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Abstract 

Yasumoto, M., Nonstandard arithmetic of Hilbert subsets, Annals of Pure and Applied Logic 
52 (1991) 195-202. 

Let f (X, Y) E Z[X, Y] be irreducible. We give a condition that there are only finitely many 
integers n E Z such that f (n, Y) is reducible and we give a bound for such integers. We prove a 
similar result for polynomials with coefficients in polynomial rings. Both results are proved by, 
so-called, nonstandard arithmetic. 

For each irreducible polynomial f(X, Y) E R[X, Y], we denote by J(f) the set 
of all r E R that f(r, Y) is reducible in R[Y]. In case of R = Z, Z -J(f) (such a set 
of integers is called a Hilbert subset) is infinite (Hilbert’s irreduciblility theorem), 
moreover it is known [l] that J(f) is very thin. In Section 1, we give a sufficient 
condition that J(f) is finite and give its bound. Let F be a function field over Q of 
an algebraic curve r defined by the equation f(X, Y) = 0, in other words, 
F = C&.x, y) where x is transcendental over Q and f(x, y) = 0. By a functional 
prime divisor of F, we mean an equivalence class of nontrivial valuations of F 
which are trivial on Q. For a functional prime divisor P, we denote by vP the 
normalized valuation (i.e., its valuation group is Z) belonging to P. A functional 
prime P is called a pole of z E C&x, y) if up(z) < 0. For each f(X, Y) E h[X, yl, 
its height denoted by H(f) is defined to be the maximum of absolute values of 
coefficients of f(X, Y). In Section 1, we prove 

Theorem 1. Let f (X, Y) be an irreducible polynomial with integer coefficients and 
F = Q(x, y) its function field. Assume there are more than degy(f)/2 poles of x. 
Then there are only finitely many integers n E Z such that f (n, Y) is reducible. 
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Moreover, if f (n, Y) is reducible, then 

InI< W(f) + 0” 

where C is a constant determined by the degree off (X, Y). 

Let us give an example. Let 

f (X, Y) = x4 - Y4 + g(X, Y) 

be an irreducible polynomial where deg(g(X, Y)) < 3. Let F = Q(x, y) be its 
function field, There are 3 poles of x corresponding to irreducible factors of 
X4 - Y4. Hence the assumption of Theorem 1 is satisfied. So there are only 
finitely many integers n such that n4 - Y4 + g(n, Y) is reducible and there is a 
constant C such that n < (H(g) + l)c for any integer n with n4 - Y4 + g(n, Y) 
reducible. Next we consider examples not satisfying the conclusion of Theorem 1. 
For each natural number d, we let 

fd(x, y) = (x + ~)~(x + 2~)~ - - - (x + dy)2 - 2x2 + 1 

and let Fd = Q(x, y) be its function field. It is well known that there are infinitely 
many integers n such that 2n2 - 1 is a square, say k: for k,, E Z. Then for such 
integers n, fd(n, y) = (n + y)“(n + 2~)~ - - - (n + dy)2 - ki is reducible. Since x has 
d = degY(fd)/2 poles, these examples mean that as far as degrees are concerned, 
the assumption in Theorem 1 that there are more than degy(f)/2 poles of x is 
best possible. 

In order to prove Theorem 1, we use the fact that *Q has a unique internal 
archimedean absolute value, so Theorem 1 cannot be generalized for algebraic 
number fields of finite degree. Next we consider the case that R = K[t] is a 
polynomial ring where K is a field and t is transcendental over K. Let 

f (X Y, t) E W, Y, tl b e an irreducible polynomial. As before, let F = K(x, y, t) 
where x is transcendental over K(t) and f (x, y, t) = 0. We consider F as an 
algebraic function field of one variable over K(t). So a functional prime divisor of 
F is an equivalence class of nontrivial valuations of F which are trivial on K(t). In 

Section 2, we prove 

Theorem 2. Let f (X, Y, t) be an irreducible polynomial with coefficients in a field 
K. Let F be its function field of one variable over K(t). Assume there are more 
than degy(f)/2 poles of x. Let q(t) E K[t]. If f (q(t), Y, t) is reducible, then . 

de&At)) < W%(f (X K t)) + 1) 

where C is a constant determined by deg,(f (X, Y, t)) and degy(f (X, Y, t)). 

Both Theorems 1 and 2 are proved by a nonstandard method, so we assume the 
reader is familiar with nonstandard arithmetic on the rational number field [2] 
and on rational function fields [3]. 
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1. 

Let *Q and *Z denote enlargements of the rational number field Q and the 
integer ring Z respectively where by an enlargement, we mean an elementary 
extension which satisfies the or-saturation property. Let H be the height function 
of *Cl; i.e. H(al/3) = max(la], ]/I[) w h ere (Y and p are mutually prime nonstan- 
dard integers. A subfield Q, of *Cl! is called H-convex if x E Q, and H(x) > H(y) 
imply y E Qi. In the rest of this section, Q, always denotes an H-convex subfield 
of *Cl and let Z1 = Qr tl *Z. Let x be a nonstandard integer not contained in Qi. 
Then x is transcendental over Q, [4, Lemma l]. Let F be a finite algebraic 
extension of Q,(X). (F is not necessary included in *Cl.) Since *QF is a finite 
algebraic extension of *Cl, *QF is internal. Let 6 be the ring of all algebraic 
integers in *QF. Let K1 denote the algebraic closure of Q, in *QF. Then F is an 
algebraic function field of one variable over Ki. By a functional prime of F, we 

mean, as before, an equivalence class of nontrivial valuations of F which are 
trivial on Ki. Let ]xIi, . . . , JxI, be all internal archimedean absolute values of 
*QF which induce in *Q the ordinary absolute value. Since s 6 [*QF: *a], s is 
finite. For each z E *QF, we define 

l,(z) = {t E 6 1 tz E O}. 

Lemma 1. Let z 4 K1. Zf for all i SS, there is y E Z1 such that lzli < y, then 

Z_(z) n z1= (0). 

Proof. Assume there exists a nonzero t E Z_(z) n Z1. Then tz E 0. Since ltzli < 

ItI y for all iss, tz is algebraic over Zi, so tz E BII K1, hence z E K1, a 
contradiction. •J 

For each i SS, let Ri = {z E *QF 1 lzli < y for some y E Z,}. Then Ri is a 
valuation ring whose maximal ideal is {z E *QF 1 )Zli < l/lrl for all y E Z,}. If 
F fl Ri is not trivial, namely F # Ri, then F n Ri is a valuation ring. Since 
F fl Ri =I K1, this valuation ring yields a functional prime P of F. We say that P is 
induced by an archimedean absolute value. 

Let R = {z E *QF 1 yz is an algebraic integer for some y E Z,} and Z a maximal 
ideal of R. Let R, denote the local ring of R by I. If F n RI is not trivial, then 
F fl RI is a valuation ring, hence it also yields a functional prime P of F. We say 
that P is induced by I. 

Lemma 2 (cf. [4, Lemma 21, [2, Lemma 4.11). Every functional prime P of F is 

induced by an archimedean prime or a maximal ideal Z of R. 

Proof. By the theorem of Riemann-Roth, there exists z E F which admits P as 
its only pole. If there is i 6 s such that lZ]i > y for all y E Zi, then z $ Ri. Hence 
z $ F rl Ri. Then F fl Ri yields a functional prime which is a pole of z. Since P is 
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the only functional pole of z, P is induced by an archimedean absolute value. 
Next assume for all i G s there is y E Z1 such that Jzli < y. By Lemma 1, 

Z&z) n Zi = (0). H ence Z,(z)R is a proper ideal of R. Let Z be a maximal ideal of 
R which includes Z,(z)R. Then the local ring of Z does not contain z, so 
z $ F n R,. Hence F rl RI is not trivial. By the same arguments as above P is 
induced by I. Cl 

Proof of Theorem 1. Suppose Theorem 1 is false. Let d E N. For any natural 
number N, there exists an integer (Y and an irreducible polynomial f(X, Y) E 
Z[X, Y] of degree d which satisfies the assumption of the theorem such that 
~(LY, Y) is reducible and 

I4 ’ (H(f) + UN. (1) 

By a nonstandard principle, the above assertion holds for any enlargement. We 
take NE *N - N. Then f(X, Y) E *(Z[X, Y]), but since the degree of f(X, Y) is 
d E N, f(X, Y) E *Z[X, Y], i.e., f(X, Y) is a polynomial with coefficients in *Z. 
Let Qi be the smallest H-convex subfield of *Q which contains all coefficients of 

f(X, Y), i.e., 

Q, = {z E *Cl 1 H(z) G (H(f) + 1)” for some 12 E lV>. 

BY (I), Q $ QI. S ince Q, is algebraically closed in *Q, (Y is transcendental over 

Ql. Let f(s Y) =fi(w Y)f2(a, Y) where fi(X Y), f,(X, Y) E *Z[K Yl and 1 s 
deg&) < degy(fi). Let F = Ql(cu, j3) where /l satisfies fi(cu, p) = 0. Then 

s s [*QF: *Cl] s deg&) s 1 degy(f). (2) 

Since cy is a nonstandard integer, by Lemma 2 every functional pole of LY in F is 
induced by an archimedean absolute value in *QF, so the number of functional 
poles of D is not more than s, hence by (2) not more than degy(f)/2. Let x be 
transcendental over *Q and let y satisfy f(x, y) = 0. Then the number of 
functional poles of x in *Cl@, y) is, by the assumption of the theorem, larger than 
degu(f)/2. But there is an embedding 

Ed: F = Q,(s B)-, *Q(x, Y) 

where X((Y) =x, n(P) = y and for all z E Ql, n(z) = z. Since Q, is algebraically 
closed in *Q, the number of poles of (Y and x must be the same, this is a 
contradiction and it completes the proof of Theorem 1. 0 

Lemma 2 is very useful and has many applications in number theory other than 
the above. In the rest of this section we give one of them. Let q(X) E Cl!(X). It is 
easily proved that if for a sufficiently large n E N, q(n) is an integer, then 
q(X) E CD[X]. We generalize this fact for algbraic function fields of one variable. 

Let f(X, Y) E CJ[X, Y] b e irreducible and 63(x, y) its function field over Q. For 
each integer n, let pn be an algebraic number satisfying f(n, /In) = 0. Let 
q(X, Y) =g(X, Y)/h(X, Y) E Cl!(X, Y) where g(X, Y), h(X, Y) E Z[X, Y] are 
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coprime polynomials. We define H(q) = max(H(g), H(h)) and D(q) = 
max(deg(g), deg(h)). We prove 

Theorem 3. If there exists an integer n > Hi such that cp(n, /3,,) is an algebraic 
integer, then q(x, y) is integral over Q[x] where C = C(f, d) is a constant 

determined by f (X, Y) and d = D(q). 

Proof. Assume otherwise. Let d E N. For any natural number N, there exists a 
q(X, Y) E Cl(X, Y) with d = D(q) an d an integer n > H(q) such that q(n, &J is 
an algebraic integer but q(x, y) is not integral over Cl&]. The above statement is 
also valid in the enlargement, in other words, for any N E *I+& there exists a 
q(X, Y) E *Q(X, Y) with d = D(q) an d an integer (Y > H(q)” such that ~(a, /3@) 
is an algebraic integer but q(x, y) is not integral over *(a[~]). We take 
NE *N-N. Since d = II(cp) is finite, 97(X, Y) E *C!!(X, Y), i.e., q(X, Y) is a 
rational function with coefficients in *Q. Let Q, be the smallest H-convex subfield 
of *Q which contains all coefficients of q(X, Y), i.e., 

Q1 = {z E *Q ( H(z) s (H(q) + 1)” for some n E N}. 

Since N is infinite and & > H(q + l)N, (Y $ Q1. Since Q1 is algebraically closed in 
*Q, a: is transcendental over Q,. Let F = QI(a, &). Then there is an embedding 

Ed : F = QI<~, BaF--+ *WG Y) 

where Jo =x, ~~(16,) =y and for all z E Q1, n(z) = z. Since q(x, y) is not 
integral over *(Cl[x]), ~(a; /la) is not integral over Q,[(Y]. Hence there is a 
functional prime P of F which is a pole of ~(a; &) but is not a pole of a. Since 
q((u, &) is an algebraic integer, P cannot be induced by an maximal ideal Z of R. 
Hence by Lemma 2, P is induced by archimedean primes only. Since (Y E *Z - 
Z1, any functional prime which is induced by an archimedean prime is a pole of 
ct; this is a contradiction. 0 

2. 

Let K be a field and t transcendental over K. For each x = g(t)/h(t) E K(t), we 
define D(x) = max(deg(g), deg(h)) where g(X), h(X) E K[X] are coprime poly- 
nomials. As before, *(K(t)) denotes an enlargment of the rational function field 
K(t). The following lemma is well known. 

Lemma 3 ([3], [5]). *K(t) is algebraically closed in *(K(t)). 

*K(t) is the set of all x with D(x) E N. A subfield L of *(K(t)) is called 
D-convex if x E L and D(x) > D(y) imply y E L. Remark that K(t) is not 
D-convex in *(K(t)). In the following, L always denotes a D-convex subfield of 
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*(K(t)) and we define L1 = L fl *(K[t])) and 
following lemma is a generalization of Lemma 3. 

Lemma 4. Zf L is a D-convex subfield of *(K(t)), 

*(K(t)). 

Proof. Let 4t)lB(r) E *(K(r)) - L where 

N,={D(x)E*NlxEL}. The 

then L is algebraically closed in 

a(t), B(t) E *W[tl) and 
gcd(+), B(t)) = 1. S ince a(t) 4 L, m(t) $ L, or P(t) $ L1. We may assume 
@(t) $ L1. Assume (~(f)l/3(f) is algebraic over K. Then there are 

YIN, Y&)7 * * * 7 m(t) E L1 such that m(t) #O and 

Y&)(g)” + ,,(t)(~,“’ + * * * + m(t) = 0. 

Then 
y&)CX(t)” + yr(t)c”(t)“-rZ3(t) + . . * + y&)/3(t)” = 0. 

Hence 

Yn (V(t)” = 0 mod o(t). 

Since gcd(cy(t), /3(t)) = 1, 

Y&)=0 

L is D-convex and 
Hence 

m(t) = 0, 

mod a(t). 

a(t) $ L1 = L II *(K[t]), therefore deg(y,,(t)) -C deg(cu(t)). 

this is a contradiction. 0 

Let x E *(K([t]) - L and F a finite algebraic extension of L(x). Since *(K(t))F 

is a finite algebraic extension of *(K(t)), *(K(t))F is internal. Let M denote the 
algebraic closure of L in *(K(t))F. Then F is an algebraic function field of one 
variable over M. By a functional prime of F, we mean, as before, an equivalence 
class of nontrivial valuations of F which are trivial on M. Let 6 be the integral 
closure of *(K[t]) in *K(t)F. Let u, be the valuation on *(K(t)) such that 
um(cy(t)//3(t)) = deg(P(t)) - deg(o(t)). Let ul, u2, . . . , v, be all internal valua- 
tions of *(K(T))F which extend v,. Since s G [*(K(t))F: *(K(t))], s is finite. For 
each z E *(K(t))F, we define 

k(z) = {y(r) E f.9 1 Y(OZ E 0). 

Lemma 5. Let z E *(K(t))F - M. Zf f or all i =G s, there is x E M such that 

vi(~) < Vi(X), then Z-(Z) f~ M = (0). 

Proof. For each i CS, let Ri = {Z E *(K(t))F ) Vi(Z) > Vi(X) for some x EM}. 
Then Ri is a valuation ring whose maximal ideal is {z E *(K(t))F 1 Vi(Z) > Vi(X) 
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for all x E M}. If F n Ri is not trivial, namely F q! Ri, then F n Ri is a valuation 
ring. Since F rl Ri 3 M, this valuation ring yields a functional prime P of F. We 
say P is induced by an infinite prime of t. 

Let R = {z E *(K(t))F 1 y .z E 6 for some y E M} and Z a maximal ideal of R. Let 
RI denote, as before, the local ring of R by 1. If F fl RI is not trivial, then F rl R, 
is a valuation ring, hence it also yields a functional prime P of F. We say that P is 
induced by I. 0 

Lemma 6 (cf. Lemma 2). Every functional prime P of F is induced by an infinite 
prime of t or a maximal ideal Z of R. 

Proof. By the theorem of Riemann-Roth, there exists z E F which admits P as 
its only pole: If there is i s s such that Vi(Z) 6 Vi(X) for all x E M, then z # Ri, 
hence F qk Ri, i.e., F n Ri is not trivial, so it yields a functional prime which is a 
pole of z. Since P is the only functional pole of z, P is induced by an infinite 
prime of t. Next assume for all i G s there is x E M such that Vi(Z) < Vi(X). Then 
by Lemma 5, Z,(z)R is a proper ideal of R. Let Z be a maximal ideal including 

Z,(z)R. Then z $ RI, hence F n RI is not trivial, so it yields a functional prime 
which is a pole of z because z $ F fl RI. But P is the only pole of z, so P is 
induced by I. Cl 

Proof of Theorem 2. The proof of Theorem 2 is essentially the same as that of 
Theorem 1. Suppose Theorem 2 is false. Let d E N. For any natural number N, 
there exist a polynomial Q, E K[t] and an irreducible polynomial f (X, Y, t) E 
K[X, Y, t] with deg,(f), def,(f) < d which satisfies the assumption of the 
theorem such that f (q(t), Y, t) is reducible and 

deg(&)) > N(degA(X, Y, 9) + 1). (3) 

By nonstandard principle, the above assertion holds for any enlargement. We 
take N E *N - N. Then f (X, Y, t) E *(K[X, Y, t]), but since the X-degree and the 
Y-degree of f(X, Y, t) are at most d E N, f(X, Y, t) E *(K[t])[X, Y], i.e., 
f (X, Y, t) is a polynomial with coefficients in *(K[t]). We define 

L = {z E *(K(t)) 1 D(z) < n(deg,(f (X, Y, t)) for some n E N}. 

By (3), q(t) $ L. Since L is D-convex, L is algebraically closed in *(K(t)), hence 
q(t) is transcendental over L. Let f (q(t), Y, t) = fi(q(t), Y, t)J,(q(t), Y, t) where 

MX, Y, 0, $2(X, Y9 9 l *w1xx Yl and 1~ degr(fl) G deg&). Let F = 
L(rp(t), q?) where q!~ satisfies fi(q(t), $J, t) = 0. Then 

s s [*(K(t))F : *W(t))1 6 dw4fi) s f degy(f ). (4) 

Since q(t) is a nonstandard polynomial, by Lemma 6 every functional pole of 
q(t) in F is induced by an infinite prime of t, so the number of functional poles of 
v(t) in F is not more than s, hence by (4) not more than degy(f)/2. Let x be 
transcendental over *(K(t)) and let y satisfy f (x, y, t) = 0. Then the number of 
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functional poles of x in *(K(t)) is larger than degy(f)/2. But there is an 
embedding 

n: F = L(q, q)-* *(K(O)(x, y) 

where X(Q)) = x, n(v) = y and for all z E L, n(z) = z. Since L is algebraically 
closed in *(K(t)), the number of poles of cp and x must be same, this is a 
contradiction and it completes the proof of Theorem 2. Cl 
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