〈m〉, β ⊂ 〈n〉 with |α| = |β|. In other words,A
(c)

� B if and only ifCk(A)
� Ck(B) (entrywise) for everyk = 1,2, . . . ,min{m,n}. (We remark here that in [1]

the notation
(t)

� was used for the same ordering; however, to avoid confusion with the

t in Pt (A/A[β]), we chose the notation
(c)

�.) ThusA
(c)

� 0 meansA is TN. Observe that

if A
(c)

� B
(c)

� 0 andC
(c)

�D
(c)

� 0, thenAC
(c)

� BD
(c)

� 0, which follows easily from the
Cauchy–Binet identity for determinants (assuming the products exist). Unfortunate-

ly, A
(c)

� B does not enjoy some of the useful properties that the positive definite or

entrywise orderings possess. For example,A
(c)

� B does not implyA− B (c)� 0, and if,

in additionA
(c)

� B
(c)

� 0, then it is not true in general thatS(A/A[β]) (c)� S(B/B[β])
or SB−1S

(c)

� SA−1S, for S = diag(1,−1, . . . ,±1), in the eventB, and henceA, is
invertible. The following lemma is proved in [1, Theorem 3.7].

Lemma 1.1 [1]. If A is an n× n totally nonnegative matrix, and β = {1,2, . . . , k}
or β = {k, k + 1, . . . , n}, then

A[α] (c)� S(A/A[β]) (c)� 0,

where α = 〈n〉\β and provided that A[β] is invertible.
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In this paper we first determine when the Perron complement of a TN matrix is,
in turn, TN. In particular, we prove thatPt (A/A[β]) is TN only if α = 〈n〉\β is a
contiguous set. Along the way, we verify a quotient formula for the Perron comple-
ment that is reminiscent of Haynsworth’s quotient formula for Schur complements
(this observation may be of independent interest). Finally, we also verify that when
α = 〈n〉\β is a contiguous set not only isPt (A/A[β]) a TN matrix, but, in fact,

Pt (A/A[β]) (c)� A[α] (c)� S(A/A[β]) (c)� 0.

2. Main results

Since the issue regarding Schur complements of TN matrices is rather subtle, it
seems natural to ask: When (if ever) is the Perron complement of a TN matrix TN? A
hint comes from prior work. In [14, Corollary 3.3] it is shown that ifA is the inverse
of a tridiagonal M-matrix (which impliesA is TN), then any Perron complement of
A is again TN.

Consider also the following special (yet important) class of matrices. It is well
known that a tridiagonal matrix is TN if and only if it is entrywise nonnegative and
all of its principal minors are nonnegative (see [5]). SupposeD is a positive diagonal
matrix, then for any irreducible nonnegative matrixA it follows that

Pt (DAD
−1/DAD−1[β]) = D[α]Pt (A/A[β])D−1[α],

whereα = 〈n〉\β andt � ρ(A) (= ρ(DAD−1)). We are now in a position to state a
result on the Perron complements of tridiagonal TN matrices.

Proposition 2.1. Let A be an n× n irreducible tridiagonal totally nonnegative ma-
trix. Then, for any singleton β ⊂ 〈n〉 and t � ρ(A), the matrix

Pt (A/A[β]) = A[α] + A[α, β](tI − A[β])−1A[β, α],
where α = 〈n〉\β, is irreducible tridiagonal and totally nonnegative.

Proof. Let β = {i}, 1 � i � n andα = 〈n〉\β. First observe thatPt (A/A[β]) is an
irreducible nonnegative tridiagonal matrix for any irreducible nonnegative tridiago-
nal matrixA. It is well known (and easy to prove) that there exists a positive diagonal
matrixD such thatDAD−1 is symmetric and hence positive semidefinite, sinceA is
TN. Moreover, by the remark preceding this propositionPt (DAD

−1/DAD−1[β]) =
D[α]Pt (A/A[β])D−1[α]. Hence the total nonnegativity ofPt (A/A[β])will follow
from the total nonnegativity ofPt (DAD−1/DAD−1[β]). SinceDAD−1 is positive
semidefinite it follows thatPt (DAD−1/DAD−1[β]) is positive semidefinite. (In
fact, this observation holds for all positive semidefinite matrices.) Thus we see that
Pt (DAD

−1/DAD−1[β]) is a nonnegative tridiagonal positive semidefinite matrix
and hence is totally nonnegative. This completes the proof.�
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Unfortunately, for general TN matrices not all Perron complements with respect
to singletons are necessarily TN. This leads us to our first result which proves that
Pt (A/A[β]) is TN, wheneverA is irreducible TN andβ = {1} or β = {n}.

Lemma 2.2. Let A be an n× n irreducible totally nonnegative matrix, and let β =
{1} or β = {n} and define α = 〈n〉\β. Then for any t ∈ [ρ(A),∞), the matrix

Pt (A/A[β]) = A[α] + A[α, β](tI − A[β])−1A[β, α]
is totally nonnegative. In particular, the Perron complement P(A/A[β]) is totally
nonnegative, for β = {1} or β = {n}.

Proof. Assumeβ = {n}. (The arguments for the caseβ = {1} are similar.) LetA be
partitioned as follows:

A =
[
B c

dT e

]
,

whereB is (n− 1)× (n− 1) ande is a scalar. Then

Pt (A/e) = B + cdT

(t − e) .
Consider the matrix

X =
[
B −c
dT t − e

]
.

Observe thatS(X/(t − e))=Pt (A/e). Thus we can compute any minor ofPt (A/e)
by computing minors of a related Schur complement. Using formula (4) we have

detS(X/(t − e))[γ, δ] = detX[γ ∪ {n}, δ ∪ {n}]
(t − e) ,

whereγ, δ ⊂ 〈n− 1〉. Hence the nonnegativity of any minor ofPt (A/e) will follow
from the nonnegativity of any minor ofX of the form detX[γ ∪ {n}, δ ∪ {n}] (since
t − e > 0). Observe that

detX[γ ∪ {n}, δ ∪ {n}]=det

[
B[γ, δ] −c[γ ]
dT[δ] t − e

]

= t detB[γ, δ] + det

[
B[γ, δ] −c[γ ]
dT[δ] −e

]

= t detB[γ, δ] − det

[
B[γ, δ] c[γ ]
dT[δ] e

]

� t detB[γ, δ] − e detB[γ, δ]
=(t − e) detB[γ, δ]
�0.

The first inequality follows since the matrix on the left is TN and TN matrices
satisfy Fischer’s inequality (see Section 1). This completes the proof.�
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Unfortunately, TN matrices are not closed under arbitrary Perron complementa-
tion, even whenβ is a singleton as the next example demonstrates.

Example 2.3. Let f (x) = ∑n
i=0 aix

i be annth degree polynomial inx. By the
Routh–Hurwitz matrix we mean then× n matrix given by

H =




a1 a3 a5 a7 · · · 0 0
a0 a2 a4 a6 · · · 0 0
0 a1 a3 a5 · · · 0 0
0 a0 a2 a4 · · · 0 0
...

...
...

... · · · ...
...

0 0 0 0 · · · an−1 0
0 0 0 0 · · · an−2 an



.

A polynomialf (x) is said to bestable if all the zeros off (x) have nonpositive
real parts. It is proved in [2], for example, that iff (x) is stable polynomial, then the
Routh–Hurwitz matrix formed fromf is totally nonnegative. Consider the following
polynomial:

f (x) = x10 + 6.2481x9 + 17.0677x8 + 26.7097x7 + 26.3497x6

+ 16.9778x5 + 7.1517x4 + 1.9122x3 + 0.3025x2

+ 0.0244x + 0.0007.

It can be shown thatf is a stable polynomial. Hence its associated Routh–Hurwitz
array is totally nonnegative, call itH. LetP ≡ P(H/H [{7}]) (which is 9× 9). Then
P is not TN, as detP [{8,9}, {5,6}] < 0, for example.

We note here that the above example is indeed tedious and cumbersome; however,
one of the reasons for this is, because, typically (using many random examples) the
Perron complement of a TN matrix with respect to a single entry is TN. Thus we
expected the collection of counterexamples to be slight.Moreover, using brute force
one can show that for n � 4,Pt (A/A[β]) is TN for any singleton β. Hence, to begin
searching for a counterexamplen has to be at least 5.

The following result is a general observation regarding the Perron complement of
nonnegative matrices. Recall Haynsworth’s quotient formula (see [7]) which can be
stated as follows. For∅ /= α ⊂ β ⊂ 〈n〉, we have

S(A/A[β]) = S(S(A/A[α])/A[β]/A[α]).
For simplicity of notation we assume that the indexing of any complement (Perron
or Schur) is inherited from the indexing of the original matrix. For example, ifA is
7 × 7, andβ = {2,3,6}, then the rows and columns ofS(A/A[β]) andP(A/A[β])
are indexed by the integers 1,4,5,7 (ordered). Observe that the indexing of the
submatrixA[β]/A[α] in S(A/A[α]) is given byβ\α. As a result Haynsworth’s
quotient formula can be viewed as constructing Schur complements from “smaller”
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Schur complements. For example, a Schur complement with respect to a submatrix of
order 2 can be computedby taking two Schur complements with respect tosubmatrices
of order 1, albeit using different matrices. For simplicity of the next proof, we will
abuse notation as follows. Rather then denote Schur and Perron complements with
respect to principal submatrices we will denote them only by the index sets instead.
For example ifA isn× n andβ ⊂ 〈n〉, then we will denotePt (A/A[β]) byPt (A/β)
andS(A/A[β]) byS(A/β). Assuming the convention stated above with regards to
the indexing of Perron and Schur complements, Haynsworth’s quotient formula can
be rewritten as: For any∅ /= α ⊂ β ⊂ 〈n〉, we have

S(A/β) = S(S(A/α)/β\α).
We could also state the quotient formula as follows: ifγ1, γ2 ⊂ β with γ1 ∪ γ2 = β
andγ1 ∩ γ2 = ∅, then

S(A/β) = S(S(A/γ1)/γ2).

This is the version we state and prove for Perron complements.

Theorem 2.4. Let A be any n× n irreducible nonnegative matrix, and fix any non-
empty set β ⊂ 〈n〉. Then for any ∅ /= γ1, γ2 ⊂ β with γ1 ∪ γ2 = β and γ1 ∩ γ2 = ∅,
we have

Pt (A/β) = Pt (Pt (A/γ1)/γ2),

for any t ∈ [ρ(A),∞).

Proof. We begin by commenting that according to Meyer [13, Theorem 2.3], the
Perron complement of a nonnegative and irreducible matrix is nonnegative and irre-
ducible. Therefore the Perron complement ofPt (A/γ1) is well defined.

Observe that for any index setβ ⊂ 〈n〉, the following identity holds:

Pt (A/β) = tI − S((tI − A)/β).
Hence we have

Pt (Pt (A/γ1)/γ2)=Pt ((tI − S((tI − A)/γ1))/γ2)

= tI − S([tI − (tI − S((tI − A)/γ1))]/γ2)

= tI − S(S((tI − A)/γ1)/γ2)

= tI − S((tI − A)/β) = Pt (A/β).

The second to last equality follows from the quotient formula for Schur comple-
ments. This completes the proof.�

Using this quotient formula for extended Perron complements and Lemma 2.2 we
have the following result.
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Theorem 2.5. Let A be an n× n irreducible totally nonnegative matrix, and let
∅ /= β ⊂ 〈n〉 such that α = 〈n〉\β is contiguous. Then for any t ∈ [ρ(A),∞), the
matrix

Pt (A/A[β]) = A[α] + A[α, β](tI − A[β])−1A[β, α]
is totally nonnegative. In particular, the Perron complement P(A/A[β]) is totally
nonnegative,whenever 〈n〉\β is contiguous.

Proof. Observe that sinceα is a contiguous set, the Perron complementPt (A/A[β])
can be obtained by Theorem 2.4 from a sequence of Perron complements with re-
spect to the first or last index at each stage, which are TN by Lemma 2.2.�

Corollary 2.6. Let A be an n× n irreducible tridiagonal totally nonnegative matrix.
Then, for any β ⊂ 〈n〉, the matrix

Pt (A/A[β]) = A[α] + A[α, β](tI − A[β])−1A[β, α],
where t � ρ(A), is irreducible tridiagonal and totally nonnegative.

Our next lemma involves an ordering between the compounds of extended Perron
complements and Schur complements of TN matrices discussed in Section 1. Recall
from Lemma 1.1 that ifα = {1,2, . . . , k} or α = {k, k + 1, . . . , n}, then

A[α] (c)� S(A/A[β]) (c)� 0,

whereβ = 〈n〉\α and provided thatA[β] is invertible. In fact, even more is true,

namelyA[α] (c)� S(A/A[β]) (c)� 0,whereα = 〈n〉\β is a contiguous set. We note here
that this was not explicitly noted in [1], even though it follows from two applications
of Lemma 1.1. For example, ifα = {i, i + 1, . . . , i + k}, then

S(A/β)=S(S(A/{1, . . . , i − 1})/{i + k + 1, . . . , n})
(c)

�S(A/{1, . . . , i − 1})[{i, . . . , i + k}]
(c)

�A[α].

We note here that the inequalityA[α] (c)� S(A/A[β]) need not hold in general when

S(A/A[β]) is not TN. In the same spirit we have the following result.

Theorem 2.7. Let A be an n× n irreducible totally nonnegative matrix, and let
φ /= β ⊂ 〈n〉 such that α = 〈n〉\β is a contiguous set. Then for any t ∈ [ρ(A),∞),

Pt (A/A[β]) (c)� A[α] (c)� S(A/A[β]) (c)� 0.
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Proof. We first prove the result for the case whenα = {1, . . . , k} and β =
{k + 1, . . . , n}. It is enough to verify the inequalityPt (A/A[β]) (c)� A[α], as the
remaining two inequalities are contained in Lemma 1.1. We begin, though, with
the special case whenβ is a singleton, namely,β = {n}. Recall from the proof of
Lemma 2.2 that if

A =
[
B c

dT e

]
and X =

[
B −c
dT t − e

]
,

then for anyγ, δ ⊂ 〈n− 1〉

detPt [γ, δ]= detX[γ ∪ {n}, δ ∪ {n}]
t − e

= t detB[γ, δ] − detA[γ ∪ {n}, δ ∪ {n}]
t − e

� t detB[γ, δ] − e detB[γ, δ]
t − e (by Fischer’s inequality)

=detB[γ, δ] (hereB = A[α]).

ThusPt (A/A[β]) (c)� A[α], as desired.
We are now ready to proceed with the case whenβ is not a singleton, namely,

β = {k + 1, . . . , n}, k < n− 1. LetK = Pt (A/A[{n}]) and letγ = {1, . . . , n− 2}.
ThenK is irreducible and, by Lemma 2.2, we also know thatK is a totally nonnega-
tive matrix. But then applying the initial part of the proof toK we see that

Pt (K/[{n− 1}]) [γ ] (c)� K[γ ] (c)� A[γ ],

the last inequality follows since
(c)

� is inherited by submatrices. The claim of the
theorem now follows by repeating this argument as many times as necessary and
making use of the quotient formula in Theorem 2.4.

Thus far we have shown that ifβ = {1, . . . , k} or β = {k + 1, . . . , n} andα =
〈n〉\β, then

Pt (A/A[β]) (c)� A[α] (c)� S(A/A[β]) (c)� 0. (5)

More generally, supposeβ ⊂ 〈n〉 such thatα = 〈n〉\β is a contiguous set. Then
α = {i, i + 1, . . . , i + k}, and henceβ = {1, . . . , i − 1, i + k + 1, . . . , n}. Thus, by
Theorem 2.4,

Pt (A/β) = Pt (Pt (A/{1, . . . , i − 1})/{i + k + 1, . . . , n}).
Applying (5) twice we have
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Pt (A/β)=Pt (Pt (A/{1, . . . , i − 1})/{i + k + 1, . . . , n})
(c)

�Pt (A/{1, . . . , i − 1})[{i + k + 1, . . . , n}]
(c)

�A[α],

as desired. The remaining inequalities, namelyA[α] (c)� S(A/A[β]) (c)� 0, follow
from the remarks preceding Theorem 2.7. This completes the proof.�
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