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1. Introduction and auxiliary results

Let Sn be the symmetric group of degree n. Let F be an arbitrary field of characteristic zero and c be

a function, not identically zero, from Sn into F. If X = [xij] is an n × n matrix over F, the generalized

Schur function dc(X) is defined by [4]

dc(X) = ∑
σ∈Sn

c(σ )
n∏

i=1

xiσ(i).

When c coincides with an irreducible character χ of a subgroup H of Sn, we denote dc(X) by dHχ (X)

and we say that dHχ (X) is the generalized matrix function associated with H and χ . Throughout this

paper we see χ as a map from Sn over F taking χ(σ) = 0 if σ ∈ Sn − H.
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LetMn(F) be the linear space of n-squarematriceswith elements inF. In [2] the first author studied

the set, T (H,χ), of the matrices A ∈ Mn(F) satisfying

dHχ (AX) = dHχ (X)

for all X ∈ TU
n (F), where TU

n (F) is the set of n-square upper triangular matrices (the set of n-square

lower triangular matrices is denoted by TL
n(F)). It is motivated by de Oliveira and Dias da Silva [5]

which studies the matrices A ∈ Mn(F) satisfying

dHχ (AX) = dHχ (X),

for allX ∈ Mn(F). Similar problemswereproposed in [6]. One of those problems is the characterization

of the pairs of matrices (A, B) ∈ Mn(F) × Mn(F) that satisfy

dHχ (AXB) = dHχ (X),

for all X ∈ Mn(F).
These pairs was first studied by Duffner and de Oliveira in [1]. They denote by C(H,χ) the set of all

these pairs of matrices, that is,

C(H,χ) = {(A, B) : dHχ (AXB) = dHχ (X), for all X ∈ Mn(F)}.
It is easy to see that for all H and χ , C(H,χ) /= ∅ because (In, In) ∈ C(H,χ), where In denote the

identity matrix ofMn(F). In [1] it was proved that if (A, B) ∈ C(H,χ) then A and B are nonsingular and

C(H,χ) can be made a group by defining the product (A, B)(C, D) = (AC, DB).
In this paper, we use the following notations: By (H)Tid we denote the subgroup of Sn generated by

all transpositions τ such that χ(τ) = −χ(id), and by U(H,χ) we denote the set

U(H,χ) = {(γ1, γ2) ∈ Sn × Sn : χ(id)χ(γ1σγ2) = χ(σ)χ(γ1γ2), for all σ ∈ Sn}.
Note that U(H,χ) is never an empty set because (id, id) ∈ U(H,χ), where id is the identity of Sn.

We also have that if (γ1, γ2) ∈ U(H,χ) thenχ(γ1γ2) /= 0 and (γ −1
1 , γ −1

2 ) ∈ U(H,χ). The set U(H,χ)
equipped with the product (γ1, γ2)(π1,π2) = (γ1π1,π2γ2) is a group.

If θ ∈ Sn, we denote by P(θ) the n × n permutation matrix whose (i, j) entry is

P(θ)ij = δiθ(j), i, j ∈ {1, . . . , n}.
The next theorem is the main result of [1] and it gives a characterization of C(H,χ):

Theorem1.1 [1]. LetH bea subgroupof Sn and letχ bean irreducible character of Sn.Then, (A, B) ∈ C(H,χ)
if and only if A and B can be written as

A = M1P(γ1), B = P(γ2)M2

and the following conditions are satisfied:
1. The (i, j) elements of M1 and M2 are zero whenever i and j are in different orbits of (H)Tid;
2. (γ2, γ1) ∈ U(H,χ);
3. det(M1M2) = χ(γ2γ1)

χ(id)
.

Themain purpose of this paper is to solve a problem based on this one.We are going to characterize

the pais of matrices (A, B) ∈ Mn(F) × Mn(F) that satisfy

dHχ (AXB) = dHχ (X),

for all X ∈ TU
n (F).

We denote by T (H,χ) the set of all this pairs of matrices, that is

T (H,χ) = {(A, B) ∈ Mn(F) × Mn(F) : dHχ (AXB) = dHχ (X), for all X ∈ TU
n (F)}.
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This set is not a group because T (H,χ) is not a group (see [2]). However if (A, B) ∈ T (H,χ) then A

and B are nonsingular matrices:

Proposition 1.2. If (A, B) ∈ T (H,χ) then A and B are nonsingular matrices.

Proof. Assume that A is a singular matrix. Then, there exists a nonzero column u = [ui] such that

Au = 0. Let x be an arbitrary element of F and let p be the great integer such that up /= 0. Let X be

the n × nmatrix whose pth column is xu, and the kth column, k /= p, has a 1 in the kth entry and the

remaining entries are null. Then X ∈ TU
n (F), and so,

dHχ (AXB) = dHχ (X).

Thematrix AX does not depend of x because the pth column of AX is null. Then AXB does not depend

of x and the same happens for dHχ (AXB). However,

dHχ (X) = χ(id)xup,

which is a contradiction. In a similar way we prove that B is nonsingular. Assume that B is singular.

Then there exists a nonzero row v = [vi] such that vB = 0. Let x be an arbitrary element of F and let p

be the small integer such that vp /= 0. Let Y be the n × nmatrix whose pth row is xv, and the kth row,

k /= p, of Y has a 1 in the kth entry and the remaining entries are null. The rest of the proof goes in a

similar way. �

2. The set T (H ,χ)

In this section we are going to present a characterization of the set T (H,χ). So the Theorem 2.3 in

the main result of this section.

Remark that ifσ1, σ2 ∈ Sn,χ is an irreducible character ofH (subgroupof Sn) such thatχ((σ1σ2)
−1)

/= 0 then σ1σ2 ∈ H.

Proposition 2.1. Let H be a subgroup of Sn and χ be an irreducible character of H. The pair (A, B) is in

T (H,χ) if and only if there exists σ1, σ2 ∈ Sn such that χ((σ1σ2)
−1) /= 0, and lower triangular matrices

L1 and L2 with the entries of the main diagonal equal to 1 satisfying

(1) L
−1
1 P(σ−1

1 )A, L−1
2 P(σ−1

2 )B ∈ TU
n (F);

(2) det(AB) = ε((σ1σ2)
−1)χ(id)

χ((σ1σ2)−1)
;

(3) dHχ (P(σ1)L1ZL2P(σ2)) = χ((σ1σ2)
−1) det(Z), for all Z ∈ TU

n (F).

Proof. Let (A, B) ∈ T (H,χ). Then there exists σ1, σ2 ∈ Sn such that

A = P(σ1)L1R1 and B = R2L2P(σ2),

where L1 and L2 are lower triangular matrices with the entries of the main diagonal equal to 1, and R1
and R2 are upper triangular matrices. Then,

L
−1
1 P(σ−1

1 )A = R1, and BP(σ−1
2 )L−1

2 = R2,

and so we have (1).

Let X = [xij] ∈ TU
n (F). Since (A, B) ∈ T (H,χ) we have,

dHχ (AXB) = dHχ (X).

Let Z = R1XR2. Since R1 and R2 are nonsingular, Z ∈ TU
n (F) is arbitrary and we have

dHχ (P(σ1)L1ZL2P(σ2)) = dHχ (R−1
1 ZR

−1
2 ).
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Taking Z = In we have

dHχ (P(σ1)L1L2P(σ2))=dHχ (R−1
1 R

−1
2 )

=χ(id)
n∏

i=1

(r
(1)
ii )−1(r

(2)
ii )−1 /= 0,

where r
(1)
ii and r

(2)
ii are the (i, i) entry of R1 and R2, respectively. But

dHχ (P(σ1)L1L2P(σ2)) =
{
χ((σ1σ2)

−1) if(σ1σ2)
−1 ∈ H

0 otherwise
,

so (σ1σ2)
−1 ∈ H and χ((σ1σ2)

−1) /= 0. Hence,

det(R1R2) = χ(id)

χ((σ1σ2)−1)
.

Now it is easy to get (2).

Since

dHχ (R−1
1 ZR

−1
2 ) = χ(id)

n∏
i=1

(R−1
1 ZR

−1
2 )ii = χ(id) det(R−1

1 ) det(R−1
2 ) det(Z),

we have

dHχ (P(σ1)L1ZL2P(σ2))=dHχ (P(σ1)L1R1R
−1
1 ZR

−1
2 R2L2P(σ2))

=dHχ (R−1
1 ZR

−1
2 )

=χ(id) det(R−1
1 ) det(R−1

2 ) det(Z),

and so

dHχ (P(σ1)L1ZL2P(σ2))=χ(id)
χ((σ1σ2)

−1)

χ(id)
det(Z)

=χ((σ1σ2)
−1) det(Z)

and the proof of the necessity of the conditions is complete.

Assume now that the matrices A, B, L1, L2, P(σ1) and P(σ2) satisfy the three conditions. Let

X ∈ TU
n (F). Then

dHχ (AXB) = dHχ (P(σ1)L1L
−1
1 P(σ−1

1 )AXBP(σ−1
2 )L−1

2 L2P(σ2)).

By (1), L
−1
1 P(σ−1

1 )A, L−1
2 P(σ−1

2 )B ∈ TU
n (F), and using (2) and (3) we have

dHχ (P(σ1)L1L
−1
1 P(σ1)

−1AXBP(σ−1
2 )L−1

2 L2P(σ2))=χ((σ1σ2)
−1) det(L−1

1 P(σ1)
−1AXBP(σ−1

2 )L−1
2 )

=χ((σ1σ2)
−1)ε(σ1σ2)

ε(σ1σ2)χ(id)

χ((σ1σ2)−1)
det(X)

=χ(id) det(X)

=dHχ (X)

and the proof is complete. �

Notation 2.2. Let σ ∈ H such that χ(σ)−1 /= 0. In [2] it was defined the set Vσ (H,χ) of the lower

triangular matrices L with diagonal elements equal to 1, satisfying
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dHχ (P(σ )LX) = χ(σ−1) det(X),

for all X ∈ TU
n (F). So, if σ1, σ2 ∈ Sn are such that χ((σ1σ2)

−1) /= 0, we denote by V(σ1 ,σ2)(H,χ) the

set of the pairs of lower triangular matrices (L1, L2), with 1 in the entries of the main diagonal, that

satisfy

dHχ (P(σ1)L1XL2P(σ2)) = χ((σ1σ2)
−1) det(X),

for all X ∈ TU
n (F).

Using Proposition 2.1 and the previous notation we conclude that

Theorem 2.3

T (H,χ) = ⋃
σ1 ,σ2∈H,

χ((σ1σ2)−1) /=0

{
(P(σ1)L1R1, R2L2P(σ2)) : (L1, L2) ∈ V(σ1 ,σ2)(H,χ),

R1, R2 ∈ TU
n (F) and det(R1R2) = χ(id)

χ((σ1σ2)−1)

}

By this result we conclude that if we want to characterize the set T (H,χ) we have somehow to

obtain a characterization of the set V(σ1 ,σ2)(H,χ).

Proposition 2.4. Let σ1, σ2 ∈ H such that χ((σ2σ1)
−1) /= 0. Then

V(σ1 ,σ2)(H,χ) = V(σ2σ1 ,id)(H,χ) = V(id,σ2σ1)(H,χ).

Proof. Let X ∈ TU
n (F). By definition

dHχ (P(σ1)L1XL2P(σ2)) = ∑
ρ∈Sn

χ(σ−1
2 ρσ−1

1 )
n∏

i=1

(L1XL2)iρ(i).

Since χ is a class function of H, we have

χ(σ−1
2 ρσ−1

1 ) = χ((σ2σ1)
−1ρ) = χ(ρ(σ2σ1)

−1).

Therefore,

dHχ (P(σ1)L1XL2P(σ2)) = ∑
ρ∈Sn

χ((σ2σ1)
−1ρ)

n∏
i=1

(L1XL2)iρ(i) = dHχ (L1XL2P(σ2σ1))

and

dHχ (P(σ1)L1XL2P(σ2)) = ∑
ρ∈Sn

χ(ρ(σ2σ1)
−1)

n∏
i=1

(L1XL2)iρ(i) = dHχ (P(σ2σ1)L1XL2).

Consequently, we have the result. �

Proposition 2.5. Let σ ∈ H such that χ(σ−1) /= 0. Then

Vσ (H,χ) × {In} ⊆ V(σ ,id)(H,χ).

Proof. Let L ∈ Vσ (H,χ) and X ∈ TU
n (F). Since

χ(σ−1) det(X) = dHχ (P(σ )LX) = dHχ (P(σ )LXIn),

then (L, In) ∈ V(σ ,id)(H,χ). �
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Notation 2.6. Let σ ∈ H such χ(σ−1) /= 0. We denote by (H)Tσ the subgroup of H spanned by all

transpositions τ such that χ(σ−1τ) = −χ(σ−1).
Let σ1, σ2 ∈ Sn such χ((σ1σ2)

−1) /= 0. We denote by (H)T(σ1 ,σ2)
the subgroup of Sn spanned by all

transpositions τ such that χ(σ−1
2 τσ−1

1 ) = −χ(σ−1
2 σ−1

1 ).

Since χ is a class function in H, it is easy to prove the following proposition.

Proposition 2.7. Let σ1, σ2 ∈ H such χ((σ1σ2)
−1) /= 0. Then

(H)T(σ1 ,σ2)
= (H)Tσ2σ1

.

Notation 2.8. Let x be an indeterminate over F. Then E(i)+x(j) is the matrix obtained from the identity

matrix by adding x times column j to column i.

Theorem 2.9. Let L1 = [l(1)ij ] and L2 = [l(2)ij ] be two lower triangular matrices with 1 in the entries of the

main diagonal and let σ1, σ2 ∈ Sn such that χ((σ1σ2)
−1) /= 0. If (L1, L2) ∈ V(σ1 ,σ2)(H,χ) then l

(1)
ij =

l
(2)
ij = 0 whenever i and j are in different orbits of (H)T(σ1 ,σ2)

.

Proof. Let k ∈ {1, . . . , n} such that for all s > k, s ∈ {1, . . . , n}, the transposition (k, s) /∈ (H)T(σ1 ,σ2)
.

Then s and k are in different orbits of (H)T(σ1 ,σ2)
. We are going to show that

l
(1)
k+1,k = · · · = l

(1)
n,k = l

(2)
k+1,k = · · · = l

(2)
n,k = 0.

Let x be an arbitrary element of F and let

X = E(k+1)+x(k).

Since (L1, L2) ∈ V(σ1 ,σ2)(H,χ) and X ∈ TU
n (F) we have

dHχ (P(σ1)L1XL2P(σ2)) = dHχ (P(σ1)XP(σ2)) = χ((σ1σ2)
−1).

The (k, k + 1) entry of L1XL2 is x, the (k + 1, k) entry of L1XL2 is l
(1)
k+1,k + l

(1)
k+1,kl

(2)
k+1,kx + l

(2)
k+1,k ,

and the entries (k + 1, k + 1) and (k, k) are l
(1)
k+1,kx + 1 and l

(2)
k+1,kx + 1, respectively. Assume that

(k + 1, k) /∈ H. Then,

dHχ (P(σ1)L1XL2P(σ2)) = χ((σ1σ2)
−1)(l

(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx + 1),

and since (L1, L2) ∈ V(σ1 ,σ2)(H,χ) we obtain

l
(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx = 0.

Then

l
(1)
k+1,k = l

(2)
k+1,k = 0.

If (k + 1, k) ∈ H then

dHχ (P(σ1)L1XL2P(σ2)) = χ((σ1σ2)
−1)(l

(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx + 1)

+ χ(σ−1
2 (k, k + 1)σ−1

1 )(l
(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx)

= χ((σ1σ2)
−1)(l

(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx + 1)

+ χ((σ2σ1)
−1(k, k + 1))(l

(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx).
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Since (k + 1, k) /∈ (H)T(σ1 ,σ2)
and (L1, L2) ∈ V(σ1 ,σ2)(H,χ) we have

l
(1)
k+1,kl

(2)
k+1,kx

2 + l
(1)
k+1,kx + l

(2)
k+1,kx = 0,

and then

l
(1)
k+1,k = l

(2)
k+1,k = 0.

Next, using E(k+2)+x(k), because (k + 2, k) /∈ (H)T(σ1 ,σ2)
we conclude that

l
(1)
k+2,k = l

(2)
k+2,k = 0.

Now it is easy to complete the proof. �

The converse of this result is not true (see [2]). However in certain situations the converse holds:

Proposition 2.10. If (σ2, σ1) ∈ U(H,χ) then

V(σ1 ,σ2)(H,χ) = V(id,id)(H,χ).

Proof. Let X ∈ TU
n (F). By definition

dHχ (P(σ1)L1XL2P(σ2)) = ∑
ρ∈Sn

χ(σ−1
2 ρσ−1

1 )
n∏

i=1

(L1XL2)iρ(i).

Since (σ2, σ1) ∈ U(H,χ) we have

χ(σ−1
2 ρσ−1

1 ) = χ((σ1σ2)
−1)

χ(id)
χ(ρ),

and so

dHχ (P(σ1)L1XL2P(σ2)) = χ((σ1σ2)
−1)

χ(id)

∑
ρ∈Sn

χ(ρ)
n∏

i=1

(L1XL2)i,ρ(i).

Hence, (L1, L2) ∈ V(σ1 ,σ2)(H,χ) if and only if

dHχ (P(σ1)L1XL2P(σ2)) = χ((σ1σ2)
−1)

χ(id)
dHχ (X),

that is, if and only if

χ((σ1σ2)
−1)

χ(id)
dHχ (L1XL2) = χ((σ1σ2)

−1)

χ(id)
dHχ (X),

if and only if

(L1, L2) ∈ V(id,id)(H,χ). �

Theorem 2.11. Let L1 = [l(1)ij ]and L2 = [l(2)ij ]be two lower triangularmatriceswith1 in themaindiagonal

and letσ1, σ2 ∈ H such that (σ2, σ1) ∈ U(H,χ).Then, (L1, L2) ∈ V(σ1 ,σ2)(H,χ) if andonly if l
(1)
ij = l

(2)
ij =

0 whenever i and j are in different orbits of (H)Tσ2σ1
.

Proof. If (σ2, σ1) ∈ U(H,χ) is easy to prove that

(H)Tσ2σ1
= (H)Tid.

Let L1 = [l(1)ij ] and L2 = [l(2)ij ]be two lower triangularmatriceswith1 in themaindiagonal and such

that l
(1)
ij = l

(2)
ij = 0whenever i and j are in different orbits of (H)Tσ2σ1

. If i, j ∈ {1, . . . , n} are in different
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orbits of (H)Tσ2σ1
then i and j are in different orbits of (H)Tid and so, by Theorem 1.1, (L1, L2) ∈ C(H,χ).

Let X ∈ TU
n (F). Then

dHχ (P(σ1)L1XL2P(σ2))= χ((σ1σ2)
−1)

χ(id)
dHχ (L1XL2)

= χ((σ1σ2)
−1)

χ(id)
dHχ (X)

=χ((σ1σ2)
−1) det(X),

and so (L1, L2) ∈ V(σ1 ,σ2)(H,χ).
The converse is Theorem 2.9. �

3. The set V(σ1 ,σ2)(Sn ,χ)

Let χ be an irreducible character of Sn and σ1, σ2 ∈ Sn such that χ(σ1σ2) /= 0. In this section we

are going to present a characterization of some sets V(σ1 ,σ2)(Sn,χ).
In [2] it was proved the following Theorems and Propositions.

Proposition 3.1 [2]. Let π ∈ Sn such that χ(π) /= 0. If χ is self-associated or χ is the principal character

of Sn, then there is no transposition τ such that

χ(πτ) = −χ(π),

i.e., (Sn)
T
π = {id}.

Theorem 3.2 [2]. Let χ be an irreducible character of Sn. Then⋃
σ∈Sn, χ(σ) /=0

Vσ (Sn,χ) = {In}

if and only if

χ = 1 or χ is self -associated.

Proposition 3.3 [2]. Let χ = (s, 1n−s) be the irreducible character of Sn where

(1) s − 1 > n − s� 1

(2) if s� 5 and s is odd then 2(n − s) /= s − 1

(3) if s = 6 then n /∈ {9, 10}.
Let (a, b) be a transposition of Sn and σ ∈ Sn be a cycle with length s − 1 such that χ(σ) /= 0. Then

χ(σ(a, b)) = −χ(σ) if and only if σ(a) = a, σ(b) = b.

Theorem 3.4 [2]. Let χ = (n − 1, 1) be the irreducible character of Sn with n > 3. Let σ ∈ Sn be a cycle

with length n − 2 and L = [lij] ∈ TL
n(F) with diagonal elements equal to 1. Then

L ∈ Vσ (Sn,χ)

if and only if L satisfies the condition:

“ For r > p, if there exists an integer k such that p� k � r and σ(k) /= k then lrp = 0."

Theorem 3.5 [2]. Let χ = (s, 1n−s) be the irreducible character of Sn satisfying

(i) s − 1 > n − s� 1
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(ii) if s = 6 then n /∈ {9, 10}
(iii) if s is odd and s� 5 then 2(n − s) /= s − 1.

Let σ ∈ Sn be a cycle with length s − 1 such that

{j : σ(j) /= j} = {u, u + 1, . . . , u + s − 2}
for some integer u < n − s + 2. Let L = [lij] ∈ TL

n(F) with diagonal elements equal to 1. Then

L ∈ Vσ (Sn,χ)

if and only if L satisfies the condition:

“ For r > p, if there exists an integer k such that p� k � r and σ(k) /= k then lrp = 0."

Now, we are going to prove similar results in the set V(σ1 ,σ2)(Sn,χ).
Using Theorem 2.11, Propositions 2.5 and 3.1 and Theorem 3.2 we have the following result.

Theorem 3.6. Let χ be an irreducible character of Sn. Then⋃
σ1 ,σ2∈Sn, χ(σ1σ2) /=0

V(σ1 ,σ2)(Sn,χ) = ⋃
σ∈Sn, χ(σ) /=0

V(σ ,id)(Sn,χ) = {(In, In)}

if and only if

χ = 1 or χ is self -associated.

Theorem 3.7. Letχ = (n − 1, 1) be the irreducible character of Sn with n > 3. Let σ1, σ2 ∈ Sn such that

σ2σ1 is a cycle with length n − 2 and L1 = [l(1)ij ], L2 = [l(2)ij ] ∈ TL
n(F) with diagonal elements equal to 1.

Then

(L1, L2) ∈ V(σ1 ,σ2)(Sn,χ)

if and only if L1 and L2 satisfy the condition:
“ For r > p, if there exists an integer k such that p� k � r andσ2σ1(k) /= k then l

(1)
rp = 0 and l

(2)
rp = 0."

Proof. Since n > 3 then, if n − 1� 5 and n − 1 is odd we have 2(n − (n − 1)) = 2 /= n − 2. If n −
1 = 6 then n /∈ {9, 10}. Using Proposition 3.3, if (a b) is a transposition of Sn, then χ(σ2σ1(a b)) =
−χ(σ2σ1) if and only if σ2σ1(a) = a and σ2σ1(b) = b.

Since σ2σ1 is a cycle of length n − 2, there are only two integers u, v ∈ {1, . . . , n}, u > v such that

σ2σ1(u) = u and σ2σ1(v) = v. Consequently, (Sn)
T
σ2σ1

= 〈(u v)〉.
Necessity. Suppose that (L1 = [l(1)ij ], L2 = [l(2)ij ]) ∈ V(σ1 ,σ2)(Sn,χ). By Theorem 2.9, if a > b, a, b ∈

{1, . . . , n} and σ2σ1(a) /= a or σ2σ1(b) /= b then l
(1)
ab = 0 and l

(2)
ab = 0.

Suppose there exists an integer k such that u > k > v and σ2σ1(k) /= k. Let Z be the matrix whose

(v + 1)th column is the vth column of In and the uth column of Z is the (v + 1)th column of In, the

remaining columns of Z are the columns of In. Then

dSnχ (P(σ1)L1ZL2P(σ2)) = (χ((σ2σ1)
−1(v + 1, u)) + χ((σ2σ1)

−1(v + 1, u, v)))l(1)uv .

Since (σ2σ1)
−1(v + 1) /= v + 1 and (σ2σ1)

−1(u) = u then (σ2σ1)
−1(v + 1, u) is a cycle with

length n − 1. Using the Murnaghan–Nakayama rule,

χ((σ2σ1)
−1(v + 1, u)) = 0.

But χ((σ2σ1)
−1(v + 1, u, v)) is a cycle with length n, then χ((σ2σ1)

−1(v + 1, u, v)) = −1.

Therefore, dSnχ (P(σ1)L1ZL2P(σ2)) = −l
(1)
uv . Since (L1, L2) ∈ V(σ1 ,σ2)(Sn,χ),

−l(1)uv = dSnχ (P(σ1)L1ZL2P(σ2)) = dSnχ (P(σ1)ZP(σ2)) = 0.
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Consequently, l
(1)
uv = 0.

Let B be the matrix whose (u − 1)th row is the uth row of In and the vth row of B is the (u − 1)th
row of In, the remaining rows of B are the rows of In. Then

dSnχ (P(σ1)L1BL2P(σ2)) = (χ((σ2σ1)
−1(u − 1, v)) + χ((σ2σ1)

−1(u − 1, u, v)))l(2)uv .

Since (σ2σ1)
−1(u − 1) /= u − 1 and (σ2σ1)

−1(v) = v then (σ2σ1)
−1(u − 1, v) is a cycle with

length n − 1. Using the Murnaghan–Nakayama rule,

χ((σ2σ1)
−1(u − 1, v)) = 0.

But χ((σ2σ1)
−1(u − 1, u, v)) is a cycle with length n, then χ((σ2σ1)

−1(u − 1, u, v)) = −1.

Therefore, dSnχ (P(σ1)BL2P(σ2)) = −l
(2)
uv . Since (L1, L2) ∈ V(σ1 ,σ2)(Sn,χ),

−l(2)uv = dSnχ (P(σ1)L1BL2P(σ2)) = dSnχ (P(σ1)BP(σ2)) = 0.

Consequently, l
(2)
uv = 0 and we have the condition.

Sufficiency. Let L1 = [l(1)ij ] and L2 = [l(2)ij ] bematrices satisfying the condition of the theorem. Then

L1 =
{
In if u /= v + 1

In + Ev+l
(1)
uv (u) if u = v + 1

and

L2 =
{
In if u /= v + 1

In + Ev+l
(2)
uv (u) if u = v + 1

Let X ∈ TU
n .

If u /= v + 1,

dSnχ (P(σ1)L1XL2P(σ2)) = dSnχ (P(σ1)InXInP(σ2)) = dSnχ (P(σ1)XP(σ2)).

If u = v + 1,

dSnχ (P(σ1)L1XL2P(σ2)) = χ((σ2σ1)
−1)

n∏
s=1

xss = dSnχ (P(σ1)XP(σ2)).

Consequently, (L1, L2) ∈ V(σ1 ,σ2)(Sn,χ). �

Theorem 3.8. Let χ = (s, 1n−s) be the irreducible character of Sn satisfying

(i) s − 1 > n − s� 1

(ii) if s = 6 then n /∈ {9, 10}
(iii) if s is odd and s� 5 then 2(n − s) /= s − 1.

Let σ1, σ2 ∈ Sn such that σ2σ1 is a cycle with length s − 1 such that

{j : σ2σ1(j) /= j} = {u, u + 1, . . . , u + s − 2}
for some integer u < n − s + 2. Let L1 = [l(1)ij ], L2 = [l(2)ij ] ∈ TL

n(F) with diagonal elements equal to 1.

Then

(L1, L2) ∈ V(σ1 ,σ2)(Sn,χ)

if and only if L1 and L2 satisfy the condition:

“ For r > p, if there exists an integer k such that p� k � r andσ2σ1(k) /= k then l
(1)
rp = 0 and l

(2)
rp = 0."

Proof. Using Proposition 3.3, we see that (Sn)
T
σ2σ1

is generated by those transpositions, (a b) such that

σ2σ1(a) = a and σ2σ1(b) = b. Consequently, if π ∈ (Sn)
T
σ2σ1

, π , (σ2σ1)
−1 are disjoint permutations

and by Murnaghan-Nakayama rule we have, χ((σ2σ1)
−1π) = ε(π)χ((σ2σ1)

−1) = ε(π).
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Necessity. Using Theorem 2.9, if a > b, a, b ∈ {1, . . . , n} and σ2σ1(a) /= a or σ2σ1(b) /= b then

l
(1)
ab = 0 = l

(2)
ab .

Suppose that i > j, i, j ∈ {1, . . . , n} and there exists i > k > j such that σ2σ1(k) /= k. We are going

to prove that l
(1)
ij = 0 = l

(2)
ij .

Using the hypothesis of the Theorem, then j < u and i > u + s − 2. Let t, f two integers, t, f ∈
{u, . . . , u + s − 2} such that t < f and σ2σ1(t) = f . We are seeing that l

(1)
u+s−1 u−1 = 0 = l

(2)
u+s−1 u−1.

Let Z be the matrix those tth column is the u − 1th column of In, the f th column of Z is the tth

column of In and the (u + s − 1)th column of Z is the f th column of In, the remaining columns of Z

are the columns of In. Then

dSnχ (P(σ1)L1ZL2P(σ2))=(χ((σ2σ1)
−1(t, f , u + s − 1))

+χ((σ2σ1)
−1(u − 1, t, f , u + s − 1)))l

(1)
u+s−1 u−1.

Sinceσ2σ1(t) = f and (σ2σ1)
−1(t, f , u + s − 1) is a cyclewith length s − 1, using theMurnaghan-

Nakayama rule,

χ((σ2σ1)
−1(t, f , u + s − 1)) = 1.

But χ((σ2σ1)
−1(u − 1, t, f , u + s − 1)) is a cycle with length s and n − s� 1, then χ((σ2σ1)

−1

(u − 1, t, f , u + s − 1)) = 0. Since (L1, L2) ∈ V(σ1 ,σ2)(Sn,χ),

−l
(1)
u+s−1 u−1 = dSnχ (P(σ1)L1ZL2P(σ2)) = dSnχ (P(σ1)ZP(σ2)) = 0.

Consequently, l
(1)
u+s−1 u−1 = 0.

Let B be the matrix those (u − 1)th row is the tth row of In, the tth row of B is the f th row of In and

the f th row of B is the (u + s − 1)th row of In, the remaining rows of B are the rows of In. Then

dSnχ (P(σ1)L1BL2P(σ2))=(χ((σ2σ1)
−1(t, f , u + s − 1))

+χ((σ2σ1)
−1(u − 1, t, f , u + s − 1)))l

(2)
u+s−1 u−1.

Sinceσ2σ1(t) = f and (σ2σ1)
−1(t, f , u + s − 1) is a cyclewith length s − 1, using theMurnaghan-

Nakayama rule,

χ((σ2σ1)
−1(t, f , u + s − 1)) = 1.

But χ((σ2σ1)
−1(u − 1, t, f , u + s − 1)) is a cycle with length s and n − s� 1, then χ((σ2σ1)

−1

(u − 1, t, f , u + s − 1)) = 0. Since (L1, L2) ∈ V(σ1 ,σ2)(Sn,χ),

−l
(2)
u+s−1 u−1 = dSnχ (P(σ1)L1ZL2P(σ2)) = dSnχ (P(σ1)ZP(σ2)) = 0.

Consequently, l
(2)
u+s−1 u−1 = 0.

Now, let Z be the matrix those tth column is the (u − 2)th column of In, the f th column of Z is the

tth column of In and the (u + s − 1)th column of Z is the f th column of In, the remaining columns of

Z are the columns of In. Then we can conclude that l
(1)
u+s−1 u−2 = 0. If B is the matrix those (u − 2)th

row is the tth row of In, the tth row of B is the f th row of In and the f th row of B is the (u + s − 1)th

row of In, the remaining rows of B are the rows of In. Thenwe can conclude that l
(2)
u+s−1 u−2 = 0. In this

way we can show that l
(1)
u+s−1 1 = l

(2)
u+s−1 1 = 0 · · · l(1)u+s−1 u−1 = l

(2)
u+s−1 u−1 = 0.

Next, in the same way we prove that l
(1)
u+s 1 = l

(2)
u+s 1 = · · · = l

(1)
u+s u−1 = l

(2)
u+s u−1 = 0.

Therefore, we can conclude that l
(1)
ij = 0 = l

(2)
ij .

Sufficiency. Let L1 and L2 be matrices satisfying the condition of the theorem. Then
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L1 =
⎡
⎣L11 0 0

0 L12 0

0 0 L13

⎤
⎦

and

L2 =
⎡
⎣L21 0 0

0 L22 0

0 0 L23

⎤
⎦

where L11, L21 ∈ TL
u−1(F) with diagonal elements equal to 1, L22 = L12 = Is−2 and L13, L23 ∈

TL
n−u−s+3(F) with diagonal elements equal to 1. Let Z ∈ TU

n (F),

Z =
⎡
⎣Z1 ∗ ∗
0 Z2 ∗
0 0 Z3

⎤
⎦

whereZ1 ∈ TU
u−1(F),Z2 ∈ TU

s−2(F)andZ3 ∈ TU
n−u−s+3(F). Sinceχ((σ2σ1)

−1) = 1andχ((σ2σ1)
−1ρ)

= ε(ρ) if ρ ∈ (Sn)
T
σ2σ1

, then

dSnχ (P(σ1)L1ZL2P(σ2))=χ((σ2σ1)
−1)(det(L11Z1L12)det(Z2)det(L13Z3L23))

=χ((σ2σ1)
−1)det(Z).

Then (L1, L2) ∈ V(σ1 ,σ2)(Sn,χ). �
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