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1. INTRODUCTION

The current paper is devoted to study of the asymptotic behavior of
bounded solutions for the following type of parabolic equation:

u,=u, +flt,x,uu), >0, 0O<x<l, (L.1)
with the boundary conditions:
Pu(t, )+ (1 =P u (£,0)=0, fu(t, )+ (1 —Fu,(t,1)=0,1>0, (1.2)

where f=0o0r 1, /: R'x[0, 1] xR'xR' - R" is C?, and f(t, x, u, p) with
all its partial derivatives (up to order 2) are almost periodic in ¢ uniformly
for (x, u, p) in compact subsets.

To carry out our study for the nonautonomous equation (1.1)-(1.2), we
define a dynamical system assoclated to it in the following way. Let
C=C(R'x[0,1]xR"xR',R") be the space of continuous functions
F:R'x[0.1]xR'xR'—> R". Give C the compact open topology, that is,
the topology of uniform convergence on compact subsets. It follows from
classical topological dynamical system theory ([ 26]) that the time transla-
tion (F, t)— F,: F,(s, x,u, p)=F(t+s, x, u, p) defines a flow on C, and the
hull of f, H(fV=cl{f,| teR'} is an almost periodic minimal set (that is,
H(f} is minimal and each motion in H(/) is almost periodic). Further-
more, each ge H(f) is also a C* function (see [17]). By introducing the
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SCALAR PARABOLIC EQUATIONS 115

hull H(f), (1.1)~-(1.2) gives rise to a family of equations associated to each
ge H(f),
u,=u, +glt,x,u u), t>0, O0<x<l,
(1.3)
Pu(t,0)+ (1 —-B)u,t,0)=0, Pu(t, DY+ (1 =M u (t,1)=0, 1>0.

4

Let X be a fractional power space associated with the operator
u— —u, % — L¥0,1) that satisfies X ¢ C'[0,1], where ¥ ={u|ue
H*0,1), u satisfies (1.2)}. Then F:R'xX— L*0,1), F(1,u)(x)=
St x,u,u,), is well defined, and for any Ue X, equation (1.3), admits
(locally) a umque solution u(s, -, U, g) in X with w(0, -, U, g)=U(-). This
solution also continuously depends on ge H(f) and Ue X ([ 16]). There-
fore, (1.3), defines a (local) skew product semiflow [, on X x H(f):

[T.(U. g)=(ult,-, U, g), g-1). t>0, (1.4)

where g - is the flow on H(f) defined by time translations.

In the terminology of the (local) skew product semiflow (1.4), the study
of asymptotic behavior for a bounded solution u(z, x) of {1.1)—~(1.2) then
gives rise to the problem of understanding the -limit set w(U,, f) of the
bounded motion [, (U,, /) in X x H{ /), where Uy(x)=u(0, x). Following
from the work in [16] and the standard a prior estimates for parabolic
equations, we know that if u(t, -, U, ¢g) (Ue X) i1s bounded in X for ¢ in the
existence interval of the solution, then u 1s a globally defined classical solu-
tion; moreover, for any ¢ >0, {u(¢,-, U, g} | t=J} is relatively compact
both in X and in H?*0, 1). Therefore w(U, g) is a nonempty connected
compact subset of X x H(f). Furthermore, since [], on the w-limit set
(U, g) has a unique continuous backwards time extension ([ 15]), it
defines a usual skew product (two sided) flow on (U, g).

In the case that f is time periodic with period 7, 1t is well known that
each bounded solution u{t, x, Uy, f) of (1.1)—-(1.2) approaches a periodic
solution with period T (see [4], [7]. and references therein). In the
language of skew product semiflow (1.4), this is to say that each -limit set
(U, g) (ge H(f)~S") is a periodic minimal set in X x H( ) with period
T (that 1s, (U, g) is minimal and each motion in w(U, g) is periodic with
period T) (in the autonomous case, each w-limit set i1s an equilibrium, see
[57, [21], and references therein). Nevertheless, similar results are false in
general for time almost periodic equation (1.1}-(1.2), namely, one does not
always expect an w-limit set w( U, g) to be an almost periodic minimal set
in X x H(f). There are examples in scalar ODEs which suggest that the
w-limit sets of (1.4) may not be minimal (see [24]), and the w-limit set
may not be almost periodic minimal even if it is minimal (see [ 13], [19]).

505:122:1-9
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Two natural questions then arise in the study of {1.1)-(1.2): (1) what
kind of structure can one expect for an w-limit set w(U, g) of (14) if it is
not minimal? (2) Does an w-limit set still carry over some “oscillation”
properties of the original system (1.1)—(1.2) if it is not an almost periodic
minimal set? The current paper gives partial answers to these questions.
We shall prove that for the (local) skew product semiflow (1.4), each
w-limit set (U, g) contains at most two (obviously at least one) minimal
invariant sets, and each minimal invariant set contained in w(U, g) is a
proximal extension of H(f) (see definition in section 3). In the case where
two minimal invariant sets appear in the w-limit set w(U, g), both are
almost automorphic extensions of H(f) (see definition in section 3). If
(U, g) is distal (see definition in section 3) or almost periodic minimal,
then it must be an almost periodic extension of H( f) (see definition in sec-
tion 3), and therefore the frequency module of any almost periodic solution
of (1.1)—(1.2) (if exists) is contained in that of f.

There is an example (see section 4) showing that an w-limit set of (1.4)
may contain two minimal sets, and at least one of them is an elmost
automorphic but not an almost periodic extension of H{ f). In the case that
an w-limit set (U, g) contains precisely one minimal set E, we have
shown in some special situation that £ is actually an almost automorphic
extension of H(f) (see section 3). However, we conjecture that any mini-
mal set £ of (1.4) is an almost automorphic extension of H( /).

For time almost periodic equation (1.1)—(1.2), it is important to know
the existence of almost periodic solutions. This issue has been studied for
both PDEs and ODEs by various authors (see [13], [24], [26], [27].
[30]., [31], [32], and references therein). In this paper, we shall also
discuss cases in which (1.4) admits almost periodic minimal w-limit sets.

We remark that our results hold true for more general equations:

u,=alx, thu,, + f(t, x, u,u), t>0, xe(0,1) (L5
)

axou(t, 0)+ Bou (1, 0) = folt), a u(t, 1)+ Byu(t, 1) = f1(2), 1 >0,

where aZ + 7 #0 (i=0,1), fis as in (1.1)~(1.2), = >0 is smooth and
almost periodic in ¢ uniformly for xe [0, 1], f; (i=0, 1) are almost peri-
odic functions. For the case of (1.1) with periodic boundary conditions,
relevant results should hold following arguments in the current paper. We
shall discuss this issue separately.

Asin [4], [7]. [9], [ 101, [21], the zero number properties developed
in [1]}, [20] play important roles in our current studies. For other
dynamic studies of scalar parabolic equations, we refer readers to [2], [6].
[81, [12], [22]. [25], etc.
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2. STRUCTURE OF -LIMIT SETS

For a given C' function u: [0, 1] — R', the zero number of u is defined
as
Zlu(-))=#{xe(0,1) | u(x)=0}.

We first summarize zero number properties from [1], [20].

LeMMA 2.1.  Consider the following scalar linear parabolic equation:

u,=a(t, xyu, . +b(t, x)u +c(t, x)u, t>0, xe(0, 1), 0
(2.

Bult, 0)+ (1 — ) u (£,0)=0, Bur. 1)+ (1 —B) u,(t, 1)=0, >0,

b, b,, b, and ¢ are bounded continuous functions,

By

where a, a,, 4., d,.,
azo>0. Let u(t, x) be a classical nontrivial solution of (2.1). Then the
Jollowing holds:

(1)  Z{u(t, -)) is finite for >0 and is nonincreasing in t;

(2)  Z(u(t,-)) can drop only at t, such that u(t,, -} has a multiple zero
in[0,17;

(3)  Z(u(t,-)) can drop only finite many times, and there exists a t* >0
such that u(t, - has only simple zeros in [0, 1] as t = t* (hence Z(u(t, -)) =
constant as { = 1*).

Next, consider the (local) skew product semiflow [],: Xx H(f)—
Xx H(f) defined in (1.4). Recall [[,(U, g)=(u(t,-, U, g). g-t), where
u(t,x, U, g) is the solution of (1.3), with w(0, x, U, g)= U(x). Let P:
XxH(f)— H(f), (u, g)+— g be the natural projection.

LEMMA 2.2, Consider (1.4) and fix g, g*e H(f). Let (U,, g)e P '(g),
(U¥*, g*)ye P~ '(g*)(l—l 2, U £ U,, UX#U¥) be such that T],(U,, g) is
defined on R* or R and T1,(U;, g*) is globally defined on R'. If there
exists a sequence {t,, Jot, = +oc or —oo as n— o, such that ], (U,, g)—
(UF.g*) as n—or (i=1.2), then Zt,-, U, g*)—u(t, -, UF. g*)) =
constant for all te R".

Proof. Denoteu,(t, x)=u(t, x, U, gl uX(t, x)=u(t,x, U¥, g¥)(i=1,2).
Then V(¢ x)=u(t, x)— uy(t, x) satisfies the following linear parabolic
equation:

V=V +blt,x) V +c(t, x)V, t>0, O<x<l,
(2.2)

BV(E,0)+ (1 —B) Vo (£.0)=0, V1, 1) +(1 —B) V.(t, 1) =0, >0,
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where

.
b(t, x) =J gt x,u (1, x), suy (8, xX)+ (1 —8) uy (1, X)) ds,
0

1
ot x)= fo gt x, suy it x)+ (1 —8) us(t, x), us (2, X)) ds.

Similarly, V*{¢t, x}=u(1, x) —uF(t, x} also satisfies a linear parabolic
equation of form (2.2). By Lemma 2.1, there 1s 7> 0 such that Z(V{(z, -}) =
constant, Z( V*(t, -}) =constant, for r > T (note V(t,-), V*(1,-) have only
simple zeros in [0, 1] as t=T).

Case 1. Suppose that ,— oc as n— oo, Let r,e R be such that
V*(t,,-) has only simple zeros in [0, I ]. It then follows that

Z( V(’fn'f"u")):Z(V*(an‘)) (2-3)
as n» 1. Since Z( V{1, + ty, ) =Z(W(T, ) for n> 1, one has
Z(V*(ty, - N)=Z(WT, ) (2.4)

Note that (2.4) holds for any ¢, such that V*(¢,, -) has only simple zeros.
By Lemma 2.1, we conclude that Z(V*(¢, -)) = constant for all re R",

Case 2. Suppose that t,— —oc as n— oo. Let Ty,>0 be such that
Z(V*(t, - })y=constant as 1 = T,,. Since W5, + Ty, -)—= V*(Ty. ) as n > o0,
there is an integer N>0 such that Z(V(s,+ T,, ))=Z(V*(T,,-)) as
n=N. It follows that Z(V(t, -W=Z(V*(T,.-)) as 1<ty+ Ty Let
T= —ty— Ty, and without loss of generality, assume that 72> T,. Then

Z(V(—t, )=Z(V¥T,. ) for tztv+T,. (2.5)

If t,eR' is such that V*{t,,-) has only simple zeros in [0, 1], then
ZIV(=T, N=2Z(V{t,+ 1y, ))=Z(V*(ty,-)) as n> 1. This implies that
Z(V¥(Ty, ))=Z(V*(t,, ). Since such a ¢, is arbitrary chosen, by
Lemma 2.1, Z(V*(t,-))=constant for all re R, |

LEMMA 2.3, Let Ec X x H(f) be a minimal invariant set of (1.4). Then
for any ge H(f') and any two points (U,, g), (U, gye EnP " \(g). there
are sequences {1}, {s,} with t,— o, s, — —o0 as n— oc such that

Ll(t”. s Ul* g)‘ll(f”, Ul, g)——}O’
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and

U(S,,, ) Ul« g)—M(Sm s UZ! g)—"O.

as n— oc,

Proof. We only prove the existence of {r,} with f,—oc and
u(t,, -, U, g)—ult,, -, U,, g)—0asn— o. Denote F(¢t, x)=u(t, x, U,, g)
—u(t, x, Uy, g). If such {¢,} does not exist, then there is a § >0 such that
I¥(t, ) =0 for all +>0. Let {s,} be a sequence such that 7, — oc and
[T, (U, g) converge to some (UX, g*)e £ as n— x (i=1,2). Denote
V*(t, x)=u(t, x, UF, g*)—ult, x, UF, g*). Then |V*(, )] =0 for all
teR'. It follows from Lemma 2.2 that Z( V*(t, -)) = constant for all e R'.
Thus, (1 —B) V*(t,0)+ BV *(¢, 0) has constant sign for all re R'. Without
loss of generality, we assume that

(A= V¥, 0)+ Ve, 0)>0 for t1eR (2.6)

Define  u, =min{(l — ) U0)+ AU (0) | (U, g¥)e EnP '(g*)}. Let
(U, g¥)e EAn P '(g*) be such that (1 —p) 0(0)+pU (0)=u,,,. Since
E is minimal, there exists a sequence {f,} with 7,- o such that
H;H(U*,g*)a(f], g*) as n— on. Take subsequence if necessary, we
assume that [; (U, g*) converges to some (U, g*)e EnP '(g*) as
n—oo. Denote P(t, x)=u(t, x, U, g*)—u(t, x, U, g*¥). Again, one has
171, ) =6 for teR', and

Z( V{1, -)) = constant, for teR (2.7

By (2.6), it is clear that (1 —f) 0U(0)+ U .(0) = u,,. Therefore, (1 —pf)
70, 0) + ¥ (0, 0) = 0. Combinning the above with the boundary condi-
tion (1.2), one has that ¥(0,0)=0, ¥ (0,0)=0, that is, 7(0,.) has a
multiple zero at x =0. This contradicts with (2.7). |

LemMMA 24. Let E,, E,c Xx H(f) be two minimal invariant sets of
(1.4) (hence the flows on E,, E, are two-sided). Then there is an integer
N >0 such that for any ge H(f) and any (U,, g)e E.n P (g) (i=1,2),
one has Z(U\(-)—=U,{(-))=N.

Proof. Claim 1. For any geH(f), and any (U, g)eE,nP '(g)
(i=1,2), there 1s a T>0 such that Zu(s,-, U,. g)—ult, -, U,, g))=
constant for r< —T.

To prove the claim, we take a sequence {r,} such that 1, —oc and
IT, (U, g) (i=1,2) converges to some (U*, g*)e E,nP '(g*) (i=1,2)
as n— oc. The claim then follows from arguments in Lemma 2.2.
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Claim 2. For any ge H(f), and any (U, g)e E, ~n P~ '(g). there is
a (U,, g)eE,n P~ '(g) such that Z(u(t, -, U,, g)—u(t,-, U,, g)) =con-
stant for all re R%

To show the claim, we fix a (Uz‘g)eEsz*‘(g). By minimality of E,
(i=1,2), there is a sequence {f,} with ¢, —» o0 such that T, (U,, g)—
(U,, g), and ]_[,”(173, g) converges to some point (U,, g)e E,n P~ '(g) as
n— oo, Again, the claim follows from Lemma 2.2.

We are now ready to prove the lemma. First, for given ge H(/f), let
(U, g)eE,nP 7 (g) (i=1,2) be chosen. By claim 1, there is a 7> 0 and
integers ¥,, N, such that

Ny, t>T,

2.
v ielr (2.8)

Zlu(t, -, Uy, g)—ult, -, Uy, g'))={

It follows from claim 2 that there is a (U,, g) € £, P~ !(g) and an integer
N such that

Zu(t, - Uy, g)—u(t,, U,, g =N for teR" (2.9)

By Lemma 2.3, there are sequences {¢,}, {s,} with 7, > cc and s, > —c
such that u(z,,, -, U,, g)—ult,, -, Uy, g) =0, u(s,. -, U, g) —u(s,, -, U,, g)
— 0 as n— o0. Without of loss generality, we assume that there are g*,
g**e H(f) and points (UX, g*¥)eE,nP Yg*), (U}X* g**)ekE,n
P-'(g**) (i=1,2) such that [T, (U.g)—(U¥ g*), Il (U.g -
(Ur*, g**) (i=1,2)as n— oc. By Lemma 2.2 and (2.8), one has

Z(u(t, -, U, g)—u(t,-, U, g))=N,, teR', (2.10)
and
Zu(t, -, UF*, g**y—u(t, ., UF*, g**))=N,, te R, (2.11)

Since 1—[1,,(02’ g)_’(U.'f‘ g*)ﬂ I_IA\-,,(Ol’ g)_)(U.;_k*s g**) as n— oo, lt
follows from (2.9) and (2.10) that N=N, and from (2.9) and (2.11) that
N=N,. Thus N, =N,. By (2.8), we see that

Ziu(t, U, g)—u(t,, Uy, g))=N  for reR. (2.12)

Next, for given ge H(f), take any (U, g) (U, g)eE.nP '(g)
(i=1,2). By (2.12), we know that there are integers N,, N,, such that

Z(u(t,-, Uy, g)—ult,-, Uy, g))=N,, 1eR', (2.13),
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and
Zult,, U, g)~u(t,-. U,. g))=N,, teR" (2.13),

Applying Lemma 2.3, and using the above arguments, one finds

N, =Zu(t, -, Uy, g)~ult,-, U,, g))
zz(u(ts “ D[a g)—u(t« Ty Uz, g))':Nz
Finally, take any g* g**eH(f), and (U*,g*)eE,nP '(g*),
(UX*, g**Ye E,n P~ }(g**) (i=1,2). By the minimality of £, (i=1, 2),
there exist (U*, g*)e E; (i=1, 2) and sequence {¢,} with ¢, — o such that
I, (U, g*)— (UX*, g**) (i=1,2) as n — oo. By the above argument and
Lemma 2.1, one has
Z(u(t,-, U¥, g*)~ult,-. UF, g*))=Z@u(1, -, UF, g*)—u(1, -, OF, g*))
=Z(u([s', Ul**! g**)_u(tw'w '_:k*s g**))

= constant

for e R'. This proves the lemma. [

LemMa 2.5 Let E,, E,cXxH(f) be two minimal invariant sets of
(1.4). Define

a;(g)=min{(1—f) U(0) + U (0) | (U, g)e E,n P '(g)}

(2.14)
b(g)=max{(1—-p) U(0)+BU(0)| (U, g)e E,n P (g)}.

Then E,, E, are separated in the following sense:

(1) [alg) bi(g)lnlaxXg) bAg)]= for all ge H(f);

(2) Without loss of generality, assume that a,(gy)—bx(gy) >0 for
some go€ H(f). Then there is a 6>0 such that a|(g)—b,(g)=0 for all
geH(f).

Proof. (1) Let
A(g)={(1 =) U0+ BU0) [ (U, g)e EnP ()}, i=1,2

We first claim that there is a g,e H(f) such that either a,( g,) > b,( g,) or
ay(go) > b (go). Ifnot, thena,(g) <b,(g) alg)<bh(g)forallge H(f). Now,
fix g, g, H(S). Let (U,, g,)e E, be such that (1 —f) u,(0) + fu, . (0) =
a(g) (U, g,)e B, be such that (1 —f) Uy0)+ U, (0)=b,(g,). By
Lemma24, (1 —F) w(0.0, U, g} +pu {t,0, U, gy<(1 =) u(1,0, U,, g)
+pu. (1,0, U,, g,) for all reR'. By minimality of E,, there is a sequence
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{1} with ¢, — oo such that (1 —f) w(z,,0, Uy, gV +Pu(1,.0, U, g,)~
b,(g,)as n— oo, Without loss of generality, we assume (1 — f) u(¢,,, 0, U,, g,)
+pu (t,, 0, U,, g,) converges to some b(g,)e4,{g,) as n— oc. Hence
bi(g:)<b(g,) <bs(g,). By Lemma 24, b,(g,)#bs(g;) Thus b(g,) <
b,(g,). Similarly, we have b,(g,)<b,(g,). This is a contradiction.

Without loss of generality, we now assume that b,(g,) <a,{ g,) for some
go€ H(f). We need to show that b,(g)<a,(g) for all ge H(f). If this is
not true, then there is a g, e H(f) such that by(g,)>a(g,). Let
(U,. g,) € E; be such that (1 —f) Ux(0)+ BU,.(0)=by(g,), (U,, g,) € E,
be such that (1 —p) U,(0)+ BU,,(0)=a,(g,). By minimality of F,, one
can find a sequence {¢,} with ¢,— oo such that (1—f#) u(¢,,0, U;, g, )+
/}M\(I", 0’ UZ* g*)_’bZ( gO)’ and» (1 _ﬁ) M([n, O, Ulﬁ g*) +ﬂu,\-(tns 0~ Ul* g*)
—uafgy) as n— oc, where a(g,) is some point in 4 ,( g,). Thus by(gy) =
a( g,) > a,( g,). a contradiction.

(2) We know by (1) that by(g)<a,(g) for all ge H(f). Now,
suppose by contradiction that there is a sequence {g,} < H(f) such that
ay(g,)—b-g,)—0 as n—> oc. Without loss of generality, we assume that
{g,} converges to some g*e H(f), {a,(g,)} and {b,(g,)} converge to
some number ¢ as n-—>oo. Since E,, E, are both compact, then
ce A, (g*)n A,(g*) This contradicts with (1). |

We now state our main theorem in this section.

THEOREM 2.6, Let (Uy, goe Xx H(f) be such that the motion
T, (Us. go) (t>0) is bounded. Then the w-limit set w(U,, g,) contains at
most two minimal sets. More precisely, one of the following is true:

(1} (U, go)=E, VE,UE,,, where E,, E, are minimal sets,
E,# . E, connects E,, E, in the sense that if (U,,, g)eE,,, then
(U, gYN(E\VE)# T, U, gy (Eyu E)# & (where o is referred
to as the o-limit set).

(2) (U, go)=E,VE,, where E, is minimal, E,, # &, E |, connects
E, in the sense that if (U, gYe E|, then (U, g¢)n E, =, (U, g) 0
E, #3.

(3) (U, go) is a minimal invariant set.

Proof. Suppose that w(U,, g,) contains three minimal sets £,, £, and
E,. Define

A(g)={(1=8) U0)+LU(0) | (U, g)e EnP ' (g)},
a;,(g)=min 4,(g), (2.15)

b (g)=max A4,(g),
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(i=1, 2, 3). By Lemma 2.5, without loss of generality, we assume that there
is 0 > 0 such that

bi(gy+o<axg) byg)+d<ai(g), YgeH(Sf) (2.16)

Take (U, gy ekE, (i=1,2,3). Define u(t)y=(1—-p)u(t,0,U,, go) +
Pu.(t,0, U, go) (i=1,2,3), and u(t)=(1—p) u(t, 0, Uy, go)+Pu.(t, 0, Uy, go)
for 1 0. By Lemma 2.1, there is a 7> 0 such that u(t) —u,(¢) (i=1, 2, 3)
has constant sign as 7> 7. Without loss of generality, we assume that
u(t) <u,(t) as t>T. Next, fix a g* e H( f) and let {1,} be a sequence such
that ¢, — o0, go-t,,— g*, u(t,) > a(g*) as n — oc. For such sequence {z,},
we further assume that u,(7,) converges to some a( g*)e 4,(g*) as n— 0.
It then follows that a(g*) <a(g*) <b,(g*) <b,(g*)+ 4. This contradicts
with (2.16). Thus, w(U,, g,) contains at most two minimal sets. Now, write
ol(Uy, go)=E, VE, v E,,, where E,, E, are minimal sets. If £, # E,, since
w(U,, g4) 1s connected, E, # . Now, take (U,,, g)e E,,. It is clear that
U5, g)N(E\OE)# D, and (UL, g) N (E, U E,)# &, for otherwise,
either w(U,,, g} or 2(U,,, g) would contain a minimal set and therefore
w(U,, g,) would have three minimal sets. In the case w(U,, g,) contains
only one minimal set, that is, E,=E,. If E;,=F,# {J, then a similar
argument shows that o(U,,, g¢)nE #¢, «(U,,, g)nE,# for any
(Un.g)eEy. 1

We remark here that the above theorem is true for the o-limit set
a( Uy, go) if it can be defined. As we mentioned in section 1, there is an
example ([24]) in scalar ODEs which shows that certain -limit set in the
corresponding skew-product flow is not minimal, and it contains only one
minimal set. An example exhibiting the appearance of two minimal sets in
an o-limit set i1s provided in section 4. The following lemma can also be
found in [29]. We give a different proof here since more detailed informa-
tion in the proof is needed later on.

LEMMA 2.7. Let E< Xx H( [} be a minimal invariant subset. Then there
is a residual subset Ao <= H(f) which satisfies the following properties:

(1) For any g, Ay, g H(f) and any (U,, g, )eEnP '(g,), if
{1,} is a sequence with t,,—~ +o or —oo such that g-t,— g, as n— oo,
then there is a sequence {(U,, g)} = EnP'(g) such that 1], (U, g)—
(Uy. g,) as n— oo,

(2)  Let 2% be the set of all closed subset of E furnished with Hausdroff
metric a. Then Ay=1{ge H(f)|q: H(f)— 2" g— EnP ' g) is continuous
at g}.
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Proof. Let 2% be the set of all closed subset of E furnished with
Hausdroff metric o. Recall, for any E,|, E,e 2%, o(E,, E,) =max{u(E,, E,),
W(E5, E\)}, where u(E), E,)=max, _,, min, ., d,(x, X'), dg is the metric
on £ (note that the compact open topology on H(f) is metrizable, see
[26] or [33]). Now, consider the function ¢: H(f)— 2%, g— En P "Y(g).
It is clear that ¢ as a set valued map is upper semi-continuous. Let
Ay, < H(f) be the set of continuous points of ¢. Then Ag< H(f) 1s a
resiudal subset ([3]). Take g,eA,, geH(f) and (U,, g, leEn
P~ '(g,) Let {1,} be a sequence with 1,— +oc or —oo such that
g-t,—g, as n— oc. Now, by lower semicontinuity of ¢ as a set valued
map, there is a sequence {(U,.g-t,)} <E such that d (U, g-1,).
(U,, g,))—=0asn—oc. Let (U,, g) =Hk,"((7,,. g-t)(n=1,2..)(l)is
proved.

(2) follows from (1) and the definition of Hausdroff metric. |

ProposITION 2.8.  Consider (1.1)-(1.2). Let (U, go)e X x H(f) be such
that the motion 11, (Ug. go) (1>0) is bounded. If Uyx)— U{x)=0 (<0)
for any xe[0, 1], and any (U, gy)ew(U,, g,) NP Y g,), then o(U,. g,)
contains only one minimal invariant set.

Proof Suppose that w(U,, g,) has two minimal invariant sets £,, E,
(E,#E,). For each ge H(f), and xe [0, 1], define

ag x)=min{Ux) | (U, g e E,n P Y(g)},

(2.17)
b(g.x)=max{U(x) [ (U, g)le E,n P '(g)},

(i=1,2). Suppose that Uyx)— U(x)20 for any (U, g,)ew(Uy, g4) N
P~'(g,). Then by standard strong maximal principal for parabolic equa-
tions ([14], [23]), we have a,(g,-t, x) <ult, x, Uy, go) and b,( g, -1, x) <
u(t, x, Uy, go) forany xe[0,1]and =20 (i=1,2). Let 4, E, (i=1,2) be
the residual subset of H(f) satisfying the property in Lemma 2.7, that s,
for any g, e A4,, ge H(f) and any (U,, g,)e E,n P '(g,), if {s,} with
t,— +oc or —oo 1S a sequence such that g-¢, — g, as n— oc, then there
is a sequence {(U,. g)} « En P '(g) such that [T, (U,, g) > (U,, g,) as
n—o {(i=1,2). Let 4,=4,nA4,. Then A,c H(f) is also a residual
subset of H(f). Fix any g* € 4, and take any x,€[0, 1]. Without loss of
generality, we assume that a,(g*, x,) <bh,(g*, x,). Let (U¥, g*)eE, be
such that U¥(x,)=ua.(g* x4), and let (U, g*¥)e E;, be such that
Uf(xg) =b((g*. x,). Let {1} with 1, — oo be such that [T, (Ua. go) —
(U¥, g*) as n— oo. Then u(t,, x,. Uy, go) = UF(xy) =ax{ g*, x,) as n — oo,
By Lemma 2.7, there are (U, g,)e E,n P '(gy), n=1,2, .., such that
IT, (UL, go) = (UF, g*) as n—oc. Hence u(i,, xy, U, go) = Uf(xy) =
b(g*, x,) as n—o0. By the above assumptions, u(t,.xy, Uy, go) =
u(t,, xo, U}, go) for r,=0. This implies b ( g*, x,) <a-( g*¥, x,). Therefore,
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as( g*, xg)=b,(g*, x,). Similarly, we have a,(g*, x,) =b,(g*, x,). Hence
Ul(xg)=Usx(xq) for any (U, g*)eE, (i=1,2). Since x,e[0,1] is
arbitrary chosen, we have U, = U, for any (U,, g*)€ E, and (U,. g*)e E,.
This is a contradiction. |

Remark 2.1. By the arguments in the above proof, we actually have
card(En P~ '(g))=1 for any ge 4, where E is the minimal invariant set
in w(U,, g,) in Proposition 2.8.

3. L1FTING PROPERTIES OF m-LIMIT SETS

DerintTION 3.1.  Consider the local skew product semiflow (1.4) and let
E be an invariant set. For any ge H(f), a pair (U, g), (U,, g€
En P '(g) is said to be ( positively, negatively) proximal if

inf Iiu(ts" Ulv g)_u(t\'s UZ- g)”:o (31)

(re®*, R )reR!

The pair (U, g), (U,, g) 1s said to be positively (negatively) distal if 1t is
not positively (negatively) proximal. It is said to be distal if it is neither
positively nor negatively proximal.

DerFiniTION 3.2. Consider (1.4) and let Ec Xx H(f) be a compact
invariant set.

(1) E is said to be an almost periodic extension of H(f) if card(E n
P~ Y g)y=1for all ge H(f);

(2) E is an almost automorphic extension of H(f) if there is a
go€ H(f) such that card(En P '(go))=1;

(3) Eis a proximal extension of H(f) if any (U, g), (U,, g)e E are
either positively or negatively proximal;

(4) E is said to be (negatively, positively} distal if any (U, g),
(U,, g)e E(U, # U,) forms a (negatively positively) distal pair.

Remark 3.1. It is clear that if £ is an almost periodic extension
(1-cover) of H(f) (this implies that E is minimal), then for any (U, g) € E,
u(t,-, U, g) is an almost periodic solution of (1.3),. If E is an almost
automorphic extension of H(f) and is minimal, then it follows from [ 28],
[29] that Hy(f)={ge H([f)|card(En P '(g))=1} is actually a residual
subset of H( /') (hence E is almost a 1-cover of H(f)). Pointsin En P~ !( g)
(ge Hy(f)) are called almost automorphic points. Let (U, g,) be an almost
automorphic point. Then it is easy to verify that wu(e, -, Uy, g4) is a
(Bochner) almost automorphic solution of ( 1.3)g“ in the following sense: For
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!

any sequence {«,} < R', there exists a subsequence {«,} < {«,} and a func-
tion v{t, x) (v(t, -)e X) such that u(r+a,,, -, Uy, go) = v(t, ), v(t —2,, ) —
ult, -, Uy, go) as n— o,

DEerFINITION 3.3. A motion [T, (U,, g,) of (1.4) is said to be uniformly
stable if for any ¢> 0, there is d = d(¢) > 0 such that if

Nu(z, -, Up, go) —ulz, -, Uy, go)l <dle)
for some (U,, g,) € X x H(f), and some teR ™, then

lu(t+7,-, Uy, go)—ult+1,-. Uy, go)ll <e
forall rteR™.

Suppose that E < X x H(f) is a minimal invariant set. Define
a(g)=min{(1 —f) U0)+ U (0) [ (U, g)e En P~ '(g)}.
b{g)=max{(1 —f) U(0)+ BU(0) | (U, g)e En P~ }(g)},

(3.3)

and
E={(1-8) U0)+pU(0), g)| (U, g)eE}. (3.4)

Lemma 3.1. Let Ec X x H(f) be a minimal invariant set of (1.4) and
A, H(f) be as in Lemma 2.7. Then a(-), b(-): H(f)— R are continuous
at ge A,.

Proof. Denote the Hausdorff metric on 27 by 4. Then it is easy to see
that 6(EnP '(g,), EAnP '(g,))<K-6(EnP (g,), EnP \(g,)) for
any g,, g-€ H(f) and some K>0 (X g C'[0, 1]). This implies that the
function §: H(»/')-»ZE, g— P '(g)mE" is continuous on A,. Therefore,
functions a( g), b( g) are continuous on 4,. |

LEMMA 3.2. Consider a (U, go)e XX H(f) such that the motion
TT. (Uy, go) (1> 0) of (1.4} is bounded. Let E < w(U,, g,) be a minimal set.
If there is a T>0 such that u(t, -, Uy, go)—ult, -, U, gy) has onlv simple
zeros in [0,1] as t =T for any (U, g e En P '(g,). then E is an almost
automorphic extension of H(f).

Proof. Let Ay, H(f) be as in Lemma 2.7. Since A4, is the set of
continuous points of ¢: H(f)—2% g—En P '(g), it is clear that
Ey=Ugeny, EnP'(g)<E is Tl,-invariant. We want to show that
card(En P '(g))=1 for any ge 4,. Suppose this is not true. Then there
is a g, €4, such that card(En P '(g,))> 1. Now, take any two points
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(Ui, gy (Uy, g0eEnP(g,). Let {1,} with 1,> 00 be such that
11, (U, go)— (U, g,) as n—oc. By Lemma 2.7, there is a sequence
{(U,, g0)} cEnP7'(g,) such that T], (U,, go)— (U, g,) as n— oc.
By Lemma 2.1, we may assume without loss of generality that U,(.)—
Us(-) has only simple zeros in [0,1]. Let Z(U(-)—Ux-))}=N.
Then Z(u(t,,-, Uy, go) —ult,.-, U,, g¢))=N as n>1, and therefore
Z{ult, -, Ug, go)—ult,-, U,, go))=N for 1=T. Now, let 1,6 R' be any
number that u(t,, -, U, g,)—u(ty, -, U,, g,) has only simple zeros in
[0.1]. Since [T, ., (Us. )T 1 (U 84)s T 4s (Uns g0)=11, (Ua, 8)
as n— oo, Zlul(ty, -, U, g )—ulty, -, Uy, g,))=N. By Lemma 2.1, this
implies that Z(u(r, -, U\, g,)—u(t,-, U,, g,)) =N for all re R".

Let a(-), b(-) be as in (3.3). By Lemma 3.1, functions a( g), b({ g) are con-
tinuous on A,. Note that for any ge 4, and any two points (U, g),
(U,, g)e EnP '(g), U(-)— Uy -) has only simple zeros in [0, 1]. This
implies that for any ge A, there is a unique (U,, g)e ENnP '(g) and a
unique (U,, g)e En P '(g) such that a(g)=(1—p) U,(0) + BU,.(0) and
blg)=(1—=F) U(0)+ U, (0}, moreover, a(g-t)=(1 — ) u(s,0, U,, g} +
pu 1,0, U, g), blg-ty=(1—F)u(t,0,U,, g)+ fu (£,0,U,, g) for all
1€ R'. Now, fix a g e 4. By minimality of E, one can take a sequence {1, }
with 7, — o such that g1, — g, (1 = f) u(1,,0, U, g)+ pu (1,.0,U,, g)
—b(g,), thatis, a(g-¢,) > b(g,). as n — oc. Since a(-): H(f)— R' is con-
tinuous at g,, one also has a{g-t,)—a(g,) an n— oc. Hence a(g,)=
b(g,). Thus, card(EnP l(g*)) =1, a contradiction. Therefore, we must
have card(En P~ '(g)) =1 for all ge A,. This proves the Lemma. ||

THEOREM 3.3. Ler (U,, go)e X x H(f) be such that TT, (U, g,) (£>0)
of (1.4} is bounded. The following holds:

(1) Any minimal invariant set E < o(U,, go) is a proximal extension
of H(f).

(2} If o(U,, g,) contains two minimal sets E,, E,, then both E, and
E, are almost automorphic extensions of H( f).

Proof. (1) Follows immediately from Lemma 2.3. We now prove (2).
First, we claim that there is a J >0 such that for any ge H(f) and any
(U'.g)eEnP Y(g) (i=1,2),

[UNx)— U x)| + UM x) = U(x)| =4, forall xe[0,1]. (3.5)

If this is not true, then there are sequences {(U.. g,)} cE, (i=1,2),
{x,} =[0,1] such that |U)(x,)— UXx)|+|U} (x,)—UZ2(x,)| =0 as
n— . Take subsequences if it is necessary, one has that (U’ g,) (i=1,2)
converge to some (U',, g, )€ E, (i=1,2), {x,} converges to a x e[0, 1]

as n— oc. It turns out that x, is a multiple zero of UL(-)—UL(-),
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a contradiction to Lemma 2.4. Now, fix a (U?, g,)€ E,n P~ '(g,), similar
to the argument in Lemma 2.3, there is a sequence {¢,} with 7, — o such
that

Hu(tu« ) U()~ g())_u(tnw y Uzs gn)” —)Ow (36)

as n—oc. Thus, there is a N>0 such that J|u(z,, -, Uy g0)—
wt,, . U gl o1 <0/2. as n=N. Now, for any (U, gy)eE,n
P '(g,), since

lu(t,, x, Uq, go) —ult,, x, U, gl +1u {1, x. Uy, go) —ult,, X, U, g6l

=ult,, x, U, go) —ult,, x, U go)| + lu (1, x, U, go) —u(t,, x. U, go)l
—lutt,, -, Uy, go)—ult,, . U 2ol ciron)

>6-8/2=6/2>0

as n= N, ult,, . Uy, go)—ult,, - U, g,) has only simple zeros as n=N.
This implies that u(¢, -, Uy, g,) —ult, -, U, g,) has only simple zeros as
t=ty for any (U, gy)e E,nP '(g,). By Lemma32, E, is an almost
automorphic extension of H(f). Similarly, £, 1s an almost automorphic
extension of H(f). |}

ProrosITION 34.  Let conditions in Proposition 2.8 be satisfied. Then the
unique minimal set E in w(U,, gq) (for some (U, go) e X x H([)) is in fuct
an almost automorphic extension of H( f).

Proof. 1t follows trom the proof of Proposition 2.8 (see Remark

21). 1

Remark 3.2. By Proposition 3.4, if (1.4) has a bounded global attrac-
tor, then it has at least one minimal invariant set which is an alomost
automorphic extension of H(f).

We now discuss a situation in which an w-limit set w(U,, g,) of (1.4)
can be an almost periodic extension of H{f).

LemMma 3.5, If the w-limit set (U, g) is distal, then o( U, g) is an almost
periodical extension of H( [).

Proof. This is a consequence of Theorem 2.6 and Theorem 3.3. ]
It is known that, for a skew-product flow generated from a scalar time
almost periodic ODE, the @-limit set of a uniformly stable motion is an

almost periodic extension of H(f) (see [24]). We now claim that this is
also true for the equation (1.1)-(1.2).
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THEOREM 3.6.  Consider (1.4). Let (U,, go)€ X x H( ) be such that the
motion [1, (U,, go) (t>0) is bounded and uniformly stable. Then w( Uy, g,)
is an almost periodic extension of H(f).

Proof. By [24], w(U,, go) is minimal, and flow [], on w(U,, g,) is
distal. The theorem then follows from Lemma 3.5. ||

THEOREM 3.7.  Assume system (1.1) is monotone, that is, f,(t, x,u, p) <0
Sor all (t,x,u, p)eR'x[0,1]xR'xR! in (1.1). Then for any bounded
motion T1,(U,, go) (:>0), o(U,, go) is an almost periodic extension of

H(f).

Proof. We first claim that w(U,, g,) is distal. Take any (U,, g),
(Uy, g)em(Uy, go) 0 P '(g), by strong maximal principal (see [14],
(231

max |u(t, x, Uy, g)—u(t,x, U,, g)| = max |[U(x)— Us(x)|,
xe[0,1] ve[0.1]

for any 7 <0. This implies that

lue, -, Uy, g)—ult, -, Uy, )| 2 K- max  |Uy(x) — Us(x)]

xel0,1] -

for some K>0 and any 7<0. Hence w(U,, g,) is negatively distal. It
follows from [ 11], [24] that m(U,, g,) is distal. By Lemma 3.5, w(U,, g,)
is an almost periodic extension of H(f). |

4. COMMENTS AND REMARKS

4.1. Consider a scalar time almost periodic ODE:
u' = f(t, u). (4.1)
Equation (4.1) generates a skew product flow [T, on R' x H(f),

T, (uo, &)= (u(t. uo, g), g- 1), (4.2)

where g -t is the flow on H(f) defined by time translations, u(¢, ugy, g) 18
the solution of (4.1) with u(0, u,, g) =u,. Let Ec R' x H({ f) be a minimal
subset of T],. Then, by using precisely the same arguments in the proofs of
Lemma 3.1 and Lemma 3.2, one shows that E is actually an almost
automorphic extension of H( /). In fact, from arguments in the proofs of
Lemma 3.1 and Lemma 3.2, we see that once zero number plays a role, the
PDE solutions of (1.1) preserve some properties of scalar ODE solutions
(for example, “order” between solutions).
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42. Let Ec X x H(f) be a minimal set of (1.4). The lifting properties
(say, almost periodic, almost automorphic extensions of H(f)) of E
naturally reflect the oscillations of the solutions u(t, x, U, g) with (U, g)e E
in the time variable ¢ which are carried over from the original system (1.1)
(that is, from the function ). For example, let £< X x H(f) be a minumal
set of (1.4). If E is an almost automorphic (almost periodic) extension of
H(f), then there 1s residual set Hy( /)<= H(f) such that for any (U, g)e
EnP '(g), geHyf) (geH()), TI,(U, g) is an almost automorphic
(almost periodic) motion {see Remark 3.1), in other words, u(t, x, U, g) is
an almost automorphic (almost periodic) solution of (1.3),. We now ask
the inverse question: If there is an almost automorphic (almost periodic)
motion lying in £, is then E necessarily an almost automorphic (almost
periodic) extension of H(f)? The answer is yes. That is, the oscillation
properties of the motions lying in a minimal invariant set £ also reflect the
lifting properties of E.

THEOREM 4.1. Let ECc X x H(f) be a minimal set of (1.4). Then the
Jollowing holds:

(1) If there is an almost automorphic motion 11, (U,, go) lving in E,
then card(En P '( go)) =1, that is, E is an almost automorphic extension of
H(f).

(2)  If there is an almost periodic motion lying in E, then E is an almost
periodic extension of H( f).

Proof. (1) Suppose that T], (U,. g,) is an almost automorphic motion
in £. We claim that card(EnP '(g,))=1. Otherwise, let (U, g, €
EnP '(g,) be any point which differs from (U,. g,). Let {z,} be a
sequence such that ¢, —oc and [, .. (U, go) » (U, g¢) as n— oc. Let
(U* g))e EnP '(gy) be such that TT._, (U, go) = (U*, g) as n—
(take subsequence if necessary). Since [], (U*, g4} — (U,, go) as n— oo,
(U*, go) #(U, go). By Lemma 22, Z{u(t,-, Uy, go) —ult. -, U, gy)) =
constant for all re R'. Applying Lemma 3.2 for T=0, E is an almost
automorphic extension of H(f). Let g*e H(f) be such that card(En
P Yg*))=1, that is, EnP '(g*)y={(U* g*)}. Fix a (U, gyle
EnP '(gy) such that (U, go) # (U, go). Let {r,} with 1,> 00 be a
sequence such that [T, (U*, g*)— (U, g,) as n— cc. Since [] , (Uy. &)
—{(U*, g*) as n— oo, then [, (U*, g*)—(U,, gy) as n— oc. This con-
tradicts with the fact that (U, g4) # (U,. g,). Hence card(En P ' gy)) = 1.

(2) Is a corollary of (1). |
Note that, given £ is minimal invariant and (U,, g,)€ E, then by

the above theorem, T, (U,, g,) 1s almost automorphic if and only if
cardfEnP '(gy))=1.
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43. We remark here that by Theorem 4.1 and the following proposi-
tion, u(t, x, Uy, go) 1s asymptotically almost periodic if and only if
(U, g,) 1s an almost periodic extension of H( f).

ProposITION 4.2, Consider (Uy, go) e X x H(f) such that T, (U,, go)
(1 >0) is bounded. Suppose that w(U,, g,) is an almost periodic extension of
H(f) (hence for each (U, g)ew(U,, go), T1, (U, g) is almost periodic). Then

IT, (Us. g0) —TI1. (U, g} =0, as [ — o0,

where (U, g,) = w(U,, g())mpil(gn)

Proof. If not, there is a >0 and a sequence {7,} with ¢, —» cc such
that

‘iu(tll’ ] UO’ g()) _u(tn’ s U* gO)H 26’

for all n.

Without loss of generality, we assume that [, (U,. go). 1, (U, g)
converge to (U§. g*), (U* g*)ew(U,, g,) respectively as n— cc. It
follows that |UZ — U*{| = é. But card{w(U,, go) " P '(g*))=1. This is a
contradiction. |

44. Suppose that the flow on a compact invariant set Ec X x H( f)
1s distal. It follows from classical topological dynamical system theory (see
[11]) that E laminates into minimal distal flows. It then follows from
Lemma 3.5 that £ is a union of almost periodic extensions of H( f).

4.5. We have seen from previous sections that the zero number plays
an important role in describing the oscillations of solutions in time ¢
variable. In the theory of scalar one dimensional parabolic equations,
oscillation properties of a solution u{x, ¢) in the space variable x are often
described by the so called Lap number ([20]).

Let u(x)e C'[0,1]. The Lap number of u is defined as

l(u) = sup{k | there are points 0 = x, < x, < --- <x, =1 such that 43)

(u(x; ) —u(x))u(x) —u(x; ) <0, i=12, . k—1}.

An essential requirement to consider the Lap number /{u(-, ¢t)) for a
classical solution u(x, ¢) of (1.1) is that the function f in (1.1) does not
depend on x explicitly (see [ 20]). If this assumption is made, then the Lap
number of the solutions in a minimal invariant set 1s a constant.

505/122/1-10
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ProposITION 4.3, Let Ec Xx H(f) be a minimal set of (1.4) and
suppose that for any (U, g)e E, lu(t, -, U, g)) is nonincreasing (it is always
true if f in (1.1) does not depends on x explicitly and =0 in (1.2)). Then
there is an integer N =0 such that (U)Y=N for all (U, g)e E.

Proof. Fix (U,, g,)€ E. Since u.(t, x, Uy, g,) satisfies a linear parabolic
equation, Z(u, (t,-, U,, go)) < oo for all re R Thus, Hu(t, -, Uy, g,)) <
Z(u (t,-, Uy go)+1 <o for all e R'. By minimality of E, there is a
sequence {1,} with ¢, — oo such that [T, (U,, go) = (U, go) as n — . By
lower semi-continuity of Lap number ([20]), one has

{Up)<ltim inf Ku(z,, -, Uy, go)) <lult,, -, Uy, go)) (44)

n— X

for n> 1.
But H(u(z,, -, Uy, go) <I(U,) for all n. It follows that lu(¢, -, Uy, go)) =
KU,) for t=0. This implies that Ju(t, -, Uy, go)) = Uy(-)) for any re R".
Now, for any (U, g) € E, there are sequences {t,}, {s,} with 7, — oo,
s, — —oo such that

H(,,(UO’ gO)'-’(Us g)ﬂ HAV,,(U’ g)_’(UO’ gO);

as n — oo. Therefore,

(U)<lim inf Ku(s,, -, Uy, go) = Us),

n-— oG

K Uy) <lim inf Hu(s,,-, U, g)=IU),

H— 00

that is, {U)=IU,). 1

This proposition simply states that by means of Lap number all motions
{I'l, (U, g)} = E have similar oscillations in the space variable x.

46. We now give an example adopted from Johnson [19] in which
an ow-limit set of (1.4) contains precisely two minimal sets.

Consider the scalar parabolic equation:

u,=u,.—{(a(t)cosu+b(t)sinu)sinu, >0, O<x<l, 45)
(4.

u (,0)=u,(1,1)=0, >0,
where f(t)={(a(?), b(2)) is almost periodic such that the scalar ODE

Y =alt) y+b(t) (4.6)
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admits no almost periodic solutions but the solution yy{(¢) with y,(0)=0
is bounded (see [19]).

In what follows, we will consider only the w-limit sets of bounded
solutions which are space homogeneous, that is, the solutions of the scalar
ODE:

u'= —(a(t)cosu+b(t)sin u) sin u. (4.7)
For (U, g)=(U, a,, b,) e R' x H(f), denote by u(t, U, g) the solution of
u'= —(a,(t)cosu+b,(t)sinu)sinu (4.8)

with «(0, U, g) = U. Then

H!(U’ g):(u(t5 U’ g)’ gt) (49)

is the skew product flow on R' x H( f) generated by (4.7).

Clearly, E,={0} x H(f) is an invariant set of [],, and it is in fact
an almost periodic extension of H(f). Next, consider transformation
y(t)=cot u(t) to (4.7). A simple calculation shows that y(¢) satisfies (4.6).
Let M=cl{(yy(t),f-t)|teR"'}. Then M contains a minimal set M,c
R' x H(f) which is necessary an almost automorphic but not almost peri-
odic extension of H(f) (see 4.1). Hence, E=cl{I], (n/2, f)|teR'} con-
tains a minimal set E, = (0, ) x H( /) which is an almost automorphic (not
almost periodic) extension of H(f). Define u( g) =min{ U|(U, g)e E,}. We
shall show that there are goe H(f) and Uye (0, u( g,)) such that

E, U E,cw(Uy, g).

To do so, for each (U, g) =(U, a,, b,) € E,, consider the transformation

cot i
- t 4.10
cot u —" U’g)—i-CO u(t, U, g) (4.10)
to (4.8). Then the equation for # reads
a'=p((U, g) 1) sin i cos 4, (4.11)

here S((U, g)-1)= —a,(t)sin’ u(t, U, g) + b,(1) sin u(t, U, g) cos u(t, U,

g .
Let T, be denoted as the skew product flow on R'x E2~generated by

(4.11). Then minimal sets £, = {0} x E,, E, = {n/2} x E, of [], correspond
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to £, and F, respectively by means of transformation (4.10). By arguments
in [ 18], one has that

lim - /f’ (U, g) -5s)ds=0 (4.12)

) — o 1

Since E; and E, are only two minimal sets of [, in [0, m) x H(/f) (see
[19]), it follows also that E, and E, are only minimal sets of [], in
[0, /2] x E,. Note that V' =cot # satisfies

V.= —=pUU, g)- )V, (4.13)

that is, cota=cot Je AU 2d (50)= ). Now take (U, U, g)e
(0, 7/2) x E,. Since E"l, E, are only minimal sets of [, in [0, n/2] x E,,
there is a sequence {¢,} with ¢, — oo such that if a(r) = i(, U, U, g) is the
solution of (4.11) with #(0) = U. then #i(7,) converges to either 0 or /2 as
n— oo, that is, cot #(t,) converges to either + o0 or 0 as n— oc. Hence
g BUU, g)-s)ds converges to either + o0 or —oo as n— co. In any case,
{6 BULU, g)-¥) ds is unbounded. Using this fact and (4.12), one has by [ 18]
that the set

EO—{(U g)e E, | lim sup j BUU, g)-s)ds=oc

t— o 0

lim inf J’ﬁ((U,g)-A')(is'z —oc} (4.14)

r— o Y0

is a residual subset of E,. Now take (U, U. g,) € (0, n/2) x E,. It follows
from (4.14) that E, UE,cw(U, U, g,). Let U,=cot™'(cot U/sin U+
cot U). Then E, U E, cw(U,, g,), with E, being an almost periodic exten-
sion of H(f) and E, being an almost automorphic extension of H{f).
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