Intuitionism and the liar paradox
Nik Weaver

1. Informal proof

1.1. Validity of informal proofs

The concept of a mathematical proof is important in intuitionism. We think of proofs as objects, and it is supposed to be decidable whether a given object is or is not a valid proof.

Here “proof” does not necessarily mean “formal proof”. It is indeed decidable, in the sense of computability theory, whether a given finite sequence of formulas constitutes a proof within a given recursive formal system; but that is not what is meant. The issue is not syntactic correctness of formal proofs, but rather semantic correctness of informal proofs.

This probably sounds rather vague. Why not just agree that “valid mathematical proof” means “proof that can be formalized in ZFC (Zermelo–Fraenkel set theory, the generally accepted axiom system for mathematics)”?

1.2. Going beyond a given formal system

Unfortunately, this proposal leads to a dilemma. Do we really know that the Zermelo–Fraenkel axioms are valid? If so, then we should be able to infer that ZFC is consistent, i.e., 0 = 1 is not a theorem. (More precisely, we should be able to infer a number theoretic sentence that arithmetically expresses in a standard way the consistency of ZFC.) But by Gödel’s second incompleteness theorem, this is not provable within ZFC (assuming ZFC is, in fact, consistent). So if we know that the Zermelo–Fraenkel axioms are valid then we can infer, informally but correctly, a statement that cannot be proven within ZFC. Adding this statement to ZFC then yields a stronger formal system that we still know to be valid.

The other horn of the dilemma is that if we do not know whether the Zermelo–Fraenkel axioms are valid, then there are proofs executable in ZFC whose validity is in question. So either way, we cannot regard ZFC as exactly capturing all valid informal reasoning.

The point is not specific to ZFC. Any formal system S that might be proposed as exactly modeling all valid informal reasoning would be subject to the same complaint. Either we do not know that the axioms of S are valid, in which case S manifestly fails to achieve its goal, or we do know that they are valid, in which case we can go beyond S. We can strengthen it by augmenting it with an assertion of its consistency.
What all this tells us is that we are dealing with a free-floating concept of “valid proof” that not only is not thought of as being tied to any particular formal system, it actually cannot be exactly modeled by any formal system. The concept is inherently unformalizable. To be sure, it can be partially formalized: we can produce formal systems that do capture some aspects of valid informal reasoning—maybe even, for practical purposes, all important aspects. But we can always go beyond any given partial formalization.

1.3. Is the proof concept meaningful?

At this point one could ask why we have to accept that this informal notion of “valid mathematical proof” is even coherent. The fact that it cannot be formalized seems like good evidence that it simply is not meaningful. But if we had no overarching notion of validity, all that would be left would be the syntactic notion of validity internal to a given formal system. We would then have to conclude that mathematics is nothing but a meaningless formal game with symbols.

Surely most mathematicians believe, for example, that there really are infinitely many prime numbers, and that Euclid’s proof of this fact is not merely valid in the trivial sense of being syntactically correct within some formal system, it is valid in a general semantic sense. For this to be the case we need to have a general semantic notion of proof validity.

1.4. Indefinite extensibility

So, regardless of how we feel about intuitionism, unless we are going to be hardcore formalists it would seem that we have to accept as meaningful the informal notion of semantic validity of mathematical proofs. The problem then becomes, perhaps, a psychological one: how to come to terms with the fact that we have to deal with a concept that can only be partially formalized.

Michael Dummett’s ideas about “indefinitely extensible” concepts may be helpful here. According to Dummett ([1], p. 441) there is a whole category of concepts which have a special kind of productive quality that he calls indefinite extensibility. By this he means that whenever we have precisely circumscribed some definite collection of individuals falling under such a concept, it will always be possible to find a new individual falling under the concept that was not captured. This is exactly what we just observed about informal proofs: any partial formalization can be extended. So “valid proof” is an indefinitely extensible concept.

But it is not the only one. Dummett would also say that the concept “set” is indefinitely extensible. And we can point to other familiar concepts that have the same kind of productive quality (e.g., “truth”, “definition”). So if we buy into the idea of indefinitely extensible concepts then we may come to feel that our inability to formalize the notion “valid mathematical proof” is not a defect of that notion, but simply an expression of the fact that it is indefinitely extensible. To put this another way, we ought to be comfortable with the concept “valid proof”, despite the fact that it is only capable of partial formalization, to the same degree that we are comfortable with the concept “set”, which is also only capable of partial formalization. (The truths of first order set theory are not recursively enumerable.)

How is it possible to reason about indefinitely extensible concepts? It seems hard to get one’s hands on such a slippery notion. Dummett’s answer to this question is that we need to use intuitionistic logic when we are working with assertions that quantify over an indefinitely extensible concept. This point is debatable and I will return to it later in the paper.

1.5. The provable liar paradox

So far, we have done the following. We introduced the informal notion of “valid proof”, observed that it cannot be formalized, convinced ourselves that we nonetheless need this concept if we are to avoid hardcore formalism, and (perhaps) mollified our concerns about its unformalizability by placing it in the general setting of indefinitely extensible concepts.

But there is another problem: the informal notion of proof seems to be directly implicated in paradoxes. Specifically, if we accept that there is a meaningful free-floating notion of proof that is not attached to any particular formal system, then it is hard to see why we cannot formulate a sentence that asserts of itself that it is not provable in this free-floating, informal sense:

\[L = \text{“This sentence is not provable.”} \]

This sentence is paradoxical in the same way as the usual liar sentence. But recall that Dummett tells us to use intuitionistic logic, in which the law of excluded middle (\(A \lor \neg A \), for all formulas \(A \)) is not assumed. In particular, we are not forced to accept the dichotomy “either \(L \) is provable or \(L \) is not provable”; maybe this is the key to evading the paradox? Unfortunately, no. It is easy to see that we can deduce a contradiction using pure intuitionistic logic, without invoking excluded middle. (First check that assuming \(L \) is provable leads to a contradiction, and then infer from this that \(L \) is not provable. This is a proof that \(L \) is not provable, and hence it is a proof of \(\neg L \). So \(L \) is provable, which leads to a contradiction.)

To my mind this is a very serious problem for the informal notion of proof. The direct involvement of this notion in a paradox seems like an excellent reason to suppose that it is not meaningful.

(True, the informal “set” concept is also apparently paradoxical. But this paradox is resolved by recognizing that the “set” concept is indefinitely extensible. The general principle would be that we can form the set of \(x \) such that \(P(x) \) only for
ordinary predicates P, not indefinitely extensible ones. In the specific case of Russell’s paradox, for example, there is no such thing as the set of all sets that are not members of themselves, precisely because the concept “set that is not a member of itself” is indefinitely extensible. There is no analogous resolution of the liar paradox.)

2. Proof as a heuristic concept

2.1. A mistake

I am not going to mount a defense of the intuitionist’s proof concept against this new attack. I agree with the criticism. I think that the informal notion of valid mathematical proof, as it is characterized in traditional intuitionism, is indeed incoherent. The proof of this is the fact that it leads directly to paradox.

What I want to do instead is, first, to identify what I think is a mistake intuitionists have made, and second, to show how correcting this mistake defuses the paradox. Then I will conclude by making a case that this also settles the usual liar paradox which is based on truth rather than provability.

The intuitionist’s mistake is something I mentioned at the beginning of the paper, the assumption that proof validity is decidable. This seems to me to run firmly against general intuitionistic ideas. Consider that intuitionists would say that we cannot, at present, affirm that Goldbach’s conjecture has a definite truth value. In order to do this, they would argue, we would need either (1) a proof of the conjecture, (2) a counterexample, or (3) at a minimum, a procedure which is guaranteed to terminate after a finite number of steps and produce one of the first two items. If we do not have a finite procedure that will produce either a proof or a counterexample, we cannot assert that the conjecture has a definite truth value.

Now suppose we are given what appears to be an informal proof of Goldbach’s conjecture. How would we check it? Do we have a finite procedure that will, in principle, infallibly assess the validity of any potential informal proof? If not, then it would seem that we cannot affirm that the statement “p is a valid proof” has a definite truth value for all p without violating intuitionistic principles.

Of course, if we are talking about formal proofs, then we do have such a procedure. But the whole point of considering informal proofs is that this takes us beyond formal proofs in any specified formal system. Decidability becomes an issue if the purported proof requires not just the axioms of some accepted base system (Peano arithmetic, say) but additional principles which might or might not informally follow in some way from the accepted axioms. For instance, along the lines we discussed above, if we recognize the Peano axioms as valid then we can accept not only Peano arithmetic (PA), but also the stronger system

$$PA' = PA + \text{Con}(PA),$$

where Con(PA) is a number theoretic sentence that arithmetically expresses in a standard way the consistency of PA. Then we can go one step further and accept

$$PA'' = PA' + \text{Con}(PA'),$$

and so on. This process can be iterated any finite number of steps, and (with minor technical complication) even beyond that into the transfinite [6,2]. (In particular, a simple informal induction argument can lead us to accept $PA^{(n)}$ for all n.) Just how far we can go is a subtle question, and it apparently cannot be decidable, as this would contradict indefinite extensibility of the “proof” concept. If we could algorithmically decide which systems $PA^{(n)}$ we can accept, then we could formulate a single system whose theorems are precisely the theorems of all the acceptable $PA^{(n)}$, and we could then go beyond it.

Troelstra ([5], p. 7) suggests that we can, in effect, build decidability into our informal notion of proof, by stipulating that p does not count as a proof unless we have no doubt that it is a proof. The problem with this idea is that it assumes we can decide whether there is any doubt about whether p is a proof. In other words, it simply shifts the assumption of decidability onto a different predicate, where it is equally unfounded.

2.2. Heuristic concepts

Let us grant that proof validity is not decidable and see what the consequences are.

First, we need a new name. We can no longer say that the “valid proof” concept is indefinitely extensible since this term, in Dummett’s usage, implies decidability. I will say that the informal concept of proof is heuristic [8]. The point is that if C is an indefinitely extensible concept then we can always produce new individuals that fall under C by going beyond the current repertoire of available individuals, but our understanding of what it means to fall under C does not change. If C is heuristic, on the other hand, then one way to enlarge the pool of individuals falling under C is to induct previously available individuals by expanding our conception of what it means to fall under C. In the same way that Goldbach’s conjecture could change its status from “not known to have a truth value” to say, “true”, an existing potential proof of Goldbach’s conjecture could change its status from “not known to be valid or invalid” to say, “valid”.

We have already balked at the prospect of dealing with concepts that cannot be fully formalized, but were at least decidable. Now we are going one step further. Is it possible to reason in any way with heuristic concepts, or is this category just too vague to be dealt with at all?
2.3. Natural deduction

It is easiest to get at this question using natural deduction. This is a system of deduction rules which directly express the meanings of the logical symbols (see, e.g., [4]). For instance, one rule states that given A we can deduce $A \lor B$.

We adopt the intuitionistic “proof interpretation” of the logical symbols. This means that a proof of $A \land B$ is by definition a proof of A together with a proof of B, a proof of $A \lor B$ is either a proof of A or a proof of B, and so on. Under this interpretation, is it fair to deduce $A \lor B$ from A? That is, if there is a proof of A, can we legitimately infer that there is a proof of $A \lor B$, i.e., a proof of A or a proof of B?

Clearly the answer is: yes, this is a legitimate inference. The possibility that there may be cases where we cannot decide whether we have a proof of A is irrelevant to the question since the premise of this inference is that there definitely is a proof of A.

At the risk of belaboring the point, we could make a similar inference for any concept. If there is a wixle of A then we may correctly infer that there is a wixle of A or a wixle of B. As long as “wixle” is a meaningful concept, this is legitimate regardless of what “wixle” actually means, and even if the predicate “is a wixle” is not decidable.

What about the other rules of natural deduction? For example, the modus ponens rule states that we may infer B from the two hypotheses A and $A \rightarrow B$. Under the proof interpretation of the logical symbols, a proof of $A \rightarrow B$ is a procedure that converts any proof of A into a proof of B. So is modus ponens justified if proof is heuristic? Yes. In general, if there is a wixle of A and there is a procedure that converts any wixle of A into a wixle of B, then there is a wixle of B. Once again, this in no way makes use of any assumption about decidability of the “wixle” concept.

It begins to look as though dropping the assumption of decidability does not have any dramatic effects.

2.4. Circularity

There is one important consequence, however: if the “proof” concept is heuristic then we cannot proceed from the assumption that all proofs are valid.

Suppose “proof” is decidable. That is, it is a completely definite concept all of whose properties are determined in advance. One of these properties is that anything that counts as a proof must be valid. So as we identify and adopt various axioms and deduction rules, we can legitimately make use of the fact that all proofs establish correct conclusions. We may use this fact to help ourselves identify which axioms and rules are valid, if it is of any help.

If “proof” is merely heuristic, on the other hand, then our adoption of axioms and deduction rules should be seen in a very different light. We are not merely identifying the properties of an already definite “proof” concept, we are building up the concept itself. In this case it is not reasonable to assume that all proofs will ultimately turn out to be valid. If that assumption in any way feeds into our choice of which axioms and rules to adopt, it would be circular because we could end up adopting an axiom or rule for reasons which hinge on the correctness of proofs that themselves use the axiom or rule in question.

An analogy may help here. Suppose we accept the validity of Peano arithmetic. Then we can also accept the stronger system

$$PA' = PA + \text{Con}(PA).$$

But what about a system like

$$PA^* = PA + \text{Con}(PA^*)?$$

It is easy, using Gödelian self-reference techniques, to formulate a sentence $\text{Con}(PA^*)$ that arithmetically expresses the consistency of PA augmented by the sentence $\text{Con}(PA^*)$ itself. However, this stronger assertion is incorrect. Since PA^* proves its own consistency, we know from the second incompleteness theorem that it is inconsistent. Thus $\text{Con}(PA^*)$ can be disproven within PA.

What went wrong? We are free to adopt a new principle that acknowledges the consistency of previously adopted principles. But in general we cannot adopt a new principle whose correctness hinges on the correctness of the system as a whole, including the new principle that is being adopted. That would be circular.

Again, if “proof” were decidable then this would not be an issue. There would be nothing wrong in assuming the global correctness of the “proof” concept, if doing so would help us to identify which proof principles are valid. But if “proof” is heuristic then there is a very real danger of circularity in such an assumption. We cannot adopt any axiom or deduction rule whose justification implicitly assumes the global validity of all proofs, including proofs that might make use of the new axiom or rule under consideration.

2.5. Ex falso quodlibet

How could such an assumption arise? We can give a simple example involving the “ex falso quodlibet” law which states that anything follows from a contradiction.
Before I make this point, let me acknowledge that there are many settings in which the ex falso law is legitimate. It is commonly accepted, for example, that in the setting of first order arithmetic we can give a direct argument that any formula follows from \(0 = 1\).

I have elsewhere argued that this fact generalizes to any system that proves the law of excluded middle for all atomic formulas; see Section 2.3 of [9]. That is, ex fals is valid if all of the basic concepts in play are decidable.

But is it universally valid? There are several possible ways one could try to justify this conclusion. I want to consider the following argument, which I will call the justification by vacuity:

“For any formula \(A\), the assertion \(0 = 1 \rightarrow A\) means that there is a procedure which will convert any proof of \(0 = 1\) into a proof of \(A\). But there are no proofs of \(0 = 1\), so this is vacuously the case: for any formula \(A\), the null procedure will convert any proof of \(0 = 1\) into a proof of \(A\). Thus \(0 = 1 \rightarrow A\).”

(This is paraphrased from [7].) On its face, the argument is persuasive. The catch is that in order for it to work we must know that there is no proof of \(0 = 1\), and this hinges on the global correctness of all proofs. The justification by vacuity is circular because its justification of the ex fals law assumes that no proof, including proofs that might make use of the ex fals law, establishes \(0 = 1\).

There may be some other way to universally justify ex fals; I do not think so, but that is not important here. The only point I want to make is that the justification by vacuity exhibits the kind of circularity that we have identified as illegitimate. It is a textbook example of an attempted justification which is circular in the manner discussed above.

2.6. An objection

Readers of [10], where this analysis was first presented, have objected that the circularity I identify in ex fals is no worse than related, or possibly identical, circularities which are present in all of the standard deduction rules. For example, in some sense the rule “\(\text{given } A, \text{ infer } A \lor B\)” is circular because a proof which establishes \(A\) may itself have employed this rule. So do we not need to assume the global correctness of all proofs in order to justify this rule too? And could the same not be said of any of the rules of natural deduction?

No. First of all, the alleged circularity present in the rule “\(\text{infer } A \lor B \text{ from } A\)” is not the same as the circularity we have identified in the justification of ex fals discussed above. This can easily be seen by applying the “wixle” test: would either justification still be valid if we replaced “\(\text{proof}\)” with “\(\text{wixle}\)”, where “\(\text{wixle}\)” could be any meaningful concept? Consider:

1. if there is a wixle of \(A\) then there is a wixle of \(A\) or a wixle of \(B\);
2. any wixle of \(0 = 1\) can be converted into a wixle of \(A\).

We do not need to know anything about wixles to be sure that if there is a wixle of \(A\) then there is a wixle of \(A\) or a wixle of \(B\). But we do need to know something about wixles to be sure that any wixle of \(0 = 1\) can be converted into a wixle of \(A\), for arbitrary \(A\). Namely, in order for the justification by vacuity to work, we would need to know that there are no wixles of \(0 = 1\). If “wixle” means “\(\text{proof}\)”, then this means that we require the global correctness (or at least consistency) of all proofs. This is where the circularity comes in. There is a circularity in the justification of (2) which is not present in the justification of (1).

In order to clarify this distinction, we need to understand better just what is wrong with circularity. The danger to avoid is a justification of \(X\) that implicitly assumes that \(X\) is correct. This would beg the question, and such a justification is not to be trusted. That is why we must reject any justification of a proof technique that assumes the global correctness of all proofs. If the justification succeeds, then “all proofs” would include proofs that make use of the technique in question, so that the assumption of global correctness of proofs would have presumed the correctness of the technique which was supposedly being justified. This is how circularity can be dangerous.

Given an attempt to justify a proof principle \(X\), a simple way to test for this kind of circularity is to ask the question, “If \(X\) were not correct, but we nonetheless admitted proofs which made use of \(X\), would this affect the validity of the justification?” If it would, then the justification is dangerously circular; if not, then the justification is not circular in any critical way.

So suppose the inference “\(A \text{ entails } A \lor B\)” were not generally valid, but we nonetheless admitted proofs that made use of this inference. Would this affect the correctness of the reasoning that if there is a proof of \(A\) then there is a proof of \(A\) or a proof of \(B\)? No, that trivial reasoning would still be valid. “If there is a wixle of \(A\) then there is either a wixle of \(A\) or a wixle of \(B\)” works just as well if “wixle” is a defective “\(\text{proof}\)” concept. Now suppose the inference “\(0 = 1 \text{ entails } A\)” were not generally valid, but we nonetheless admitted proofs that made use of this inference. Would this affect the correctness of the justification by vacuity? Yes, it would, because proofs which made use of ex fals might not be correct, and hence could conceivably establish \(0 = 1\). But the existence of proofs of \(0 = 1\) would invalidate the justification by vacuity. I do not see how I can make it any clearer that justification by vacuity requires the global validity of proofs in a way that the justifications of the other deduction rules do not.

2.7. Modus ponens

A more interesting objection that I would rather have seen specifically targets modus ponens. Given a proof of \(A\) and a procedure that converts any proof of \(A\) into a proof of \(B\), we may obtain a proof of \(B\)— but only if the procedure works. There
could be a circularity issue here. Perhaps the concept “procedure that successfully converts proofs into proofs” is heuristic. Moreover, perhaps we can make use of valid proofs to help construct successful proof conversion procedures. Then the validity of modus ponens would require that all proof conversion procedures succeed, which would in turn require the validity of all proofs, including proofs that made use of modus ponens.

This is a plausible objection, but it is not critical because the variety of proof conversion procedures that are actually needed in typical formal systems is quite limited. For instance, one such procedure is “given a proof of \(A\) and a proof of \(B\) that assumes \(A\), append the latter to the former to produce a proof of \(B'\).” If we possess a proof of \(B\) assuming \(A\), we can use this procedure to convert any proof of \(A\) into a proof of \(B\). This is what justifies the natural deduction rule which allows us to deduce \(A \rightarrow B\) from the existence of a proof of \(B\) that assumes \(A\). It could also happen that the justification of some nonlogical axiom involving implication might require the use of some other more special kind of proof conversion procedure. For instance, in order to justify transitivity of equality,

\[x = y \land y = z \rightarrow x = z,\]

we need a procedure which will convert a proof of \(x = y\) together with a proof of \(y = z\) into a proof of \(x = z\). One such procedure is: first give the proof of \(x = y\), and then give the proof of \(y = z\) with every occurrence of \(y\) replaced by \(x\).

Other nonlogical axioms might require other special proof conversion techniques. But generally speaking, in order to justify the axioms of any particular formal system we would never need to invoke an open-ended notion of “proof conversion procedure”. Modus ponens could always be saved by restricting \(A \rightarrow B\) to mean “there is a procedure [of some definite type] which will convert any proof of \(A\) into a proof of \(B\)”.

2.8. Minimal logic

The basic rules of natural deduction for minimal logic are:

1. given \(A\) and \(B\), deduce \(A \land B\)
2. given \(A \land B\), deduce \(A\) and \(B\)
3. given either \(A\) or \(B\), deduce \(A \lor B\)
4. given \(A \lor B\), a proof of \(C\) from \(A\), and a proof of \(C\) from \(B\), deduce \(C\)
5. given a proof of \(B\) from \(A\), deduce \(A \rightarrow B\)
6. given \(A\) and \(A \rightarrow B\), deduce \(B\)

(There are also rules for quantifiers; see [4] for a fuller and more precise account.) We have no special axioms for negation because we interpret \(\neg A\) to mean \(A \rightarrow 0 = 1\). Intuitionistic logic is minimal logic plus ex falso; classical logic is intuitionistic logic plus excluded middle.

From what we have said above, minimal logic is suitable for reasoning about heuristic concepts, in particular for reasoning about provability. Ex falso might also be justified in such a setting, but it is not clear that this will always be the case.

Excluded middle is generally not a valid assumption when heuristic concepts are in play. This conclusion is already argued by Dummett when he has to deal with assertions which quantify over indefinitely extensible concepts. But the problem for heuristic concepts is much more severe. Indeed, in the indefinitely extensible case, the concepts are assumed to be decidable and so we do have excluded middle for all atomic formulas. The only question is whether we can accept it for formulas that quantify over an indefinitely extensible concept. This would appear to depend on how we interpret truth: under the proof interpretation, excluded middle is dubious because there is no reason to assume that every such formula is in principle provable or disprovable. Since the concept is indefinitely extensible there is no question of being able, even in principle, to verify such formulas in any mechanical way. The only way to assess the truth of formulas with quantification is by deductive reasoning, and generally speaking it seems unlikely that the truth value of every formula could be determined in this way. So interpreting “true” as “provable in principle” probably renders excluded middle invalid.

However, I do not see anything wrong with a classical interpretation of truth – taking “true” to mean “is the case” rather than “is provable” – in the indefinitely extensible setting, and this would support the law of excluded middle. In any case, at a technical level it seems likely that we could generally justify excluded middle by replacing each indefinitely extensible concept with a definite subconcept. For instance, in set theory replace “set” by “set of accessible rank”. Or, if inaccessible cardinalities are in play, go to some larger cardinal. Broadly speaking, there should always be a cutoff that transcends any previously specified method of construction. Thus, we should generally be able to justify excluded middle by reinterpreting the system in a definite “toy” universe.

Heuristic settings are radically different. Even when working within a definite “toy” universe it may be impossible to pin down exactly which individuals fall under a given heuristic concept. For example, consider the heuristic notion of “definability” and the purported definition

the smallest natural number not definable in ten English words

(Berry’s paradox). Even restricting to the finite set of all ten word long strings, we still arrive at a paradox if we suppose that every such string definitely either does or does not define a natural number. So assuming the law of excluded middle when reasoning about heuristic concepts may be not merely unjustified, but actually inconsistent.
3. The liar paradox

3.1. Reasoning about provability

We can now resolve the provability version of the liar paradox discussed earlier. Suppose we want to reason about provability itself. We introduce a predicate Prov('A') signifying that there is a proof of the formula \(A \) with Gödel number 'A'. Not a proof within any particular formal system, but a semantically valid proof in an informal sense.

Since "proof" is heuristic, classical logic will not be appropriate here. Ex falso might be justifiable, but excluded middle presumably is not.

Which nonlogical axioms can we adopt? Is it legitimate to assume \(A \iff \text{Prov}'(A)' \)? Recall that we are using the proof interpretation of the logical symbols, so that this means that any proof of \(A \) can be converted into a proof that there is a proof of \(A \), and vice versa. One implication is valid: given a proof \(p \) of \(A \), we can prove that there is a proof of \(A \) by exhibiting \(p \). If \(p \) really is a proof of \(A \) then it should be possible to verify this. In other words, we reject the possibility of a valid proof whose validity, in principle, could never be recognized. Thus, we can accept the axiom

\[
A \rightarrow \text{Prov}'(A)'.
\]

In the reverse direction, can we convert any proof that \(A \) has a proof into a proof of \(A \)? Here is an argument suggesting that we can. Since we are reasoning constructively, any proof that some object exists ought to, in principle, actually give us a means of constructing that object. So any proof that there is a proof of \(A \) should, if executed, actually produce a proof of \(A \). This means that we can convert a proof \(p \) that \(A \) is provable into a proof of \(A \) by executing \(p \) and displaying the result.

But this argument is flawed in the same way that the justification by vacuity of ex falso is flawed. It requires that any proof that \(A \) has a proof, including proofs that might make use of the axiom \(\text{Prov}'(A') \rightarrow A \), actually does produce a proof of \(A \). That is, it assumes the global correctness of all proofs. So we cannot adopt the axiom \(\text{Prov}'(A') \rightarrow A \).

Additional axioms for provability that are straightforwardly justifiable include

\[
\begin{align*}
\text{Prov}'(A') \land \text{Prov}'(B') & \iff \text{Prov}'(A \land B') \\
\text{Prov}'(A') \lor \text{Prov}'(B') & \rightarrow \text{Prov}'(A \lor B') \\
\text{Prov}'(A \lor B') \land \text{Prov}'(A \rightarrow C') \land \text{Prov}'(B \rightarrow C') & \rightarrow \text{Prov}'(C') \\
\text{Prov}'(A') \land \text{Prov}'(A \rightarrow B') & \rightarrow \text{Prov}'(B'),
\end{align*}
\]

for all formulas \(A, B, \) and \(C \). (See [10] for additional explanation.)

3.2. The provable liar

Let \(L \) be the "provable liar sentence" introduced earlier. One way to formalize it is as \(L = \text{Prov}'(\neg L') \). We can reason informally about \(L \) as follows. Assume \(L \). Then we have \(\text{Prov}'(\neg L') \) by definition. But also, since \(L \rightarrow \text{Prov}'(L') \), we have \(\text{Prov}'(L') \). Thus, we have \(\text{Prov}'(L \land \neg L') \) and hence we have \(\text{Prov}'(0 = 1') \). So we have shown

\[
L \rightarrow \text{Prov}'(0 = 1').
\]

Or suppose we assume \(\neg L \). Then the axiom scheme \(A \rightarrow \text{Prov}'(A') \) allows us to infer \(\text{Prov}'(\neg L') \), i.e., we can infer \(L \). Thus, we have \(L \land \neg L \) and hence we have \(0 = 1 \). So we have shown \(\neg L \rightarrow 0 = 1 \), i.e., \(\neg \neg L \).

We have obtained real, informative conclusions about \(L \). It entails that a contradiction is provable, and its absurdity is absurd. (If the provable liar sentence is formalized instead as \(L = \neg \text{Prov}'(L') \), then we obtain similar results: we can prove \(\neg L \) and \(\neg \neg \text{Prov}'(L') \).) But lacking both \(\text{Prov}'(A') \rightarrow A \) and \(A \lor \neg A \), we cannot deduce a contradiction. Both restrictions are important: adding the former as an axiom would allow the inference \(L \rightarrow 0 = 1 \), i.e., we could prove \(\neg L \), which as we just saw leads to a contradiction. Adding the latter as an axiom would yield \(\text{Prov}'(0 = 1') \), since both \(L \) and \(\neg L \) entail this conclusion.

Removing the circularity inherent in adopting axioms whose justification assumes the global correctness of all proofs defeats the provable liar paradox. This conclusion is made precise in [10], where we present a formal system \(HT \) for reasoning about propositions involving a self-applicative provability predicate. We prove that neither \(0 = 1 \) nor \(\text{Prov}'(0 = 1') \) is a theorem of \(HT \).

3.3. Revenge

Attempts to resolve any version of the liar paradox have to deal with the so-called "revenge problem". Typically a resolution that may seem to handle the original liar type sentence is defeated by a modified sentence that is engineered for that purpose.

The resolution offered here does not suffer from any revenge problem because we do not come to any definite conclusion about the sentence \(L \). We neither affirm it, nor deny it, nor assert that it can be neither affirmed nor denied. Since we lack excluded middle we are not forced to take any of these positions. We do assert that \(\neg L \) is absurd, but lacking excluded middle, this alone does not entail \(L \).
What we can say is that if \(L \) were the case then there would be a proof of \(0 = 1 \). But we cannot infer from this that \(L \) is not the case, precisely because we are not in a position to definitely affirm that there is no proof of \(0 = 1 \). We discussed the illegitimacy of this assumption at some length; now we see that not being able to prove that we reason consistently, i.e., not being able to prove \(\neg \text{Prov}(\,0 = 1) \), is fortunate. If we could prove this then we could combine that result with the formula
\[
L \rightarrow \text{Prov}(\,0 = 1)
\]
derived above to infer \(\neg L \), and from this obtain a contradiction.

We know that neither \(0 = 1 \) nor \(\text{Prov}(\,0 = 1) \) is a theorem of the formal system HT, which is supposed to model valid informal reasoning about provability. However, this does not ensure that there is no proof of \(0 = 1 \), since HT is, necessarily, only a partial formalization of valid informal reasoning.

3.4. The classical liar paradox

Does our resolution of the provable liar paradox also apply to the classical liar paradox framed in terms of truth?

It does if we identify “true” with “provable”, but this is dubious because provability is heuristic and our basic intuition about truth tells us that it is completely sharp. A sentence is true if and only if what it asserts is the case, and provided we are talking about a sentence that has a definite meaning, that seems like a completely sharp question.

The qualification that the sentence has a definite meaning is a key point, because until we define the word “true” any sentence that refers to this concept evidently does not have a definite meaning. It follows that it would be circular to use

\[
a \text{sentence is true } \Leftrightarrow \text{what it asserts is the case}
\]

as a definition of truth for sentences that themselves contain the word “true”.

There are two basic ways of dealing with this circularity. One, due to Tarski, is to introduce a sequence of words \{true\}_n and apply (*) inductively, so that a sentence is true_n if (1) it does not contain the word “true_k” for any \(k \geq n \), and (2) what it asserts is the case. We get around the problem of circularity by using a hierarchy of truth predicates, each of which evaluates sentences that only involve truth predicates at lower levels. The other possibility is Kripke’s suggestion to work with a single truth predicate but use (*) to define its range in stages. So at stage 0 we define what it means for sentences that do not contain the word “true” to be true, at stage 1 we define the truth of sentences that at worst refer to the truth of stage 0 sentences, and so on. This leads to a general notion of “groundedness” and a reasonable definition of truth for grounded sentences. The liar sentence

\[
\text{“This sentence is not true.”}
\]

is an example of an ungrounded assertion, where attempting to evaluate its truth value leads to an infinite loop, rather than terminating after finitely many stages as would be the case for a grounded assertion.

Both approaches are interesting and valuable, but both leave something to be desired as a general explication of truth. Tarski’s solution does not do justice to our intuition of truth as a unitary notion. In particular, we have a clear sense that any sentence that is true_n for some \(n \) is, in fact, really true. Besides, we want to be able to say things like

The liar sentence is not true_n for any \(n \).

But according to Tarski this sentence does not have a truth value. At any rate, it is not true_n for any \(n \). Kripke’s solution is subject to a similar objection (as Kripke acknowledges; see pp. 714–715 of [3]): we want to say

The liar sentence is not true, indeed it is not even grounded.

But this sentence itself is not grounded and hence has no truth value in Kripke’s scheme.

The preceding should make it clear that truth in a general setting, which includes consideration of sentences that themselves refer to truth, does not have the “absolute” quality that it does seem to have in limited settings where it is applied to a restricted class of assertions, each of which has a preexisting well-defined meaning. Instead, it has a heuristic quality. Any partial definition of truth can always be extended further using (*).

The truth theories of Tarski and Kripke are unfaithful to our informal notion of truth, since both deny truth values to assertions which are intuitively true. In contrast, equating truth with provability matches our intuition perfectly in both cases: under this interpretation, we may affirm that the liar sentence is neither grounded nor true_n for any \(n \), since we can easily give informal proofs of these facts.

The objection that provability is heuristic while truth is definite is no longer persuasive. To the objection that intuitionistic provability is not adequate to account for mathematical truth, we reply that the substantive weakness of intuitionistic mathematics has less to do with the use of intuitionistic logic than it has to do with the traditional intuitionistic rejection of a completed infinity. The latter is not relevant to our treatment of the liar paradox: if we accept the idea of a completed infinity then we may also accept the possibility of infinite proofs. All that matters is that we have some coherent notion of provability and that it is heuristic. It need not be finitary in any sense.

At any rate, if we equate truth with provability then the standard liar paradox will have the same satisfying resolution as the provable liar paradox. It is satisfying because it is philosophically well-motivated, it allows us to draw interesting
conclusions about the liar sentence \((L \rightarrow \text{Prov}(\neg 0 = 1))\) and \(\neg \neg L\), and it is technically substantive (HT does not prove \(0 = 1\) or \(\text{Prov}(\neg 0 = 1)\), as we show in [10]). Moreover, as explained in [10], we can give related resolutions of the paradoxes of Berry and Grelling-Nelson.

On the other hand, we are free to define “true” however we like and there are certainly settings in which Tarskian or Kripkean definitions are desirable. If we adopt either of those definitions then the revenge problem should perhaps simply be ignored. Although we can informally prove that the liar sentence is neither grounded nor true, for any \(n\), this does not matter because truth is not equated with provability.

If that conclusion is unsatisfying, this is a testament to the strength of our intuition that truth at the broadest level really is equatable with provability.

References