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1. Introduction and auxiliary results

Let S, be the symmetric group of degree n. Let [ be an arbitrary field of characteristic zero and c be
a function, not identically zero, from S, into F. If X = [x;] is an n x n matrix over [, the generalized
Schur function d.(X) is defined by [4]

deX) = Y c(0) [ Xiot)-

o €Sy i=1
When c coincides with an irreducible character y of a subgroup H of S,;, we denote d.(X) by d‘;(' X)

and we say that d’; (X) is the generalized matrix function associated with H and yx. Throughout this
paper we see x as a map from S, over [ taking x (6) = 0ifo € S, — H.
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Let M,,([F) be the linear space of n-square matrices with elements in [. In [2] the first author studied
the set, 7 (H, x), of the matrices A € M, () satisfying

df (AX) = df (x)

forallX e T,ﬁ’ (F), where Tﬁ’ (F) is the set of n-square upper triangular matrices (the set of n-square

lower triangular matrices is denoted by T,%([F)). It is motivated by de Oliveira and Dias da Silva [5]
which studies the matrices A € My () satisfying

¥ (AX) = dff (X),

forallX € My([F).Similar problems were proposed in [6]. One of those problems is the characterization
of the pairs of matrices (A, B) € M, (F) x M, ([F) that satisfy

dy (AXB) = d (X),

forall X € My ([F).
These pairs was first studied by Duffner and de Oliveira in [1]. They denote by C(H, ) the set of all
these pairs of matrices, that is,

C(H, x) = {(A B) : &'} (AXB) = d!} (X), forallX € My(F)}.

It is easy to see that for all H and y, C(H, x) # @ because (I, I) € C(H, x), where I, denote the
identity matrix of M, ([F). In [1] it was proved that if (A, B) € C(H, x) then A and B are nonsingular and
C(H, x) can be made a group by defining the product (A, B) (C, D) = (AC, DB).

In this paper, we use the following notations: By (H )ﬁ, we denote the subgroup of S, generated by
all transpositions 7 such that y (t) = —x (id), and by Z/(H, x) we denote the set

UH, x) ={(r1,¥2) € Sp X St x(id) x (Y10y2) = x(0) x(y1y2), forall o € Sy}.

Note that Z/(H, x) is never an empty set because (id, id) € U(H, x), where id is the identity of S,.

We also have thatif (y1, y2) € U(H, x) then x (y1y2) # 0and (yl_l, yz_l) € U(H, x).Thesetd(H, x)
equipped with the product (1, y2) (1, m2) = (Y1711, T2Y2) is a group.
If0 € S, we denote by P(9) the n x n permutation matrix whose (i, j) entry is

P(@)IJ = (S,‘go’), i,je{l,...,n}
The next theorem is the main result of [1] and it gives a characterization of C(H, x):
Theorem 1.1[1]. Let H be a subgroup of S, and let x be anirreducible character of S,,. Then, (A, B) € C(H, x)
if and only if A and B can be written as
A= MP(y1), B=P(y2)M,

and the following conditions are satisfied:

1. The (i,j) elements of My and M, are zero whenever i and j are in different orbits of (H)de;
2. (y2, 1) € U(H, )((); :
— X(an
3. det(M{M,) = YD)
The main purpose of this paper is to solve a problem based on this one. We are going to characterize
the pais of matrices (A, B) € My (F) x M, (F) that satisfy
H __H
d, (AXB) = d, X),

forall X € TV (F).
We denote by T (H, x) the set of all this pairs of matrices, that is

T(H, x) = {(A B) € My(F) x My(F) : &'} (AXB) = d'} (X), for all X € T}/ (F)}.
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This set is not a group because 7 (H, ) ) is not a group (see [2]). However if (A, B) € T(H, x) then A
and B are nonsingular matrices:

Proposition 1.2. If (A, B) € 7 (H, x) then A and B are nonsingular matrices.

Proof. Assume that A is a singular matrix. Then, there exists a nonzero column u = [u;] such that
Au = 0. Let x be an arbitrary element of [ and let p be the great integer such that u, # 0. Let X be
the n x n matrix whose pth column is xu, and the kth column, k # p, has a 1 in the kth entry and the
remaining entries are null. Then X € T#([F), and so,
H __4H
dy (AXB) = d *x).

The matrix AX does not depend of x because the pth column of AX is null. Then AXB does not depend
of x and the same happens for d’; (AXB). However,
H .
dx X) = x (id)xuy,

which is a contradiction. In a similar way we prove that B is nonsingular. Assume that B is singular.
Then there exists a nonzero row v = [v;] such that vB = 0. Let x be an arbitrary element of [ and let p
be the small integer such that v, # 0. Let Y be the n x n matrix whose pth row is xv, and the kth row,
k # p, of Y has a 1 in the kth entry and the remaining entries are null. The rest of the proof goes in a
similar way. [J

2. Theset 7(H, x)

In this section we are going to present a characterization of the set 7 (H, x ). So the Theorem 2.3 in
the main result of this section.

Remarkthatifoy, o3 € Sy, x isanirreducible character of H (subgroup of S, ) such that x ((c102) 1)
#+ Othen ooy € H.

Proposition 2.1. Let H be a subgroup of S, and x be an irreducible character of H. The pair (A, B) is in
T(H, x) ifand only if there exists o1, 05 € Sy such that x ((6102)~ 1) # 0, and lower triangular matrices
Ly and L, with the entries of the main diagonal equal to 1 satisfying

(1) L7 'P(o7 DA Ly 'P(o; B € TV(F);
_ e((o109) " Hx(d) .
(2) det(AB) = = (G o 1)
(3) & (P(01)1ZLyP(02)) = x ((0102) ") det(Z), forall Z € T}/ (F).
Proof. Let (A, B) € T(H, x). Then there exists o1, 03 € S, such that
A= P(O’1)L1R1 and B = RszP(O’z),

where L and L, are lower triangular matrices with the entries of the main diagonal equal to 1, and Ry
and Ry are upper triangular matrices. Then,

L7'P(o;)A=Ry, and BP(c; ))L;' =Ry,

and so we have (1).
Let X = [x;] € TV (F). Since (A, B) € T(H, x) we have,

H _4H
dy (AXB) = d X).
Let Z = R1XR;. Since Ry and R; are nonsingular, Z € T#([F) is arbitrary and we have

d(P(01)1ZLoP(02)) = d'f (RT'ZR; ).



R. Fernandes, H.F. da Cruz / Linear Algebra and its Applications 433 (2010) 1336-1347 1339

Taking Z = I,, we have

d (P(o1)L1L2P(02)) = (R; 'Ry )
=xGd) [T ¢ +0,
i=1

@

where r(l) and r;

i are the (i, i) entry of Ry and R, respectively. But

H _ [x((0102)7") if(o102)"" € H
& PlonLitzP(on) = {3 ) ,

s0 (0102) ! € Hand x((o102)~1) # 0. Hence,
x (id)
x((o102)71)"

Now it is easy to get (2).
Since

det(RiRy) =

n
dRy'ZRy ) = x (i) [ TRy 'ZRy V)i = x (id) det(Ry ") det(R; ") det(2),
i=1
we have
¥ (P(01)11ZL2P(02)) =d'} (P(01) L1 R Ry ' ZR; ' RyLoP(02))
=dy Ry 'ZR )
= x (id) det(R; ") det(R; ') det(Z),

and so

-1
010
d" (P(01) L1 ZLoP(03)) = x (id) x@92) ) ey(z)
x (id)
=x((0102)7") det(2)
and the proof of the necessity of the conditions is complete.

Assume now that the matrices A, B, L1, L, P(o1) and P(03) satisfy the three conditions. Let
X € T/ (F). Then

d (AXB) = d¥} (P(01)L1Ly 'P(oy JAXBP(0; )L '[P (02)).
By (1), L1_1P(O’1_1)A, L2_1P(02_1)B € TH([F), and using (2) and (3) we have
& (P(o)L1Ly ' P(01) T AXBP(0; )Ly ' [2P(02)) = x ((0102) ") det(Ly ' P(o1) ' AXBP(0; D)Ly ")

€(0107) x (id)

det(X
1101 W

= x((0102) " e(0102)
— x (id) det(X)
=dl;(X)

and the proof is complete. []

Notation 2.2. Let 0 € H such that x (o) ™' # 0. In [2] it was defined the set V,, (H, x) of the lower
triangular matrices L with diagonal elements equal to 1, satisfying
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dy (P(0)LX) = x (o) det(X),

forall X € T (F). So, if o1, 02 € S, are such that x ((0102) 1) # 0, we denote by V4, ) (H, x) the
set of the pairs of lower triangular matrices (L, Ly), with 1 in the entries of the main diagonal, that
satisfy

& (P(01)L1XL5P(02)) = x ((0102) ") det(X),
forallX € TY(F).

Using Proposition 2.1 and the previous notation we conclude that

Theorem 2.3

T(H x) = U ., (P(01)L1R1, R2LP(02)) = (L1, L2) € Vigy,09)(H, X).
01,02€H,
x((0102)~1H#0
U _ x (id)
R],R2 € Tn ([F) and det(R1R2) = W

By this result we conclude that if we want to characterize the set 7 (H, x) we have somehow to
obtain a characterization of the set V(4, «,)(H, ).

Proposition 2.4. Let 01, 05 € H such that x ((6201) ") = 0. Then
Vio1,00) (H, X) = Vioyonia) (H, X) = Viidoroy) (H, X)-
Proof. Let X € T!(F). By definition
n
d (P(o1)LiXLaP(02)) = Y x (o5 'poy D) [[(TaXL2)ipe).-
PESH i=1
Since x is a class function of H, we have
x (03 oy ) = x (02007 p) = x (p(o20) 7).
Therefore,
n
dY (P(o1)1XL2P(02)) = D x((0201) ' p) [ i XL2)ip(y = dYf (LiXLaP(0207))
PESH i=1
and
n
df (P(01)1XLaP(02)) = Zs X(0(0201) ™) [TWiXL2)ip() = df (P(0201)L1XLo).
PEdSn i=1

Consequently, we have the result. []

Proposition 2.5. Let o € H such that x (o ~') % 0. Then
Vo (H, x) X {In} € Vig,iay(H, x)-

Proof. Let L € V, (H, x) and X € TJ(F). Since
x (o) det(X) = df (P(0) LX) = d'} (P(0)LXIy),
then (L, I,) € Vi ,id) (H,x). O
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Notation 2.6. Let o € H such x(c 1) #+ 0. We denote by (H)(T, the subgroup of H spanned by all
transpositions 7 such that x (6 "1t) = —x (o).
Let o1, 03 € Sy such x ((0102) ") # 0. We denote by (H){,. , , the subgroup of S, spanned by all

transpositions 7 such that X(ajlrafl) = —X(a{laf]).
Since x is a class function in H, it is easy to prove the following proposition.

Proposition 2.7. Let o1, 05 € H such x ((c103)™") % 0. Then
T T
(H)(ULUZ) = (H)Uzo'l'

Notation 2.8. Let x be an indeterminate over [F. Then E?+*( js the matrix obtained from the identity
matrix by adding x times column j to column i.

Theorem 2.9. Let [ = [l(l)] andLy, = [1(2)] be two lower triangular matrices with 1 in the entries of the
main diagonal and let 1, 09 € Sy, such that x ((6102)™ 1) # 0.If (L1, L2) € V(5,,0,)(H, x) then l,-(j]) =
li(jz) = 0 whenever i and j are in different orbits of (H) {01 o)

Proof. Let k € {1,...,n} such that for all s > k, s € {1, ..., n}, the transposition (k, s) ¢ (H)(Tﬂmz).
Then s and k are in different orbits of (H)(Tgmz). We are going to show that

M M _ @ _ @

b ==l =hiie=""=he =
Let x be an arbitrary element of [F and let
X = gk+D+x(k)
Since (L1, L2) € V(g,,09)(H, x) and X € TY(F) we have
dy (P(01)LiXL2P(02)) = dy (P(01)XP(02)) = x ((9102) 7).
M @

The (k, k + 1) entry of L1XL, is x, the (k + 1, k) entry of LiXL, is lk+1 e i + lkJrl ©

and the entries (k 41,k 4 1) and (k, k) are lk+1,,<x + 1 and l,(jﬁ],kx + 1, respectively. Assume that

(k4 1,k) ¢ H.Then,

1 2 1 2
¢ (P(01)L1XL2P(02)) = x ((0105) ™V AN, (12, o2 + 10, x +12 x4+ 1),

and since (L1, L2) € V(g,,0,) (H, x) we obtain

@ 5@ 2, M () _

b il ) X Depq X + g X = 0.
Then

(¢ (2)

1k+1,k = lk+1,l< =0.

If (k+ 1,k) € H then

2 2
d (P(01)LiXL2P(02)) = x (0102) "YU 21 + 1 jx + 17+ 1)
+ x (o5 'k k+ Doy )(11221 k 1(321,18‘2 + ll(:l?l,kx + 11(521,18‘)
= 1 (0102 VUL 2 + 1D X+ 12 X+ 1)

@ 1 2
+ x ((o201) " (k k + 1))(l/(<+)1 k /(<J21,1<X2 + ll(<+)l,kx + Il(cJ:ka)-
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Since (k + 1,k) ¢ (H){sz) and (L1, L) € V(o,,0,)(H, x) we have
1 2 2 (1) )
hepilicrX” + b X e =0,

and then

l(l) _ 1(2) _
k+1.k — "k+1k —

Next, using E&T2 %K) because (k + 2, k) ¢ (H){amz) we conclude that
l(l) _ 1(2) _
k+2k — "k+2k —

Now it is easy to complete the proof. []
The converse of this result is not true (see [2]). However in certain situations the converse holds:

Proposition 2.10. If (02, 01) € U(H, x) then
Vior,00) H, X) = Viig,iay (H, x).

Proof. Let X € TV(F). By definition

n
d (P(e1)LXLaP(02)) = Y x (o3 ' poy D) [TWiXL2)ipe)-
PESy i=1

Since (03, 01) € U(H, x) we have

o 0
x(or ' poi ) = KO )

and so

x((o102)71) L

AL LiXLy)i o)
) pEesnX(p)g(l 2)i()

Hence, (L1, L) € V(4,,0,)(H, x) if and only if

d (P(o1)1XL2P(03)) =

x((o102)71)

H -
dy (P(01)L1XLzP(02)) = (i)

dy (X),

that is, if and only if

x((o102)™Y) 4

x((o102)7 )
—_— L (id) d, (X),

x (id)
if and only if
(L1, L2) € Viaiagy(H, x). U

d’; (L1XLy) =

Theorem 2.11. LetL; = [ll-(j])] andL, = [Ii(jz)] be two lower triangular matrices with 1 in the main diagonal
andletoy, 03 € Hsuchthat (03, 01) € U(H, x).Then, (L1, L) € V(5,,0,)(H, x) ifand only ,'fli(jl) — li(j2) =

0 whenever i and j are in different orbits of (H)(T,N1 .

Proof. If (03, 01) € U(H, ) is easy to prove that

(H)g,0, = (H)ig-
Letl = [l,-(jl)] andL, = [li(jz)] be two lower triangular matrices with 1 in the main diagonal and such
that li(j]) = l,-(jz) = O wheneveriandj are in different orbits of (H)(Tm71 Jfij e {1,...,n}areindifferent
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orbits of (H)(T,m theniandj are in different orbits of (H)ﬂ, and so, by Theorem 1.1, (L1, Ly) € C(H, x).

LetX € TY(F). Then

x((o102)™1)

¥ (P(01) L1 XLaP(02)) = ) d¥ (L1XLo)
_ x((o102)™ 1) 4
= G %

= x((0102) ") det(X),

and so (L1, L) € V(g,,0,)(H, X).
The converse is Theorem 2.9. [

3. The set V(g,.5,)(Sn, X)

Let x be an irreducible character of S, and o1, 02 € Sy such that x (102) # 0. In this section we
are going to present a characterization of some sets V(4, ;) (Sn, X)-
In [2] it was proved the following Theorems and Propositions.

Proposition 3.1 [2]. Let w € S, such that x () = 0. If x is self-associated or x is the principal character
of Sy, then there is no transposition T such that

x(@t) = —x (),
ie, (Sp) = {id}.

Theorem 3.2 [2]. Let x be an irreducible character of S,,. Then

U Vo (S x) = {In}
0 €Sy, x(0)F0
if and only if
x = 1or yis self-associated.

Proposition 3.3 [2]. Let x = (s, 1"7%) be the irreducible character of S,, where

(1)s—1>n—s5>1
(2) ifs>5andsisodd then2(n —s) #s—1
(3) ifs = 6 thenn ¢ {9,10}.

Let (a, b) be a transposition of S, and o € Sy, be a cycle with length s — 1 such that x (o) # 0. Then
x(o(a, b)) = —x (o) if and only if o (a) = a, o(b) = b.
Theorem 3.4 [2]. Let x = (n — 1, 1) be the irreducible character of S, withn > 3. Let 6 € S, be a cycle
with lengthn — 2 and L = [lj] € T,%(F) with diagonal elements equal to 1. Then
L e Vs (Sn x)
if and only if L satisfies the condition:

“Forr > p, if there exists an integer k such that p <k <rand o (k) # k thenl,, = 0."

Theorem 3.5 [2]. Let x = (s, 1"°) be the irreducible character of S, satisfying

(i)s—1>n—s>1
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(ii) ifs = 6 thenn ¢ {9, 10}
(iii) if sis odd and s > 5 then 2(n —s) # s — 1.

Let o € S, be a cycle with length s — 1 such that
o #=ut+1,... . u+s—2}
for some integeru < n —s+ 2. LetL = [lj] € T,ﬁ(F) with diagonal elements equal to 1. Then
LeVs(Snx)

if and only if L satisfies the condition:
“Forr > p, if there exists an integer k such thatp <k <rand o (k) # k thenl,, = 0."

Now, we are going to prove similar results in the set V4, ) (Sn, X)-
Using Theorem 2.11, Propositions 2.5 and 3.1 and Theorem 3.2 we have the following result.

Theorem 3.6. Let x be an irreducible character of Sp. Then
U Voro )= U VoG x) = {1}
01,02€Sy, X (0102)#0 0 €Sy, x(0)#0
if and only if

x = 1or x is self-associated.

Theorem 3.7. Let x = (n — 1, 1) be the irreducible character of S, withn > 3. Let o1, 03 € S, such that
oy 01 is a cycle with lengthn — 2 and L = [ll-(j])], L, = [li(jz)] € T,%(F) with diagonal elements equal to 1.
Then
(L1, L) € Vio1,02) (Sn, x)
if and only if Ly and L, satisfy the condition:
“Forr > p, if there exists an integer k such that p < k <r and 0,01 (k) # k then IS) = 0and lg) =0."

Proof. Since n > 3 then,ifn —1>5andn — 1isodd we have2(n — (n—1)) =2 #n—2.Ifn —
1 = 6 then n ¢ {9, 10}. Using Proposition 3.3, if (a b) is a transposition of S, then x (0301(a b)) =
—x (0201) if and only if o301 (a) = aand 0,01(b) = b.

Since 0,07 is a cycle of length n — 2, there are only two integers u, v € {1,...,n},u > v such that
0,01(u) = uand o,01(v) = v. Consequently, (S")tTrzm = ((uv)).

Necessity. Suppose that (L1 = [l,-(j])],Lz = [l,-(jz)]) € V(o,,0,)(Sn, x). By Theorem 2.9, ifa > b,a, b €
{1,...,n} and 0y01(a) # aor oy01(b) # b then lé},) =0and lfj,) =0.

Suppose there exists an integer k such thatu > k > vand o201 (k) # k. Let Z be the matrix whose
(v 4 1)th column is the vth column of I,, and the uth column of Z is the (v + 1)th column of I, the
remaining columns of Z are the columns of I,. Then

d5r (P(01) 1 ZLaP(0)) = (X ((0201) 7' (v + 1, w) + x((0201) ' (v + 1, u, M.

Since (0301)"'(v+ 1) # v+ 1 and (0207) " (u) = u then (0207) "' (v + 1, u) is a cycle with
length n — 1. Using the Murnaghan-Nakayama rule,

X((@20) 7 v +1, u) = 0.
But x ((c201) " 1(v+1, u, v)) is a cycle with length n, then x ((6201) '(v+1, u, v)) = —1.
Therefore, d% (P(01)L1ZL2P(02)) = —liy). Since (L1, L2) € V(oy.03) (Sn. X).

Iy = 3 (P(01)L1ZL2P(02)) = d5 (P(01)ZP(02)) = 0.
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Consequently, If,},) =0.
Let B be the matrix whose (u — 1)th row is the uth row of I, and the vth row of B is the (u — 1)th
row of I,, the remaining rows of B are the rows of I,,. Then

d3r (P(01)L1BLaP(02)) = (x ((0201) ' (u = 1, v)) + x (0201) (= 1, u, V)L

Since (0201) ' (u — 1) # u — 1 and (0207) "' (v) = v then (0307) ' (u — 1, v) is a cycle with
length n — 1. Using the Murnaghan-Nakayama rule,

x((0201)"(u—1, v)) = 0.
But x ((o201) " '(u — 1, u, v)) is a cycle with length n, then x ((c201)"'(u —1, u, v)) = —1.
Therefore, di" (P(01)BLyP(03)) = —ll(‘%,). Since (L1, L) € V(oy,05) (S X),
—I®) = d3 (P(01)L1BLyP(02)) = d¥ (P(01)BP(02)) = 0.

Consequently, l,(ﬁ,) = 0 and we have the condition.
Sufficiency. Let L = [Ii(j])] andL; = [Il-(jz)] be matrices satisfying the condition of the theorem. Then
I ifutv+1
L = D@
I + EVTw ifu=v+1

and
I ifutv+1
2= vHE @
I + EVTw ifu=v+1
LetX € TY.
Ifu#v+1,
&7 (P(01)L1XL2P(02)) = & (P(01)[nXInP(02)) = & (P(01)XP(02)).
fu=v+1,

A (P(o1)LiXLaP(02)) = x ((0201) 1) [ ] s = d5 (P(01)XP(02)).

s=1

Consequently, (L1, Lz) € V(g,00)(Sn x). O
Theorem 3.8. Let x = (s, 1) be the irreducible character of Sy, satisfying

(i)s—1>n—s>1
(ii) ifs = 6 thenn ¢ {9, 10}
(iii) if sis odd and s > 5 then 2(n —s) # s — 1.

Let 01, 09 € S, such that 0,07 is a cycle with length s — 1 such that
{i:o001() #j}={wu+1,...,u+s—2}

for some integeru <n —s+ 2. LetL; = [Ii(j])], L, = [ll-(jz)] € T,LI(IF) with diagonal elements equal to 1.
Then

(le L2) € V(U],Uz)(snr X)
if and only if L1 and L, satisfy the condition:

“Forr > p, if there exists an integer k such that p < k <r and o301 (k) # k then lﬁ;) = 0and lg) =0."

Proof. Using Proposition 3.3, we see that (SH)(T,ZU1 is generated by those transpositions, (a b) such that
0,01(a) = aand o,01(b) = b. Consequently, if 7 € (5,1)(772(71 .7, (0201) ! are disjoint permutations

and by Murnaghan-Nakayama rule we have, x ((0201) ') = €() x ((0201) 1) = €(n).
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Necessity. Using Theorem 2.9, if a > b, a, b € {1,...,n} and oy01(a) # a or o301(b) # b then

(eV) (2)
Ly =0=1,
Suppose thati > j,i,j € {1,...,n}and there exists i > k > jsuch that oy01(k) # k. We are going
M _6_ @
to prove that l,-j =0=1".

Using the hypothesis of the Theorem, then j < u and i > u+ s — 2. Let t,f two integers, t,f €
{u,...,u+s—2}suchthatt < f and 0201 (t) = f. We are seeing that 1525_1 w1 =0= 1525_1 u—1-

Let Z be the matrix those tth column is the u — 1th column of I,,, the fth column of Z is the tth
column of I, and the (u + s — 1)th column of Z is the fth column of I;;, the remaining columns of Z
are the columns of I,. Then

7 (P(01)1ZLaP(02)) = (X (0201) ' (¢, f, u 45— 1))
Hx (@20 =1t fouts— DN 1y

Since 0,0 (t) = fand (0201) (¢, f, u + s — 1) isacycle withlength s — 1, using the Murnaghan-
Nakayama rule,
X (o200) Mt fouts—1) = 1.
But x ((0201) " '(u—1, t, f, u+s— 1)) is a cycle with length s and n — s > 1, then x ((5207) ™"
(u—1,¢ f, u+s—1)) =0.Since (L1, L2) € V(g,,05)(Sn X),
—1 1 uq = &P LIZLP(03)) = d5 (P(01)ZP(03)) = 0.

Consequently, I, Jgs Tuag =
Let B be the matrix those (u — 1)th row is the tth row of I,, the tth row of B is the fth row of I;, and
the fth row of B is the (u + s — 1)th row of I,,, the remaining rows of B are the rows of I,,. Then

3 (P(a1)L1BLyP(02)) = (x ((0201) 7' (t, f, u+ 5 — 1))
Hx (0200 T w =1, 8 f ut s — DI 1y g

Since 0,01 (t) = fand (0201) (¢, f, u + s — 1) isacycle withlength s — 1, using the Murnaghan-
Nakayama rule,
Xx(o200) Mt fouts—1) = 1.

But x ((0201) " '(u—1, t, f, u+s— 1)) is a cycle with length s and n — s > 1, then x ((o2071) ™"
(u—1,¢ f, u+s—1)) =0.Since (L1, Lz) € V(5,,05)(Sn X),

—12) 1wy = & (PO L1ZLP(03)) = d5 (P(01)ZP(03)) = 0.

Consequently, 1552571 u—1 =0.

Now, let Z be the matrix those tth column is the (u — 2)th column of I;, the fth column of Z is the
tth column of I, and the (u + s — 1)th column of Z is thefth column of I, the remaining columns of
Z are the columns of I,,. Then we can conclude that lu+s 1u—y = 0.If Bis the matrix those (u — 2)th
row is the tth row of I, the tth row of B is the fth row of I, and the fth row of B is the (u + s — 1)th

row of I, the remaining rows of B are the rows of I,. Then we can conclude that 1525_1 u—2 = 0.Inthis

2 1 2
way we can show that lu+s 11 = l(ﬁsfl 1=0--- l;ﬁkl u—_ = lf,ﬁkl u—1 =0.
Next, in the same way we prove that 11(114251 = Iﬂﬂ =...= S_gs u_t = Iﬂs _ =

Therefore, we can conclude that li(jl) =0= li(jz).
Sufficiency. Let L1 and L, be matrices satisfying the condition of the theorem. Then
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L1 0 0
Li=|0 Ly 0
L0 0 L3
and
Ly 0 0
[hb=|0 Ly 0
L 0 0 L3

where Li1, Ly € TLL,_l(IF) with diagonal elements equal to 1, Ly =L =Is_» and L3, L3 €
TnL_u_s+3([F) with diagonal elements equal to 1. Let Z € T,?([F),

Z1  x %
Z=|0 2£ *
0 0 27

wherez; € TY_,(F),Z; € T? ,(F)andZ3 € TY_,_; 5(F).Since x ((6201)™") = 1and x ((0201) "' p)
= €(p)if p € (Sp)},q, then

A5 (P(01) L1 ZLP(02)) = x ((0201) 1) (det (L Z1 Lp)det (Zy)det (L13Z3L33))
= x((0201) " "det(2).
Then (L, L2) € V(m,nz)(sny x). O
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