Annals of Pure and Applied Logic 52 (1991) 195–202 North-Holland 195

Nonstandard arithmetic of Hilbert subsets

Masahiro Yasumoto

Department of Mathematics, College of General Education, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Communicated by A. Prestel Received 1 September 1989

Abstract

Yasumoto, M., Nonstandard arithmetic of Hilbert subsets, Annals of Pure and Applied Logic 52 (1991) 195-202.

Let $f(X, Y) \in \mathbb{Z}[X, Y]$ be irreducible. We give a condition that there are only finitely many integers $n \in \mathbb{Z}$ such that f(n, Y) is reducible and we give a bound for such integers. We prove a similar result for polynomials with coefficients in polynomial rings. Both results are proved by, so-called, nonstandard arithmetic.

For each irreducible polynomial $f(X, Y) \in R[X, Y]$, we denote by J(f) the set of all $r \in R$ that f(r, Y) is reducible in R[Y]. In case of $R = \mathbb{Z}, \mathbb{Z} - J(f)$ (such a set of integers is called a Hilbert subset) is infinite (Hilbert's irreduciblility theorem), moreover it is known [1] that J(f) is very thin. In Section 1, we give a sufficient condition that J(f) is finite and give its bound. Let F be a function field over Q of an algebraic curve Γ defined by the equation f(X, Y) = 0, in other words, F = Q(x, y) where x is transcendental over Q and f(x, y) = 0. By a functional prime divisor of F, we mean an equivalence class of nontrivial valuations of F which are trivial on Q. For a functional prime divisor P, we denote by v_P the normalized valuation (i.e., its valuation group is Z) belonging to P. A functional prime P is called a pole of $z \in Q(x, y)$ if $v_P(z) < 0$. For each $f(X, Y) \in \mathbb{Z}[X, Y]$, its height denoted by H(f) is defined to be the maximum of absolute values of coefficients of f(X, Y). In Section 1, we prove

Theorem 1. Let f(X, Y) be an irreducible polynomial with integer coefficients and $F = \mathbb{Q}(x, y)$ its function field. Assume there are more than $\deg_Y(f)/2$ poles of x. Then there are only finitely many integers $n \in \mathbb{Z}$ such that f(n, Y) is reducible.

0168-0072/91/\$03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland)

Moreover, if f(n, Y) is reducible, then

 $|n| < (H(f) + 1)^{C}$

where C is a constant determined by the degree of f(X, Y).

Let us give an example. Let

 $f(X, Y) = X^4 - Y^4 + g(X, Y)$

be an irreducible polynomial where $\deg(g(X, Y)) \leq 3$. Let $F = \mathbb{Q}(x, y)$ be its function field. There are 3 poles of x corresponding to irreducible factors of $X^4 - Y^4$. Hence the assumption of Theorem 1 is satisfied. So there are only finitely many integers n such that $n^4 - Y^4 + g(n, Y)$ is reducible and there is a constant C such that $n < (H(g) + 1)^C$ for any integer n with $n^4 - Y^4 + g(n, Y)$ reducible. Next we consider examples not satisfying the conclusion of Theorem 1. For each natural number d, we let

$$f_d(x, y) = (x + y)^2 (x + 2y)^2 \cdots (x + dy)^2 - 2x^2 + 1$$

and let $F_d = \mathbb{Q}(x, y)$ be its function field. It is well known that there are infinitely many integers *n* such that $2n^2 - 1$ is a square, say k_n^2 for $k_n \in \mathbb{Z}$. Then for such integers *n*, $f_d(n, y) = (n + y)^2(n + 2y)^2 \cdots (n + dy)^2 - k_n^2$ is reducible. Since *x* has $d = \deg_Y(f_d)/2$ poles, these examples mean that as far as degrees are concerned, the assumption in Theorem 1 that there are more than $\deg_Y(f)/2$ poles of *x* is best possible.

In order to prove Theorem 1, we use the fact that $*\mathbb{Q}$ has a unique internal archimedean absolute value, so Theorem 1 cannot be generalized for algebraic number fields of finite degree. Next we consider the case that R = K[t] is a polynomial ring where K is a field and t is transcendental over K. Let $f(X, Y, t) \in K[X, Y, t]$ be an irreducible polynomial. As before, let F = K(x, y, t) where x is transcendental over K(t) and f(x, y, t) = 0. We consider F as an algebraic function field of one variable over K(t). So a functional prime divisor of F is an equivalence class of nontrivial valuations of F which are trivial on K(t). In Section 2, we prove

Theorem 2. Let f(X, Y, t) be an irreducible polynomial with coefficients in a field K. Let F be its function field of one variable over K(t). Assume there are more than $\deg_{Y}(f)/2$ poles of x. Let $\varphi(t) \in K[t]$. If $f(\varphi(t), Y, t)$ is reducible, then

$$\deg(\varphi(t)) < C(\deg_t(f(X, Y, t)) + 1)$$

where C is a constant determined by $\deg_X(f(X, Y, t))$ and $\deg_Y(f(X, Y, t))$.

Both Theorems 1 and 2 are proved by a nonstandard method, so we assume the reader is familiar with nonstandard arithmetic on the rational number field [2] and on rational function fields [3].

196

Let $^{*}Q$ and $^{*}Z$ denote enlargements of the rational number field Q and the integer ring \mathbb{Z} respectively where by an enlargement, we mean an elementary extension which satisfies the ω_1 -saturation property. Let H be the height function of *Q; i.e. $H(\alpha/\beta) = \max(|\alpha|, |\beta|)$ where α and β are mutually prime nonstandard integers. A subfield Q_1 of *Q is called *H*-convex if $x \in Q_1$ and H(x) > H(y)imply $y \in Q_1$. In the rest of this section, Q_1 always denotes an H-convex subfield of *Q and let $Z_1 = Q_1 \cap *\mathbb{Z}$. Let x be a nonstandard integer not contained in Q_1 . Then x is transcendental over Q_1 [4, Lemma 1]. Let F be a finite algebraic extension of $Q_1(x)$. (F is not necessary included in *Q.) Since *QF is a finite algebraic extension of *Q, *QF is internal. Let O be the ring of all algebraic integers in *QF. Let K_1 denote the algebraic closure of Q_1 in *QF. Then F is an algebraic function field of one variable over K_1 . By a functional prime of F, we mean, as before, an equivalence class of nontrivial valuations of F which are trivial on K_1 . Let $|x|_1, \ldots, |x|_s$ be all internal archimedean absolute values of *QF which induce in *Q the ordinary absolute value. Since $s \leq [*QF:*Q]$, s is finite. For each $z \in {}^*\mathbb{Q}F$, we define

 $I_{\infty}(z) = \{t \in \mathcal{O} \mid tz \in \mathcal{O}\}.$

Lemma 1. Let $z \notin K_1$. If for all $i \leq s$, there is $\gamma \in Z_1$ such that $|z|_i < \gamma$, then $I_{\infty}(z) \cap Z_1 = \{0\}$.

Proof. Assume there exists a nonzero $t \in I_{\infty}(z) \cap Z_1$. Then $tz \in O$. Since $|tz|_i < |t| \gamma$ for all $i \leq s$, tz is algebraic over Z_1 , so $tz \in O \cap K_1$, hence $z \in K_1$, a contradiction. \Box

For each $i \leq s$, let $R_i = \{z \in {}^*\mathbb{Q}F \mid |z|_i < \gamma \text{ for some } \gamma \in Z_1\}$. Then R_i is a valuation ring whose maximal ideal is $\{z \in {}^*\mathbb{Q}F \mid |z|_i < 1/|\gamma| \text{ for all } \gamma \in Z_1\}$. If $F \cap R_i$ is not trivial, namely $F \notin R_i$, then $F \cap R_i$ is a valuation ring. Since $F \cap R_i \supset K_1$, this valuation ring yields a functional prime P of F. We say that P is induced by an archimedean absolute value.

Let $R = \{z \in {}^{*}\mathbb{Q}F \mid \gamma z \text{ is an algebraic integer for some } \gamma \in Z_1\}$ and I a maximal ideal of R. Let R_I denote the local ring of R by I. If $F \cap R_I$ is not trivial, then $F \cap R_I$ is a valuation ring, hence it also yields a functional prime P of F. We say that P is induced by I.

Lemma 2 (cf. [4, Lemma 2], [2, Lemma 4.1]). Every functional prime P of F is induced by an archimedean prime or a maximal ideal I of R.

Proof. By the theorem of Riemann-Roch, there exists $z \in F$ which admits P as its only pole. If there is $i \leq s$ such that $|z|_i > \gamma$ for all $\gamma \in Z_1$, then $z \notin R_i$. Hence $z \notin F \cap R_i$. Then $F \cap R_i$ yields a functional prime which is a pole of z. Since P is

M. Yasumoto

the only functional pole of z, P is induced by an archimedean absolute value. Next assume for all $i \leq s$ there is $\gamma \in Z_1$ such that $|z|_i < \gamma$. By Lemma 1, $I_{\infty}(z) \cap Z_1 = \{0\}$. Hence $I_{\infty}(z)R$ is a proper ideal of R. Let I be a maximal ideal of R which includes $I_{\infty}(z)R$. Then the local ring of I does not contain z, so $z \notin F \cap R_I$. Hence $F \cap R_I$ is not trivial. By the same arguments as above P is induced by I. \Box

Proof of Theorem 1. Suppose Theorem 1 is false. Let $d \in \mathbb{N}$. For any natural number N, there exists an integer α and an irreducible polynomial $f(X, Y) \in \mathbb{Z}[X, Y]$ of degree d which satisfies the assumption of the theorem such that $f(\alpha, Y)$ is reducible and

$$|\alpha| > (H(f) + 1)^N. \tag{1}$$

By a nonstandard principle, the above assertion holds for any enlargement. We take $N \in \mathbb{N} - \mathbb{N}$. Then $f(X, Y) \in \mathbb{Z}[X, Y]$, but since the degree of f(X, Y) is $d \in \mathbb{N}$, $f(X, Y) \in \mathbb{Z}[X, Y]$, i.e., f(X, Y) is a polynomial with coefficients in \mathbb{Z} . Let Q_1 be the smallest *H*-convex subfield of \mathbb{Q} which contains all coefficients of f(X, Y), i.e.,

$$Q_1 = \{ z \in {}^*\mathbb{Q} \mid H(z) \leq (H(f) + 1)^n \text{ for some } n \in \mathbb{N} \}.$$

By (1), $\alpha \notin Q_1$. Since Q_1 is algebraically closed in ${}^*\mathbb{Q}$, α is transcendental over Q_1 . Let $f(\alpha, Y) = f_1(\alpha, Y)f_2(\alpha, Y)$ where $f_1(X, Y)$, $f_2(X, Y) \in {}^*\mathbb{Z}[X, Y]$ and $1 \leq \deg_Y(f_1) \leq \deg_Y(f_2)$. Let $F = Q_1(\alpha, \beta)$ where β satisfies $f_1(\alpha, \beta) = 0$. Then

$$s \leq [*\mathbb{Q}F:*\mathbb{Q}] \leq \deg_Y(f_1) \leq \frac{1}{2} \deg_Y(f).$$
⁽²⁾

Since α is a nonstandard integer, by Lemma 2 every functional pole of α in F is induced by an archimedean absolute value in $*\mathbb{Q}F$, so the number of functional poles of α is not more than s, hence by (2) not more than $\deg_Y(f)/2$. Let x be transcendental over $*\mathbb{Q}$ and let y satisfy f(x, y) = 0. Then the number of functional poles of x in $*\mathbb{Q}(x, y)$ is, by the assumption of the theorem, larger than $\deg_Y(f)/2$. But there is an embedding

$$\pi: F = Q_1(\alpha, \beta) \to {}^*\mathbb{Q}(x, y)$$

where $\pi(\alpha) = x$, $\pi(\beta) = y$ and for all $z \in Q_1$, $\pi(z) = z$. Since Q_1 is algebraically closed in \mathbb{Q} , the number of poles of α and x must be the same, this is a contradiction and it completes the proof of Theorem 1. \Box

Lemma 2 is very useful and has many applications in number theory other than the above. In the rest of this section we give one of them. Let $\varphi(X) \in \mathbb{Q}(X)$. It is easily proved that if for a sufficiently large $n \in \mathbb{N}$, $\varphi(n)$ is an integer, then $\varphi(X) \in \mathbb{Q}[X]$. We generalize this fact for algbraic function fields of one variable. Let $f(X, Y) \in \mathbb{Q}[X, Y]$ be irreducible and $\mathbb{Q}(x, y)$ its function field over \mathbb{Q} . For each integer n, let β_n be an algebraic number satisfying $f(n, \beta_n) = 0$. Let $\varphi(X, Y) = g(X, Y)/h(X, Y) \in \mathbb{Q}(X, Y)$ where g(X, Y), $h(X, Y) \in \mathbb{Z}[X, Y]$ are coprime polynomials. We define $H(\varphi) = \max(H(g), H(h))$ and $D(\varphi) = \max(\deg(g), \deg(h))$. We prove

Theorem 3. If there exists an integer $n > H(\varphi)^C$ such that $\varphi(n, \beta_n)$ is an algebraic integer, then $\varphi(x, y)$ is integral over $\mathbb{Q}[x]$ where C = C(f, d) is a constant determined by f(X, Y) and $d = D(\varphi)$.

Proof. Assume otherwise. Let $d \in \mathbb{N}$. For any natural number N, there exists a $\varphi(X, Y) \in \mathbb{Q}(X, Y)$ with $d = D(\varphi)$ and an integer $n > H(\varphi)$ such that $\varphi(n, \beta_n)$ is an algebraic integer but $\varphi(x, y)$ is not integral over $\mathbb{Q}[x]$. The above statement is also valid in the enlargement, in other words, for any $N \in {}^*\mathbb{N}$, there exists a $\varphi(X, Y) \in {}^*\mathbb{Q}(X, Y)$ with $d = D(\varphi)$ and an integer $\alpha > H(\varphi)^N$ such that $\varphi(\alpha, \beta_\alpha)$ is an algebraic integer but $\varphi(x, y)$ is not integral over ${}^*(\mathbb{Q}[x])$. We take $N \in {}^*\mathbb{N} - \mathbb{N}$. Since $d = D(\varphi)$ is finite, $\varphi(X, Y) \in {}^*\mathbb{Q}(X, Y)$, i.e., $\varphi(X, Y)$ is a rational function with coefficients in ${}^*\mathbb{Q}$. Let Q_1 be the smallest *H*-convex subfield of ${}^*\mathbb{Q}$ which contains all coefficients of $\varphi(X, Y)$, i.e.,

$$Q_1 = \{ z \in {}^*\mathbb{Q} \mid H(z) \leq (H(\varphi) + 1)^n \text{ for some } n \in \mathbb{N} \}.$$

Since N is infinite and $\alpha > H(\varphi + 1)^N$, $\alpha \notin Q_1$. Since Q_1 is algebraically closed in * \mathbb{Q} , α is transcendental over Q_1 . Let $F = Q_1(\alpha, \beta_{\alpha})$. Then there is an embedding

 $\pi: F = Q_1(\alpha, \beta_\alpha) \to {}^*\mathbb{Q}(x, y)$

where $\pi(\alpha) = x$, $\pi(\beta_{\alpha}) = y$ and for all $z \in Q_1$, $\pi(z) = z$. Since $\varphi(x, y)$ is not integral over $*(\mathbb{Q}[x])$, $\varphi(\alpha, \beta_{\alpha})$ is not integral over $Q_1[\alpha]$. Hence there is a functional prime P of F which is a pole of $\varphi(\alpha, \beta_{\alpha})$ but is not a pole of α . Since $\varphi(\alpha, \beta_{\alpha})$ is an algebraic integer, P cannot be induced by an maximal ideal I of R. Hence by Lemma 2, P is induced by archimedean primes only. Since $\alpha \in *\mathbb{Z} - Z_1$, any functional prime which is induced by an archimedean prime is a pole of α , this is a contradiction. \Box

2.

Let K be a field and t transcendental over K. For each $x = g(t)/h(t) \in K(t)$, we define $D(x) = \max(\deg(g), \deg(h))$ where $g(X), h(X) \in K[X]$ are coprime polynomials. As before, *(K(t)) denotes an enlargment of the rational function field K(t). The following lemma is well known.

Lemma 3 ([3], [5]). K(t) is algebraically closed in K(t).

*K(t) is the set of all x with $D(x) \in \mathbb{N}$. A subfield L of *(K(t)) is called D-convex if $x \in L$ and D(x) > D(y) imply $y \in L$. Remark that K(t) is not D-convex in *(K(t)). In the following, L always denotes a D-convex subfield of

*(K(t)) and we define $L_1 = L \cap (K[t])$ and $N_1 = \{D(x) \in \mathbb{N} \mid x \in L\}$. The following lemma is a generalization of Lemma 3.

Lemma 4. If L is a D-convex subfield of *(K(t)), then L is algebraically closed in *(K(t)).

Proof. Let $\alpha(t)/\beta(t) \in {}^{*}(K(t)) - L$ where $\alpha(t)$, $\beta(t) \in {}^{*}(K[t])$ and $gcd(\alpha(t), \beta(t)) = 1$. Since $\alpha(t) \notin L$, $\alpha(t) \notin L_1$ or $\beta(t) \notin L_1$. We may assume $\alpha(t) \notin L_1$. Assume $\alpha(t)/\beta(t)$ is algebraic over K. Then there are $\gamma_0(t), \gamma_1(t), \ldots, \gamma_n(t) \in L_1$ such that $\gamma_n(t) \neq 0$ and

$$\gamma_0(t)\left(\frac{\alpha(t)}{\beta(t)}\right)^n + \gamma_1(t)\left(\frac{\alpha(t)}{\beta(t)}\right)^{n-1} + \cdots + \gamma_n(t) = 0.$$

Then

$$\gamma_0(t)\alpha(t)^n + \gamma_1(t)\alpha(t)^{n-1}\beta(t) + \cdots + \gamma_n(t)\beta(t)^n = 0$$

Hence

 $\gamma_n(t)\beta(t)^n\equiv 0 \mod \alpha(t).$

Since $gcd(\alpha(t), \beta(t)) = 1$,

 $\gamma_n(t) \equiv 0 \mod \alpha(t).$

L is D-convex and $\alpha(t) \notin L_1 = L \cap {}^*(K[t])$, therefore $\deg(\gamma_n(t)) < \deg(\alpha(t))$. Hence

 $\gamma_n(t)=0,$

this is a contradiction. \Box

Let $x \in {}^{*}(K([t]) - L \text{ and } F \text{ a finite algebraic extension of } L(x)$. Since ${}^{*}(K(t))F$ is a finite algebraic extension of ${}^{*}(K(t))$, ${}^{*}(K(t))F$ is internal. Let M denote the algebraic closure of L in ${}^{*}(K(t))F$. Then F is an algebraic function field of one variable over M. By a functional prime of F, we mean, as before, an equivalence class of nontrivial valuations of F which are trivial on M. Let \mathcal{O} be the integral closure of ${}^{*}(K[t])$ in ${}^{*}K(t)F$. Let v_{∞} be the valuation on ${}^{*}(K(t))$ such that $v_{\infty}(\alpha(t)/\beta(t)) = \deg(\beta(t)) - \deg(\alpha(t))$. Let v_1, v_2, \ldots, v_s be all internal valuations of ${}^{*}(K(T))F$ which extend v_{∞} . Since $s \leq [{}^{*}(K(t))F : {}^{*}(K(t))]$, s is finite. For each $z \in {}^{*}(K(t))F$, we define

$$I_{\infty}(z) = \{\gamma(t) \in \mathcal{O} \mid \gamma(t)z \in \mathcal{O}\}.$$

Lemma 5. Let $z \in {}^*(K(t))F - M$. If for all $i \leq s$, there is $x \in M$ such that $v_i(z) < v_i(x)$, then $I_{\infty}(z) \cap M = \{0\}$.

Proof. For each $i \leq s$, let $R_i = \{z \in {}^*(K(t))F \mid v_i(z) > v_i(x) \text{ for some } x \in M\}$. Then R_i is a valuation ring whose maximal ideal is $\{z \in {}^*(K(t))F \mid v_i(z) > v_i(x)\}$ for all $x \in M$. If $F \cap R_i$ is not trivial, namely $F \notin R_i$, then $F \cap R_i$ is a valuation ring. Since $F \cap R_i \supset M$, this valuation ring yields a functional prime P of F. We say P is induced by an infinite prime of t.

Let $R = \{z \in {}^{*}(K(t))F \mid \gamma z \in \mathcal{O} \text{ for some } \gamma \in M\}$ and I a maximal ideal of R. Let R_I denote, as before, the local ring of R by I. If $F \cap R_I$ is not trivial, then $F \cap R_I$ is a valuation ring, hence it also yields a functional prime P of F. We say that P is induced by I. \Box

Lemma 6 (cf. Lemma 2). Every functional prime P of F is induced by an infinite prime of t or a maximal ideal I of R.

Proof. By the theorem of Riemann-Roch, there exists $z \in F$ which admits P as its only pole.' If there is $i \leq s$ such that $v_i(z) \leq v_i(x)$ for all $x \in M$, then $z \neq R_i$, hence $F \notin R_i$, i.e., $F \cap R_i$ is not trivial, so it yields a functional prime which is a pole of z. Since P is the only functional pole of z, P is induced by an infinite prime of t. Next assume for all $i \leq s$ there is $x \in M$ such that $v_i(z) < v_i(x)$. Then by Lemma 5, $I_{\infty}(z)R$ is a proper ideal of R. Let I be a maximal ideal including $I_{\infty}(z)R$. Then $z \notin R_I$, hence $F \cap R_I$ is not trivial, so it yields a functional prime which is a pole of z because $z \notin F \cap R_I$. But P is the only pole of z, so P is induced by I. \Box

Proof of Theorem 2. The proof of Theorem 2 is essentially the same as that of Theorem 1. Suppose Theorem 2 is false. Let $d \in \mathbb{N}$. For any natural number N, there exist a polynomial $\varphi \in K[t]$ and an irreducible polynomial $f(X, Y, t) \in K[X, Y, t]$ with $\deg_X(f)$, $\deg_Y(f) \leq d$ which satisfies the assumption of the theorem such that $f(\varphi(t), Y, t)$ is reducible and

$$\deg(\varphi(t)) > N(\deg_t((X, Y, t)) + 1). \tag{3}$$

By nonstandard principle, the above assertion holds for any enlargement. We take $N \in \mathbb{N} - \mathbb{N}$. Then $f(X, Y, t) \in (K[X, Y, t])$, but since the X-degree and the Y-degree of f(X, Y, t) are at most $d \in \mathbb{N}$, $f(X, Y, t) \in (K[t])[X, Y]$, i.e., f(X, Y, t) is a polynomial with coefficients in (K[t]). We define

$$L = \{z \in *(K(t)) \mid D(z) < n(\deg_t(f(X, Y, t)) \text{ for some } n \in \mathbb{N}\}.$$

By (3), $\varphi(t) \notin L$. Since L is D-convex, L is algebraically closed in *(K(t)), hence $\varphi(t)$ is transcendental over L. Let $f(\varphi(t), Y, t) = f_1(\varphi(t), Y, t)f_2(\varphi(t), Y, t)$ where $f_1(X, Y, t), f_2(X, Y, t) \in *(K[t])[X, Y]$ and $1 \leq \deg_Y(f_1) \leq \deg_Y(f_2)$. Let $F = L(\varphi(t), \psi)$ where ψ satisfies $f_1(\varphi(t), \psi, t) = 0$. Then

$$s \leq [*(K(t))F:*(K(t))] \leq \deg_Y(f_1) \leq \frac{1}{2} \deg_Y(f).$$
 (4)

Since $\varphi(t)$ is a nonstandard polynomial, by Lemma 6 every functional pole of $\varphi(t)$ in F is induced by an infinite prime of t, so the number of functional poles of $\varphi(t)$ in F is not more than s, hence by (4) not more than $\deg_Y(f)/2$. Let x be transcendental over *(K(t)) and let y satisfy f(x, y, t) = 0. Then the number of

functional poles of x in (K(t)) is larger than $\deg_Y(f)/2$. But there is an embedding

$$\pi: F = L(\varphi, \psi) \to *(K(t))(x, y)$$

where $\pi(\varphi) = x$, $\pi(\psi) = y$ and for all $z \in L$, $\pi(z) = z$. Since L is algebraically closed in *(K(t)), the number of poles of φ and x must be same, this is a contradiction and it completes the proof of Theorem 2. \Box

References

- S.D. Cohen, The distribution of galois groups and Hilbert's irreducibility theorem, Proc. London Math. Soc. (3) 43 (1981) 227-250.
- [2] A. Robinson and P. Roquette, On the finiteness theorem of Siegel and Mahler concerning diophantine equations, J. Number Theory 7 (1975) 121-176.
- [3] P. Roquette, Nonstandard aspects of Hilbert's irreducibility theorem, Lecture Notes in Math. 498 (Springer, Berlin, 1975) 231-275.
- [4] M. Yasumoto, Nonstandard arithmetic of function fields over H-convex subfields of *Q, J. Reine Angew. Math. 342 (1983) 1-11.
- [5] M. Yasumoto, Nonstandard arithmetic of polynomial rings, Nayoya Math. J. 105 (1987) 33-37.
- [6] M. Yasumoto, Algebraic extensions in nonstandard models and Hilbert's irreducibility theorem, J. Symbolic Logic 53 (1988) 470-480.