Nonstandard arithmetic of Hilbert subsets

Masahiro Yasumoto
Department of Mathematics, College of General Education, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Communicated by A. Prestel
Received 1 September 1989

Abstract

Yasumoto, M., Nonstandard arithmetic of Hilbert subsets, Annals of Pure and Applied Logic 52 (1991) 195-202.

Let $f(X, Y) \in \mathbb{Z}[X, Y]$ be irreducible. We give a condition that there are only finitely many integers $n \in \mathbb{Z}$ such that $f(n, Y)$ is reducible and we give a bound for such integers. We prove a similar result for polynomials with coefficients in polynomial rings. Both results are proved by, so-called, nonstandard arithmetic.

For each irreducible polynomial $f(X, Y) \in R[X, Y]$, we denote by $J(f)$ the set of all $r \in R$ that $f(r, Y)$ is reducible in $R[Y]$. In case of $R=\mathbb{Z}, \mathbb{Z}-J(f)$ (such a set of integers is called a Hilbert subset) is infinite (Hilbert's irreduciblility theorem), moreover it is known [1] that $J(f)$ is very thin. In Section 1, we give a sufficient condition that $J(f)$ is finite and give its bound. Let F be a function field over \mathbb{Q} of an algebraic curve Γ defined by the equation $f(X, Y)=0$, in other words, $F=\mathbb{Q}(x, y)$ where x is transcendental over \mathbb{Q} and $f(x, y)=0$. By a functional prime divisor of F, we mean an equivalence class of nontrivial valuations of F which are trivial on \mathbb{Q}. For a functional prime divisor P, we denote by v_{P} the normalized valuation (i.e., its valuation group is \mathbb{Z}) belonging to P. A functional prime P is called a pole of $z \in \mathbb{Q}(x, y)$ if $v_{P}(z)<0$. For each $f(X, Y) \in \mathbb{Z}[X, Y]$, its height denoted by $H(f)$ is defined to be the maximum of absolute values of coefficients of $f(X, Y)$. In Section 1, we prove

Theorem 1. Let $f(X, Y)$ be an irreducible polynomial with integer coefficients and $F=\mathbb{Q}(x, y)$ its function field. Assume there are more than $\operatorname{deg}_{r}(f) / 2$ poles of x. Then there are only finitely many integers $n \in \mathbb{Z}$ such that $f(n, Y)$ is reducible.

Moreover, if $f(n, Y)$ is reducible, then

$$
|n|<(H(f)+1)^{C}
$$

where C is a constant determined by the degree of $f(X, Y)$.
Let us give an example. Let

$$
f(X, Y)=X^{4}-Y^{4}+g(X, Y)
$$

be an irreducible polynomial where $\operatorname{deg}(g(X, Y)) \leqslant 3$. Let $F=\mathbb{Q}(x, y)$ be its function field. There are 3 poles of x corresponding to irreducible factors of $X^{4}-Y^{4}$. Hence the assumption of Theorem 1 is satisfied. So there are only finitely many integers n such that $n^{4}-Y^{4}+g(n, Y)$ is reducible and there is a constant C such that $n<(H(g)+1)^{c}$ for any integer n with $n^{4}-Y^{4}+g(n, Y)$ reducible. Next we consider examples not satisfying the conclusion of Theorem 1. For each natural number d, we let

$$
f_{d}(x, y)=(x+y)^{2}(x+2 y)^{2} \cdots(x+d y)^{2}-2 x^{2}+1
$$

and let $F_{d}=\mathbb{Q}(x, y)$ be its function field. It is well known that there are infinitely many integers n such that $2 n^{2}-1$ is a square, say k_{n}^{2} for $k_{n} \in \mathbb{Z}$. Then for such integers $n, f_{d}(n, y)=(n+y)^{2}(n+2 y)^{2} \cdots(n+d y)^{2}-k_{n}^{2}$ is reducible. Since x has $d=\operatorname{deg}_{Y}\left(f_{d}\right) / 2$ poles, these examples mean that as far as degrees are concerned, the assumption in Theorem 1 that there are more than $\operatorname{deg}_{r}(f) / 2$ poles of x is best possible.

In order to prove Theorem 1, we use the fact that ${ }^{*} \mathbb{Q}$ has a unique internal archimedean absolute value, so Theorem 1 cannot be generalized for algebraic number fields of finite degree. Next we consider the case that $R=K[t]$ is a polynomial ring where K is a field and t is transcendental over K. Let $f(X, Y, t) \in K[X, Y, t]$ be an irreducible polynomial. As before, let $F=K(x, y, t)$ where x is transcendental over $K(t)$ and $f(x, y, t)=0$. We consider F as an algebraic function field of one variable over $K(t)$. So a functional prime divisor of F is an equivalence class of nontrivial valuations of F which are trivial on $K(t)$. In Section 2, we prove

Theorem 2. Let $f(X, Y, t)$ be an irreducible polynomial with coefficients in a field K. Let F be its function field of one variable over $K(t)$. Assume there are more than $\operatorname{deg}_{\gamma}(f) / 2$ poles of x. Let $\varphi(t) \in K[t]$. If $f(\varphi(t), Y, t)$ is reducible, then

$$
\operatorname{deg}(\varphi(t))<C\left(\operatorname{deg}_{t}(f(X, Y, t))+1\right)
$$

where C is a constant determined by $\operatorname{deg}_{X}(f(X, Y, t))$ and $\operatorname{deg}_{Y}(f(X, Y, t))$.
Both Theorems 1 and 2 are proved by a nonstandard method, so we assume the reader is familiar with nonstandard arithmetic on the rational number field [2] and on rational function fields [3].

1.

Let ${ }^{*} \mathbb{Q}$ and ${ }^{*} \mathbb{Z}$ denote enlargements of the rational number field \mathbb{Q} and the integer ring \mathbb{Z} respectively where by an enlargement, we mean an elementary extension which satisfies the ω_{1}-saturation property. Let H be the height function of $* \mathbb{Q}$; i.e. $H(\alpha / \beta)=\max (|\alpha|,|\beta|)$ where α and β are mutually prime nonstandard integers. A subfield Q_{1} of ${ }^{\mathbb{Q}}$ is called H-convex if $x \in Q_{1}$ and $H(x)>H(y)$ imply $y \in Q_{1}$. In the rest of this section, Q_{1} always denotes an H-convex subfield of ${ }^{*} \mathbb{Q}$ and let $Z_{1}=Q_{1} \cap * \mathbb{Z}$. Let x be a nonstandard integer not contained in Q_{1}. Then x is transcendental over $Q_{1}[4$, Lemma 1]. Let F be a finite algebraic extension of $Q_{1}(x)$. (F is not necessary included in ${ }^{*} \mathbb{Q}$.) Since ${ }^{*} \mathbb{Q} F$ is a finite algebraic extension of ${ }^{*} \mathbb{Q},{ }^{*} \mathbb{Q} F$ is internal. Let \mathscr{O} be the ring of all algebraic integers in ${ }^{*} \mathbb{Q} F$. Let K_{1} denote the algebraic closure of Q_{1} in ${ }^{*} \mathbb{Q} F$. Then F is an algebraic function field of one variable over K_{1}. By a functional prime of F, we mean, as before, an equivalence class of nontrivial valuations of F which are trivial on K_{1}. Let $|x|_{1}, \ldots,|x|_{s}$ be all internal archimedean absolute values of ${ }^{*} \mathbb{Q} F$ which induce in ${ }^{*} \mathrm{Q}$ the ordinary absolute value. Since $s \leqslant\left[{ }^{*} \mathbb{Q} F:{ }^{*} \mathbb{Q}\right]$, s is finite. For each $z \in * \mathbb{Q} F$, we define

$$
I_{\infty}(z)=\{t \in \mathscr{O} \mid t z \in \mathscr{O}\} .
$$

Lemma 1. Let $z \notin K_{1}$. If for all $i \leqslant s$, there is $\gamma \in Z_{1}$ such that $|z|_{i}<\gamma$, then $I_{x}(z) \cap Z_{1}=\{0\}$.

Proof. Assume there exists a nonzero $t \in I_{\infty}(z) \cap Z_{1}$. Then $t z \in \mathcal{O}$. Since $|t z|_{i}<$ $|t| \gamma$ for all $i \leqslant s, t z$ is algebraic over Z_{1}, so $t z \in \mathcal{O} \cap K_{1}$, hence $z \in K_{1}$, a contradiction.

For each $i \leqslant s$, let $R_{i}=\left\{\left.z \in * \mathbb{Q} F| | z\right|_{i}<\gamma\right.$ for some $\left.\gamma \in Z_{1}\right\}$. Then R_{i} is a valuation ring whose maximal ideal is $\left\{z \in * \mathbb{Q} F\left||z|_{i}<1 /|\gamma|\right.\right.$ for all $\left.\gamma \in Z_{1}\right\}$. If $F \cap R_{i}$ is not trivial, namely $F \notin R_{i}$, then $F \cap R_{i}$ is a valuation ring. Since $F \cap R_{i} \supset K_{1}$, this valuation ring yields a functional prime P of F. We say that P is induced by an archimedean absolute value.

Let $R=\left\{z \in * \mathbb{Q} F \mid \gamma z\right.$ is an algebraic integer for some $\left.\gamma \in Z_{1}\right\}$ and I a maximal ideal of R. Let R_{I} denote the local ring of R by I. If $F \cap R_{I}$ is not trivial, then $F \cap R_{I}$ is a valuation ring, hence it also yields a functional prime P of F. We say that P is induced by I.

Lemma 2 (cf. [4, Lemma 2], [2, Lemma 4.1]). Every functional prime P of F is induced by an archimedean prime or a maximal ideal I of R.

Proof. By the theorem of Riemann-Roch, there exists $z \in F$ which admits P as its only pole. If there is $i \leqslant s$ such that $|z|_{i}>\gamma$ for all $\gamma \in Z_{1}$, then $z \notin R_{i}$. Hence $z \notin F \cap R_{i}$. Then $F \cap R_{i}$ yields a functional prime which is a pole of z. Since P is
the only functional pole of z, P is induced by an archimedean absolute value. Next assume for all $i \leqslant s$ there is $\gamma \in Z_{1}$ such that $|z|_{i}<\gamma$. By Lemma 1 , $I_{\infty}(z) \cap Z_{1}=\{0\}$. Hence $I_{\infty}(z) R$ is a proper ideal of R. Let I be a maximal ideal of R which includes $I_{\infty}(z) R$. Then the local ring of I does not contain z, so $z \notin F \cap R_{I}$. Hence $F \cap R_{I}$ is not trivial. By the same arguments as above P is induced by I.

Proof of Theorem 1. Suppose Theorem 1 is false. Let $d \in \mathbb{N}$. For any natural number N, there exists an integer α and an irreducible polynomial $f(X, Y) \in$ $\mathbb{Z}[X, Y]$ of degree d which satisfies the assumption of the theorem such that $f(\alpha, Y)$ is reducible and

$$
\begin{equation*}
|\alpha|>(H(f)+1)^{N} . \tag{1}
\end{equation*}
$$

By a nonstandard principle, the above assertion holds for any enlargement. We take $N \in * \mathbb{N}-\mathbb{N}$. Then $f(X, Y) \in^{*}(\mathbb{Z}[X, Y])$, but since the degree of $f(X, Y)$ is $d \in \mathbb{N}, f(X, Y) \in * \mathbb{Z}[X, Y]$, i.e., $f(X, Y)$ is a polynomial with coefficients in ${ }^{*} \mathbb{Z}$. Let Q_{1} be the smallest H-convex subfield of ${ }^{*} \mathbb{Q}$ which contains all coefficients of $f(X, Y)$, i.e.,

$$
Q_{1}=\left\{z \in^{*} \mathbb{Q} \mid H(z) \leqslant(H(f)+1)^{n} \text { for some } n \in \mathbb{N}\right\} .
$$

By (1), $\alpha \notin Q_{1}$. Since Q_{1} is algebraically closed in ${ }^{*} \mathbb{Q}, \alpha$ is transcendental over Q_{1}. Let $f(\alpha, Y)=f_{1}(\alpha, Y) f_{2}(\alpha, Y)$ where $f_{1}(X, Y), f_{2}(X, Y) \in * \mathbb{Z}[X, Y]$ and $1 \leqslant$ $\operatorname{deg}_{Y}\left(f_{1}\right) \leqslant \operatorname{deg}_{Y}\left(f_{2}\right)$. Let $F=Q_{1}(\alpha, \beta)$ where β satisfies $f_{1}(\alpha, \beta)=0$. Then

$$
\begin{equation*}
s \leqslant[* \mathbb{Q} F: * \mathbb{Q}] \leqslant \operatorname{deg}_{Y}\left(f_{1}\right) \leqslant \frac{1}{2} \operatorname{deg}_{Y}(f) \tag{2}
\end{equation*}
$$

Since α is a nonstandard integer, by Lemma 2 every functional pole of α in F is induced by an archimedean absolute value in $* \mathbb{Q} F$, so the number of functional poles of α is not more than s, hence by (2) not more than $\operatorname{deg}_{y}(f) / 2$. Let x be transcendental over $* \mathbb{Q}$ and let y satisfy $f(x, y)=0$. Then the number of functional poles of x in $* \mathbb{Q}(x, y)$ is, by the assumption of the theorem, larger than $\operatorname{deg}_{Y}(f) / 2$. But there is an embedding

$$
\pi: F=Q_{1}(\alpha, \beta) \rightarrow{ }^{*} \mathbb{Q}(x, y)
$$

where $\pi(\alpha)=x, \pi(\beta)=y$ and for all $z \in Q_{1}, \pi(z)=z$. Since Q_{1} is algebraically closed in ${ }^{*} \mathbb{Q}$, the number of poles of α and x must be the same, this is a contradiction and it completes the proof of Theorem 1.

Lemma 2 is very useful and has many applications in number theory other than the above. In the rest of this section we give one of them. Let $\varphi(X) \in \mathbb{D}(X)$. It is easily proved that if for a sufficiently large $n \in \mathbb{N}, \varphi(n)$ is an integer, then $\varphi(X) \in \mathbb{Q}[X]$. We generalize this fact for algbraic function fields of one variable. Let $f(X, Y) \in \mathbb{Q}[X, Y]$ be irreducible and $\mathbb{Q}(x, y)$ its function field over \mathbb{Q}. For each integer n, let β_{n} be an algebraic number satisfying $f\left(n, \beta_{n}\right)=0$. Let $\varphi(X, Y)=g(X, Y) / h(X, Y) \in \mathbb{Q}(X, Y)$ where $g(X, Y), h(X, Y) \in \mathbb{Z}[X, Y]$ are
coprime polynomials. We define $H(\varphi)=\max (H(g), H(h))$ and $D(\varphi)=$ $\max (\operatorname{deg}(g), \operatorname{deg}(h))$. We prove

Theorem 3. If there exists an integer $n>H(\varphi)^{C}$ such that $\varphi\left(n, \beta_{n}\right)$ is an algebraic integer, then $\varphi(x, y)$ is integral over $\mathbb{Q}[x]$ where $C=C(f, d)$ is a constant determined by $f(X, Y)$ and $d=D(\varphi)$.

Proof. Assume otherwise. Let $d \in \mathbb{N}$. For any natural number N, there exists a $\varphi(X, Y) \in \mathbb{Q}(X, Y)$ with $d=D(\varphi)$ and an integer $n>H(\varphi)$ such that $\varphi\left(n, \beta_{n}\right)$ is an algebraic integer but $\varphi(x, y)$ is not integral over $\mathbb{Q}[x]$. The above statement is also valid in the enlargement, in other words, for any $N \in \mathbb{N}$, there exists a $\varphi(X, Y) \in * \mathbb{Q}(X, Y)$ with $d=D(\varphi)$ and an integer $\alpha>H(\varphi)^{N}$ such that $\varphi\left(\alpha, \beta_{\alpha}\right)$ is an algebraic integer but $\varphi(x, y)$ is not integral over ${ }^{*}(\mathbb{Q}[x])$. We take $N \in{ }^{*} \mathbb{N}-\mathbb{N}$. Since $d=D(\varphi)$ is finite, $\varphi(X, Y) \in{ }^{*} \mathbb{Q}(X, Y)$, i.e., $\varphi(X, Y)$ is a rational function with coefficients in $* \mathbb{Q}$. Let Q_{1} be the smallest H-convex subfield of $* \mathbb{Q}$ which contains all coefficients of $\varphi(X, Y)$, i.e.,

$$
Q_{1}=\left\{z \in \mathbb{Q} \mid H(z) \leqslant(H(\varphi)+1)^{n} \text { for some } n \in \mathbb{N}\right\} .
$$

Since N is infinite and $\alpha>H(\varphi+1)^{N}, \alpha \notin Q_{1}$. Since Q_{1} is algebraically closed in ${ }^{*} \mathbb{Q}, \alpha$ is transcendental over Q_{1}. Let $F=Q_{1}\left(\alpha, \beta_{\alpha}\right)$. Then there is an embedding

$$
\pi: F=Q_{1}\left(\alpha, \beta_{\alpha}\right) \rightarrow^{*} \mathbb{Q}(x, y)
$$

where $\pi(\alpha)=x, \pi\left(\beta_{\alpha}\right)=y$ and for all $z \in Q_{1}, \pi(z)=z$. Since $\varphi(x, y)$ is not integral over ${ }^{*}(\mathbb{Q}[x]), \varphi\left(\alpha, \beta_{\alpha}\right)$ is not integral over $Q_{1}[\alpha]$. Hence there is a functional prime P of F which is a pole of $\varphi\left(\alpha, \beta_{\alpha}\right)$ but is not a pole of α. Since $\varphi\left(\alpha, \beta_{\alpha}\right)$ is an algebraic integer, P cannot be induced by an maximal ideal I of R. Hence by Lemma 2, P is induced by archimedean primes only. Since $\alpha \in{ }^{*} \mathbb{Z}-$ Z_{1}, any functional prime which is induced by an archimedean prime is a pole of α, this is a contradiction.

2.

Let K be a field and t transcendental over K. For each $x=g(t) / h(t) \in K(t)$, we define $D(x)=\max (\operatorname{deg}(g), \operatorname{deg}(h))$ where $g(X), h(X) \in K[X]$ are coprime polynomials. As before, ${ }^{*}(K(t))$ denotes an enlargment of the rational function field $K(t)$. The following lemma is well known.

Lemma 3 ([3], [5]). ${ }^{*} K(t)$ is algebraically closed in ${ }^{*}(K(t))$.
${ }^{*} K(t)$ is the set of all x with $D(x) \in \mathbb{N}$. A subfield L of ${ }^{*}(K(t))$ is called D-convex if $x \in L$ and $D(x)>D(y)$ imply $y \in L$. Remark that $K(t)$ is not D-convex in ${ }^{*}(K(t))$. In the following, L always denotes a D-convex subfield of
${ }^{*}(K(t))$ and we define $\left.L_{1}=L \cap{ }^{*}(K[t])\right)$ and $N_{1}=\{D(x) \in * \mathbb{N} \mid x \in L\}$. The following lemma is a generalization of Lemma 3.

Lemma 4. If L is a D-convex subfield of ${ }^{*}(K(t))$, then L is algebraically closed in * $(K(t))$.

Proof. Let $\quad \alpha(t) / \beta(t) \epsilon^{*}(K(t))-L \quad$ where $\quad \alpha(t), \quad \beta(t) \in^{*}(K[t]) \quad$ and $\operatorname{gcd}(\alpha(t), \beta(t))=1$. Since $\alpha(t) \notin L, \alpha(t) \notin L_{1}$ or $\beta(t) \notin L_{1}$. We may assume $\alpha(t) \notin L_{1}$. Assume $\alpha(t) / \beta(t)$ is algebraic over K. Then there are $\gamma_{0}(t), \gamma_{1}(t), \ldots, \gamma_{n}(t) \in L_{1}$ such that $\gamma_{n}(t) \neq 0$ and

$$
\gamma_{0}(t)\left(\frac{\alpha(t)}{\beta(t)}\right)^{n}+\gamma_{1}(t)\left(\frac{\alpha(t)}{\beta(t)}\right)^{n-1}+\cdots+\gamma_{n}(t)=0 .
$$

Then

$$
\gamma_{0}(t) \alpha(t)^{n}+\gamma_{1}(t) \alpha(t)^{n-1} \beta(t)+\cdots+\gamma_{n}(t) \beta(t)^{n}=0 .
$$

Hence

$$
\gamma_{n}(t) \beta(t)^{n} \equiv 0 \quad \bmod \alpha(t)
$$

Since $\operatorname{gcd}(\alpha(t), \beta(t))=1$,

$$
\gamma_{n}(t) \equiv 0 \quad \bmod \alpha(t)
$$

L is D-convex and $\alpha(t) \notin L_{1}=L \cap{ }^{*}(K[t])$, therefore $\operatorname{deg}\left(\gamma_{n}(t)\right)<\operatorname{deg}(\alpha(t))$. Hence

$$
\gamma_{n}(t)=0
$$

this is a contradiction.
Let $x \in^{*}\left(K([t])-L\right.$ and F a finite algebraic extension of $L(x)$. Since ${ }^{*}(K(t)) F$ is a finite algebraic extension of ${ }^{*}(K(t)),{ }^{*}(K(t)) F$ is internal. Let M denote the algebraic closure of L in ${ }^{*}(K(t)) F$. Then F is an algebraic function field of one variable over M. By a functional prime of F, we mean, as before, an equivalence class of nontrivial valuations of F which are trivial on M. Let \mathcal{O} be the integral closure of ${ }^{*}(K[t])$ in ${ }^{*} K(t) F$. Let v_{∞} be the valuation on ${ }^{*}(K(t))$ such that $v_{\infty}(\alpha(t) / \beta(t))=\operatorname{deg}(\beta(t))-\operatorname{deg}(\alpha(t))$. Let $v_{1}, v_{2}, \ldots, v_{s}$ be all internal valuations of ${ }^{*}(K(T)) F$ which extend v_{∞}. Since $s \leqslant\left[{ }^{*}(K(t)) F:^{*}(K(t))\right], s$ is finite. For each $z \in^{*}(K(t)) F$, we define

$$
I_{\infty}(z)=\{\gamma(t) \in \mathcal{O} \mid \gamma(t) z \in \mathcal{O}\}
$$

Lemma 5. Let $z \in^{*}(K(t)) F-M$. If for all $i \leqslant s$, there is $x \in M$ such that $v_{i}(z)<v_{i}(x)$, then $I_{\infty}(z) \cap M=\{0\}$.

Proof. For each $i \leqslant s$, let $R_{i}=\left\{z \in^{*}(K(t)) F \mid v_{i}(z)>v_{i}(x)\right.$ for some $\left.x \in M\right\}$. Then R_{i} is a valuation ring whose maximal ideal is $\left\{z \in^{*}(K(t)) F \mid v_{i}(z)>v_{i}(x)\right.$
for all $x \in M\}$. If $F \cap R_{i}$ is not trivial, namely $F \notin R_{i}$, then $F \cap R_{i}$ is a valuation ring. Since $F \cap R_{i} \supset M$, this valuation ring yields a functional prime P of F. We say P is induced by an infinite prime of t.

Let $R=\left\{z \in^{*}(K(t)) F \mid \gamma z \in \mathcal{O}\right.$ for some $\left.\gamma \in M\right\}$ and I a maximal ideal of R. Let R_{I} denote, as before, the local ring of R by I. If $F \cap R_{I}$ is not trivial, then $F \cap R_{I}$ is a valuation ring, hence it also yields a functional prime P of F. We say that P is induced by I.

Lemma 6 (cf. Lemma 2). Every functional prime P of F is induced by an infinite prime of t or a maximal ideal I of R.

Proof. By the theorem of Riemann-Roch, there exists $z \in F$ which admits P as its only pole: If there is $i \leqslant s$ such that $v_{i}(z) \leqslant v_{i}(x)$ for all $x \in M$, then $z \neq R_{i}$, hence $F \notin R_{i}$, i.e., $F \cap R_{i}$ is not trivial, so it yields a functional prime which is a pole of z. Since P is the only functional pole of z, P is induced by an infinite prime of t. Next assume for all $i \leqslant s$ there is $x \in M$ such that $v_{i}(z)<v_{i}(x)$. Then by Lemma $5, I_{\infty}(z) R$ is a proper ideal of R. Let I be a maximal ideal including $I_{\infty}(z) R$. Then $z \notin R_{I}$, hence $F \cap R_{I}$ is not trivial, so it yields a functional prime which is a pole of z because $z \notin F \cap R_{1}$. But P is the only pole of z, so P is induced by I.

Proof of Theorem 2. The proof of Theorem 2 is essentially the same as that of Theorem 1. Suppose Theorem 2 is false. Let $d \in \mathbb{N}$. For any natural number N, there exist a polynomial $\varphi \in K[t]$ and an irreducible polynomial $f(X, Y, t) \in$ $K[X, Y, t]$ with $\operatorname{deg}_{X}(f), \operatorname{def}_{Y}(f) \leqslant d$ which satisfies the assumption of the theorem such that $f(\varphi(t), Y, t)$ is reducible and

$$
\begin{equation*}
\operatorname{deg}(\varphi(t))>N\left(\operatorname{deg}_{t}((X, Y, t))+1\right) \tag{3}
\end{equation*}
$$

By nonstandard principle, the above assertion holds for any enlargement. We take $N \in{ }^{*} \mathbb{N}-\mathbb{N}$. Then $f(X, Y, t) \epsilon^{*}(K[X, Y, t])$, but since the X-degree and the Y-degree of $f(X, Y, t)$ are at most $d \in \mathbb{N}, f(X, Y, t) \in{ }^{*}(K[t])[X, Y]$, i.e., $f(X, Y, t)$ is a polynomial with coefficients in ${ }^{*}(K[t])$. We define

$$
L=\left\{z \in^{*}(K(t)) \mid D(z)<n\left(\operatorname{deg}_{t}(f(X, Y, t)) \text { for some } n \in \mathbb{N}\right\}\right.
$$

By (3), $\varphi(t) \notin L$. Since L is D-convex, L is algebraically closed in ${ }^{*}(K(t))$, hence $\varphi(t)$ is transcendental over L. Let $f(\varphi(t), Y, t)=f_{1}(\varphi(t), Y, t) f_{2}(\varphi(t), Y, t)$ where $f_{1}(X, Y, t), \quad f_{2}(X, Y, t) \in{ }^{*}(K[t])[X, Y] \quad$ and $1 \leqslant \operatorname{deg}_{Y}\left(f_{1}\right) \leqslant \operatorname{deg}_{Y}\left(f_{2}\right)$. Let $F=$ $L(\varphi(t), \psi)$ where ψ satisfies $f_{1}(\varphi(t), \psi, t)=0$. Then

$$
\begin{equation*}
s \leqslant\left[{ }^{*}(K(t)) F::^{*}(K(t))\right] \leqslant \operatorname{deg}_{Y}\left(f_{1}\right) \leqslant \frac{1}{2} \operatorname{deg}_{Y}(f) . \tag{4}
\end{equation*}
$$

Since $\varphi(t)$ is a nonstandard polynomial, by Lemma 6 every functional pole of $\varphi(t)$ in F is induced by an infinite prime of t, so the number of functional poles of $\varphi(t)$ in F is not more than s, hence by (4) not more than $\operatorname{deg}_{Y}(f) / 2$. Let x be transcendental over ${ }^{*}(K(t))$ and let y satisfy $f(x, y, t)=0$. Then the number of
functional poles of x in ${ }^{*}(K(t))$ is larger than $\operatorname{deg}_{Y}(f) / 2$. But there is an embedding

$$
\pi: F=L(\varphi, \psi) \rightarrow^{*}(K(t))(x, y)
$$

where $\pi(\varphi)=x, \pi(\psi)=y$ and for all $z \in L, \pi(z)=z$. Since L is algebraically closed in ${ }^{*}(K(t))$, the number of poles of φ and x must be same, this is a contradiction and it completes the proof of Theorem 2.

References

[1] S.D. Cohen, The distribution of galois groups and Hilbert's irreducibility theorem, Proc. London Math. Soc. (3) 43 (1981) 227-250.
[2] A. Robinson and P. Roquette, On the finiteness theorem of Siegel and Mahler concerning diophantine equations, J. Number Theory 7 (1975) 121-176.
[3] P. Roquette, Nonstandard aspects of Hilbert's irreducibility theorem, Lecture Notes in Math. 498 (Springer, Berlin, 1975) 231-275.
[4] M. Yasumoto, Nonstandard arithmetic of function fields over H-convex subfields of *Q, J. Reine Angew. Math. 342 (1983) 1-11.
[5] M. Yasumoto, Nonstandard arithmetic of polynomial rings, Nayoya Math. J. 105 (1987) 33-37.
[6] M. Yasumoto, Algebraic extensions in nonstandard models and Hilbert's irreducibility theorem, J. Symbolic Logic 53 (1988) 470-480.

