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Abstract

TauFactor is a MatLab application for efficiently calculating the tortuosity factor, as well as volume fractions, surface areas and triple phase
boundary densities, from image based microstructural data. The tortuosity factor quantifies the apparent decrease in diffusive transport resulting
from convolutions of the flow paths through porous media. TauFactor was originally developed to improve the understanding of electrode
microstructures for batteries and fuel cells; however, the tortuosity factor has been of interest to a wide range of disciplines for over a century,
including geoscience, biology and optics. It is still common practice to use correlations, such as that developed by Bruggeman, to approximate
the tortuosity factor, but in recent years the increasing availability of 3D imaging techniques has spurred interest in calculating this quantity more
directly. This tool provides a fast and accurate computational platform applicable to the big datasets (> 108 voxels) typical of modern tomography,
without requiring high computational power.

(© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
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1. Introduction
1.1. Theory and motivation

The effect of geometry on transport in heterogeneous me-
dia has been the focus of a great deal of academic research
for well over a century, across a wide range of academic dis-
ciplines; from the flow of water through porous rocks [1], to
the movement of cells within bone scaffolds [2] and from the
transfer of heat through catalyst beds [3], to the passage of
electrical current across battery electrodes [4]. Although for
certain very simple geometries analytical solutions have been
found [5], even fairly minor increases in geometric complexity
preclude this approach. The recent, rapid development of 3D
imaging has shown that many common materials have highly
complex microstructure, which have proven difficult to analyse.
In these cases, the systems can then only be described with ei-
ther simulations or correlations based on other more accessible
parameters, such as the volume fraction.

TauFactor is a MatLab application for simply and efficiently
calculating the reduction in diffusive transport caused by
convolution in the geometry of heterogeneous media, based on
microstructural image data. This effect is captured in a term
called the tortuosity factor, T, which is defined in

D = pZ (1)
T

where ¢ is the volume fraction of the conductive phase; D is
the intrinsic diffusivity of the conductive phase; and D is
the effective diffusivity through a porous volume where the
second phase is insulating. In this general form, the diffusive
flow could represent electrical current, heat transfer or mass
transport interchangeably. This formulation yields two features
of the tortuosity factor: Firstly, when tT = 1, the flow paths
must be direct and, in Cartesian systems, prismatic; secondly,
for all systems t > 1, otherwise the geometry would somehow
be augmenting flow [6].

Before 3D geometric information was commonly available,
a wide variety of porosity-tortuosity correlations were pub-
lished based either on empirical observations of flow or, in some
cases, on fundamental diffusion theory. The detailed review by
Shen and Chen [7] summarises the origins of many of these
and underlines the necessity for a more detailed approach. Per-
haps the most commonly used porosity-tortuosity correlation
is that derived by Bruggeman [8], which is based closely on

earlier work by Lorentz [9] and Lorenz [10] in the field of op-
tics. An updated discussion of Bruggeman’s derivation is pre-
sented in a paper by Tjaden et al. [11], which highlights some
of the inevitable limitations of this and other correlation based
approaches, such as the assumed isotropic nature of the pore
networks. Epstein further explains why path length type anal-
ysis alone, such as in [12,13], can only be related to the tor-
tuosity factor in simple capillary geometries and so cannot be
reliably used to quantify transport in complex pore networks
[14].

Over the past decade, high resolution 3D tomographic
imaging has become widely available, which has created the
opportunity for the tortuosity factor to be quantified directly
from microstructure using simulation [15-19], although the
approaches vary significantly in terms of their fidelity and
computational efficiency.

1.2. Microstructural data

Tomography is a term that encompasses a variety of 3D
imaging techniques, including X-ray computed tomography
(XCT) and focused ion beam scanning electron microscopy
imaging (FIB-SEM), both of which are commonly used to cap-
ture microscopic structures [20]. Tomographic data is typically
processed and stored as cuboid voxels (volume pixels), initially
containing grey-scale image data, but can be converted into dis-
crete regions using segmentation algorithms, which are increas-
ingly based around machine learning techniques [21].

This segmented data can then either be employed directly in
a simulation or used to generate surface and volume meshes.
Fig. 1 shows the workflow from an initially noisy greyscale to-
mography dataset, through segmentation to a binary volume
and finally the result of a diffusion simulation performed in
TauFactor. Although careful meshing can result in significant
efficiency gains, it can also cause smoothing and other geo-
metrical distortions. Our previous work investigated this ef-
fect for a range of methods presented in the literature and
found significant discrepancies between nominally identical ap-
proaches [22]. To avoid this, TauFactor simulates diffusion us-
ing the voxels directly as mesh elements, as discussed in more
detail in the following section.

1.3. Simulation

The tortuosity factor can be obtained from simulation by
comparison of the steady-state diffusive flow through a pore

Fig. 1. Illustration of the workflow (I-r) from tomography derived greyscale data, through to a segmented 2-phase volume and finally the result of a diffusion
simulation performed using TauFactor, highlighting regions of high flux density in red. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 2. Example 2D geometry to illustrate application of ghost node concept.

network, F}, to that through a fully dense control volume of the
same size, diffusivity and potential difference, Fy.

Fo— —a,p°AC )
P — cvV T LCV
AC

ch - _ACVD_ (3)
Ley

where D is the diffusivity of the conductive phase; C is
the local concentration of the diffusing species; and A., and
L.y are the cross-sectional area and length of the control
volume respectively. Taking the ratio of these two expressions
and rearranging yields a definition equivalent to that in
Eq. (D).

The system of equations in sys. 4 captures this steady-
state diffusion problem, including the fixed value (Dirichlet)
conditions imposed at two parallel boundaries, where Q =
(0,Ly) x (0,Ly) x (0, L) is a cuboid in R* and 2 C Q
is the conductive region of a porous medium inside Q. T, I
and B are two-dimensional subsets of Q (i.e. Top, Interfacial
and Bottom), such that 92 = T UI U B and 002|,—;, = B,
02|,—0 = T, 302lo<;<1, = 1. The flow through the porous
medium {2 is then modelled by the solution to

V2C =0, in £,
C =0, onT,
VC-n=0, onl, “
C =1, on B,

where n is the outward pointing unit normal to (2.

By remapping sys. (4) onto a set of discrete cuboid volume
elements, it can be solved as a system of linear equations, which
describe the concentration in each element only in terms of
the concentrations of its face-adjacent neighbours. This can
either be thought of as a finite-difference type description or
equivalently as a directly applied mass conservation for the flux
at each face. In either case, the solution for cubic elements is
simply that the value at a point must be equal to the mean values
of its conducting neighbours, further discussion of which can be
found in [23].

It is important to note that for diffusive scenarios, a statistical
continuum, as well as a physical continuum, can be modelled.
This means that the governing expression would hold even for
a single diffusing particle. This can be best understood from the
“random walker” derivation of the diffusion equation, where the
progress of individual particles is followed, each independent of
the others, as detailed in [17].

Inconsistency in the evaluation of tortuosity factors
significantly hinders the acceptance of 3D imaging as a robust
and reliable material quantification technique, as results can
appear arbitrary and inconsistent between studies. TauFactor
overcomes this barrier as it solves the problem in a way that
is in-line with the fundamental definition, whilst requiring no
additional intervention from the user, such as remeshing or
resampling (which in themselves are time consuming).

2. Software description
2.1. Software architecture

In order to efficiently enforce the Dirichlet boundaries at
the surface of the boundary voxels, as specified in sys. 4,
the ghost node concept is employed. For example, to find the
concentration at node e of the simple 2D geometry shown in
Fig. 2, we first set the node’s value to be the mean of its
conductive face-adjacent neighbours.

e_d+f+9
=—5

Then, in order to impose the boundary at the interface
between e and y, the following must also be true.

®)

e+
2

Substituting Eq. (6) into Eq. (5) and rearranging yields,

o 4t f 420
=l

Crucially, the ghost node, y, does not appear in this final
expression, but its presence is implied by increasing the nearest
neighbour count at the boundary voxels by 1 and doubling
the applied surface concentration outside the boundary. The
same approach is used at the opposite boundary where Cpy;y is
enforced. Fig. 2 also contains the solution to this system and the
resulting total scalar flow passing through each voxel. Notice
that the presence of node f has increased the total flow through
the system, whereas node ¢ has had no impact.

Now that the boundaries have been suitably defined, it is
possible to solve this steady-state problem directly using matrix
inversion by simply excluding the non-conductive nodes.
However, TauFactor employs an iterative method with Over
Relaxation (OR), which significantly accelerates convergence

= Cmax (6)

(M
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Fig. 3. Schematic representation of converting 3D geometric data (where the blue voxels represent the conducting phase) into checkerboard adjusted vectors. These
two optimisations in combination increased the speed of the code by at least a factor of 4. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

(around 3 orders of magnitude fewer iterations required),
whilst using little additional memory. This approach is well
established in the computational literature and uses a simple
linear extrapolation based on both the current value at a node
and that found from the conventional Jacobi method.

Further efficiency gains are derived from decomposing the
volume array into checkerboarded, vectorised subdomains, as
illustrated in Fig. 3. The vectorisation is crucial for efficiency
in the MatLab environment and checkerboarding effectively
halves the number of calculations required for an iteration [24].

The following pseudocode shows the structure of the
program that is called when the Tortuosity button is pressed in
the GUI.

%% Begin Function
Check phases and directions specified by the user.
if Voxels are specified as anisotropic by user
Calculate directional weighting factors
end
Calculate number of "Nearest Neighbours" at each
conducting voxel
Apply checkerboarding to find addresses of RED and
GREEN voxels
Build address vectors of conducting neighbours
while Convergence criteria not met
Over-relaxed iteration on RED vector
Over-relaxed iteration on GREEN vector
if Batch of iterations complete
Calculate tortuosity at top and base
Assess convergence using tortuosities
end
end
Generate report figure
%% End Function

Work by Rhazaoui et al. employed a direct solution
approach to solving this problem through matrix inversion
in the MatLab environment. Using an Intel Xeon® octo-core
processor @24 GHz with 24 GB of RAM, the effective
conductivity of a 10° voxel volume took over 2 h to solve [25].
The iterative approach deployed in TauFactor is capable of
solving the same size volume in less than 30 s using a single
Intel i7® @2.9 GHz core and ¢. 100 MB of RAM.

2.2. Software functionalities

Microstructural data must be loaded as a single *.tif file
(3D or 2D), in which the relevant phases (up to 3) have already

been segmented. This data is then converted into a 8-bit integer
array and presented in the application window, as shown in
Fig. 4, along with the labelling scheme for the phases (black,
white, green) and orientation (1, 2, 3) system. If the user selects
multiple *. tif files in the loading prompt, these will be treated
as a batch. This means that whatever calculations are called
will be applied to each microstructure sequentially, with the
results allocated to separate structured variables in the main
MatLab workspace. It is also possible to call the functions in
TauFactor directly from within another script, without opening
the GUI. The form of the required input variables is detailed in
the manual that accompanies this paper.

For each value of the tortuosity factor calculated, TauFactor
generates a report figure, shown in Fig. 6, that illustrates the
distribution of concentration and flux in a slice of the volume.
The report also contains a graph of the tortuosity factor, as
calculated at the top and bottom faces, against iteration number.
Convergence of the system was established by analysis of both
the rate of change of these two tortuosity factor values, as well
as comparison of their absolute values. This hybrid approach
allows the program to account for both slow convergence and
symmetrical systems.

In addition to the tortuosity factor, the report also provides
several other relevant microstructural quantities including
percolation fraction and a graph of volume fraction variation
in the direction considered. The scalar concentration values can
be used to calculate a map of the total flux through each voxel,
as well as the separate contributions from the through-plane and
in-plane directions, and can be exported as normalised *.tif
stacks. These flux maps can be used for visualising bottlenecks
(see Fig. 1), which, in the case of current flow, for example, may
be useful for understanding localised degradation mechanisms
through over heating.

Four types of representative volume analysis (RVA) can also
be implemented by selecting a method from the drop down
box. Three of these methods are shown in Fig. 5 and in each
case increments of approximately 5% are used to generate a
plot suitable for investigating the extent to which the volume
considered can be expected to represent the material in general.
The fourth method is similar to the third, except that the study
starts from the base of the volume rather than the top.

The report shown in Fig. 6(b) contains three further RVAs
(generated when the Metrics button is pressed) for the volume
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Fig. 4. The window view when the TauFactor application is (I-r) first opened, after a simple 2D dataset with 2 phases has been loaded and after a 3D dataset with

3 phases has been loaded.
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Fig. 5. Illustration of the three methods of representative volume analysis. In each case, three volume steps are shown, whereas in reality 20 steps (for the Metrics
study) and 10 steps (for the Tortuosity study) are taken of constant volume increment.

fractions, surface areas and triple phase boundary (TPB) densi-
ties. In a cuboid lattice, each edge is in contact with four vox-
els; TPBs are edges where three of these four voxels contain
different phases. Similarly, each cuboid face is in contact with
two voxels and is labelled as an interface if these two are not
of the same phase. For the surface area and TPB studies, the
areas and lengths of the cuboid faces and edges were used di-
rectly, rather than applying any smoothing correction (such as
“Marching Cubes” [26]). Also, for both of these metrics, the
outermost faces and edges of the dataset cannot be assigned
definitive labels, as we do not have any information about the
next voxel layer. To overcome this problem, the first layer is
excluded from the volume density calculations and its informa-
tion is only used for labelling of the second layer. In addition,
to ensure that the number of edges and surfaces scale linearly
with volume (i.e. that 3n3 are used in the density calculation),
those edges/faces occurring at the outer surface of the ROI are
in effect weighted by 0.5 in each step of the RVA.

It is worth noting that using the faces and edges of the cuboid
voxels to approximate the true surface area and TPB density of
a real microstructure is likely to be a source of significant error.
However, whether this approach will under- or overestimate the
truth will depend on the nature of the sample being imaged
and the resolution of the imaging technique. Fig. 7 shows
three noteworthy scenarios in which spheres are represented

by cubic voxels, under the assumption of “perfect tomography”
(i.e. voxels containing >0.5 of a phase are modelled as a voxel
entirely made from that phase).

The first scenario shows the limiting case where a single
spherical particle is represented by a single voxel (assumed to
be surrounded by empty voxels), causing an over estimation
of the surface area by a factor of c. 2. The second case shows
a sphere represented by many voxels, which can again be
shown analytically to cause a minimum overestimation factor
of 1.5 [27]. Finally, it is clear from the third example that if
a single voxel contains a highly complex structure (i.e. the
smallest features are far smaller than the imaging resolution),
this will result in an arbitrarily large underestimation of the
true surface area and TPB densities. It must therefore be left
to the user to make a judgement on a case-by-case basis about
what correction factors might need to be applied and whether
the imaging resolution was appropriate to the sample.

The final key feature of TauFactor is that it allows for the
user to specify the three dimensions of the cuboid voxels.
For the tortuosity factor calculation, although the absolute
voxel size is not relevant (as it is a dimensionless parameter),
anisotropy does effect the diffusion and must be accounted for
with an additional correction factor.
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Fig. 6. Reports generated by TauFactor for (left) a tortuosity factor calculation and (right) a representative volume study of various other metrics including volume
fractions, surface area and triple phase boundary densities on some example three phase microstructural data.

Fig. 7. Illustration of the potential estimation errors caused by cuboid voxel representations. In each case, “perfect tomography” is assumed, such that voxels

containing >0.5 of a phase are modelled as a voxel entirely made from that phase.

If the dimensions of a cuboid voxel are [y, /> and /3, then a
weighting factor, ¢, needs to be calculated for each direction.

1 (Ll Ll L\ bk
= - _— _ a— - - 8
” 2(13+lz+11) I ®)

The map of geometry data, M, is a binary array where the
conductive voxels are labelled as Is. It is used to calculate a map
of nearest neighbours, corrected to account for the changes in
separation distance between adjacent nodes, By,

Bani = [¢1(Mnonh + Misouth) + ¢2(Meast + Mwest)
+¢3 (Mup + Mdown)] )

where the subscripts of M represent the location on the map
relative to the voxel considered. With these two adjustments,
the anisotropic 3D Jacobi solution becomes

Ci_H = [¢1 (Cflorth + Céouth) + ¢2(Céast + C\l;vest)
+¢3(Clyy + Cliown)]/ Bani (10)

where C' is the concentration after iteration i and once again
subscripts represent the location of a node, relative to that being
evaluated.

For the surface area and TPB density calculations, both
the absolute dimensions and the anisotropy of the voxels are

important, but are simple factors to apply as the contributions
to these metrics in each of the three directions are calculated
separately.

3. Simulation capabilities
3.1. Illustrative example

A previous study by the author compared tortuosity factor
values calculated using a variety of techniques cited in the
literature [22]. The microstructural data used in this work were
taken from [28] and consisted of two X-ray nano-tomography
datasets of a small solid oxide fuel cell cathode sample. The
study found that calculated tortuosity factors varied not just
between different theoretical frameworks (such as distance
mapping as a proxy for diffusion), but also between nominally
identical diffusive simulations.

Fig. 8 was constructed using the same data as in Fig. 1
of [22], but was also extended to include the results obtained
using TauFactor. For further details about the alternative
simulation tools used, see [22].

As is clear for Fig. 8, although there is significant variation
between methods, TauFactor reproduces the results generated
by the Avizo XLab simulation. This is to be expected as this
simulation also used the segmented voxel data directly as the
grid.
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3.2. Expected impact

The key impact that TauFactor is expected to have on
the microstructural analysis community is an increase in
consistency within and comparability between studies. As
the example above illustrates, the many techniques currently
available in the literature cannot be depended on to generate
results that would allow for direct comparison across several
studies. Furthermore, these techniques tend to fall into one of
two categories not conducive to high quality science: Firstly,
many are part of expensive propriety software packages, which
prevents certain institutions from utilising them. Secondly,
either due to commercial sensitivity or academic exclusivity,
many codes referred to in the literature are essentially ‘black
boxes’, which makes their comparison to nominally similar
tools difficult.

In addition, by including a representative volume analysis
function, this should encourage a greater degree of rigour in mi-
crostructural studies, which may be overlooked in many cases
due to the significant increase in work load for the operator.
TauFactor is at the heart of two studies in the field of energy
materials that have already been submitted for publication and
is currently being using by energy materials groups at Imperial
College London [29] and University College London, as well
as by an industrial partner in the same field. Although all users
are currently focused on battery and fuel cell materials, a wider
audience will be approached following publication.

4. Conclusions

The application, TauFactor, presented in this article allows
fast and simple calculation of the tortuosity factor directly from
voxelized microstructural data. Volumes larger than 10% voxels
have been successfully analysed on a single core in just a few
hours, which makes the application suitable for characterising
data derived from modern tomographic imaging techniques.
In addition, volume fractions, surface areas and triple phase
boundary densities can all be calculated and representative
volume analyses of all metrics can be performed automatically.
TauFactor also allows the user to specify the dimensions of the
voxels and accounts for the anisotropy in all calculations.

It is hoped that by making this application freely available to
the community, a greater degree of consistency and rigor will
emerge in the analysis of microstructural data.
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