

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage:www.elsevier.com/locate/laa

Pairs of matrices that preserve the value of a generalized matrix function on the set of the upper triangular matrices *

Rosário Fernandes ^b, Henrique F. da Cruz ^{a,*}

^a Departamento de Matemática da Universidade da Beira Interior, Rua Marquês D'Avila e Bolama, 6201-001 Covilhã, Portugal ^b Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

ARTICLE INFO

Article history: Received 24 March 2009 Accepted 13 May 2010 Available online 12 June 2010

Submitted by C.-K. Li

AMS classification: 15A69

Keyword: Generalized matrix functions

1. Introduction and auxiliary results

Let S_n be the symmetric group of degree n. Let \mathbb{F} be an arbitrary field of characteristic zero and c be a function, not identically zero, from S_n into \mathbb{F} . If $X = [x_{ij}]$ is an $n \times n$ matrix over \mathbb{F} , the generalized Schur function $d_c(X)$ is defined by [4]

$$d_c(X) = \sum_{\sigma \in S_n} c(\sigma) \prod_{i=1}^n x_{i\sigma(i)}.$$

When *c* coincides with an irreducible character χ of a subgroup *H* of *S*_n, we denote $d_c(X)$ by $d_{\chi}^H(X)$ and we say that $d_{\chi}^H(X)$ is the generalized matrix function associated with *H* and χ . Throughout this paper we see χ as a map from *S*_n over \mathbb{F} taking $\chi(\sigma) = 0$ if $\sigma \in S_n - H$.

* Corresponding author.

0024-3795/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2010.05.013

ABSTRACT

Let *H* be a subgroup of the symmetric group of degree *m* and let χ be an irreducible character of *H*. In this paper we give conditions that characterize the pairs of matrices that leave invariant the value of a generalized matrix function associated with *H* and χ , on the set of the upper triangular matrices.

© 2010 Elsevier Inc. All rights reserved.

^{*} This work was partially supported by Fundação para a Ciência e Tecnologia and was done within the activities of the Centro de Estruturas Lineares e Combinatórias.

E-mail addresses: mrff@fct.unl.pt (R. Fernandes), hcruz@ubi.pt (H.F. da Cruz).

Let $M_n(\mathbb{F})$ be the linear space of *n*-square matrices with elements in \mathbb{F} . In [2] the first author studied the set, $\mathcal{T}(H, \chi)$, of the matrices $A \in M_n(\mathbb{F})$ satisfying

$$d_{\chi}^{H}(AX) = d_{\chi}^{H}(X)$$

for all $X \in T_n^U(\mathbb{F})$, where $T_n^U(\mathbb{F})$ is the set of *n*-square upper triangular matrices (the set of *n*-square lower triangular matrices is denoted by $T_n^L(\mathbb{F})$). It is motivated by de Oliveira and Dias da Silva [5] which studies the matrices $A \in M_n(\mathbb{F})$ satisfying

$$d^H_{\chi}(AX) = d^H_{\chi}(X),$$

for all $X \in M_n(\mathbb{F})$. Similar problems were proposed in [6]. One of those problems is the characterization of the pairs of matrices $(A, B) \in M_n(\mathbb{F}) \times M_n(\mathbb{F})$ that satisfy

$$d^H_{\chi}(AXB) = d^H_{\chi}(X),$$

for all $X \in M_n(\mathbb{F})$.

These pairs was first studied by Duffner and de Oliveira in [1]. They denote by $\overline{C}(H, \chi)$ the set of all these pairs of matrices, that is,

$$\overline{\mathcal{C}}(H,\chi) = \{(A,B) : d_{\chi}^{H}(AXB) = d_{\chi}^{H}(X), \text{ for all } X \in M_{n}(\mathbb{F})\}.$$

It is easy to see that for all *H* and χ , $\overline{C}(H, \chi) \neq \emptyset$ because $(I_n, I_n) \in \overline{C}(H, \chi)$, where I_n denote the identity matrix of $M_n(\mathbb{F})$. In [1] it was proved that if $(A, B) \in \overline{C}(H, \chi)$ then *A* and *B* are nonsingular and $\overline{C}(H, \chi)$ can be made a group by defining the product (A, B)(C, D) = (AC, DB).

In this paper, we use the following notations: By $(H)_{id}^{T}$ we denote the subgroup of S_n generated by all transpositions τ such that $\chi(\tau) = -\chi(id)$, and by $\overline{\mathcal{U}}(H, \chi)$ we denote the set

$$\overline{\mathcal{U}}(H,\chi) = \{(\gamma_1,\gamma_2) \in S_n \times S_n : \chi(id)\chi(\gamma_1\sigma\gamma_2) = \chi(\sigma)\chi(\gamma_1\gamma_2), \text{ for all } \sigma \in S_n\}.$$

Note that $\overline{\mathcal{U}}(H, \chi)$ is never an empty set because $(id, id) \in \overline{\mathcal{U}}(H, \chi)$, where id is the identity of S_n . We also have that if $(\gamma_1, \gamma_2) \in \overline{\mathcal{U}}(H, \chi)$ then $\chi(\gamma_1\gamma_2) \neq 0$ and $(\gamma_1^{-1}, \gamma_2^{-1}) \in \overline{\mathcal{U}}(H, \chi)$. The set $\overline{\mathcal{U}}(H, \chi)$ equipped with the product $(\gamma_1, \gamma_2)(\pi_1, \pi_2) = (\gamma_1\pi_1, \pi_2\gamma_2)$ is a group.

If $\theta \in S_n$, we denote by $P(\theta)$ the $n \times n$ permutation matrix whose (i, j) entry is

$$P(\theta)_{ij} = \delta_{i\theta(j)}, \quad i, j \in \{1, \dots, n\}.$$

The next theorem is the main result of [1] and it gives a characterization of $\overline{C}(H, \chi)$:

Theorem 1.1 [1]. Let *H* be a subgroup of S_n and let χ be an irreducible character of S_n . Then, $(A, B) \in \overline{C}(H, \chi)$ if and only if *A* and *B* can be written as

 $A = M_1 P(\gamma_1), \quad B = P(\gamma_2) M_2$

and the following conditions are satisfied:

1. The (i, j) elements of M_1 and M_2 are zero whenever i and j are in different orbits of $(H)_{id}^T$;

2.
$$(\gamma_2, \gamma_1) \in \overline{\mathcal{U}}(H, \chi);$$

3. $\det(M_1M_2) = \frac{\chi(\gamma_2\gamma_1)}{\chi(id)}.$

The main purpose of this paper is to solve a problem based on this one. We are going to characterize the pais of matrices $(A, B) \in M_n(\mathbb{F}) \times M_n(\mathbb{F})$ that satisfy

$$d^H_{\chi}(AXB) = d^H_{\chi}(X),$$

for all $X \in T_n^U(\mathbb{F})$.

We denote by $\overline{T}(H, \chi)$ the set of all this pairs of matrices, that is

$$\overline{\mathcal{T}}(H,\chi) = \{ (A,B) \in M_n(\mathbb{F}) \times M_n(\mathbb{F}) : d^H_\chi(AXB) = d^H_\chi(X), \text{ for all } X \in T^U_n(\mathbb{F}) \}.$$

This set is not a group because $\mathcal{T}(H, \chi)$ is not a group (see [2]). However if $(A, B) \in \overline{\mathcal{T}}(H, \chi)$ then A and B are nonsingular matrices:

Proposition 1.2. If $(A, B) \in \overline{\mathcal{T}}(H, \chi)$ then A and B are nonsingular matrices.

Proof. Assume that A is a singular matrix. Then, there exists a nonzero column $u = [u_i]$ such that Au = 0. Let x be an arbitrary element of \mathbb{F} and let p be the great integer such that $u_n \neq 0$. Let X be the $n \times n$ matrix whose *p*th column is *xu*, and the *k*th column, $k \neq p$, has a 1 in the *k*th entry and the remaining entries are null. Then $X \in T_n^U(\mathbb{F})$, and so,

$$d^{H}_{\gamma}(AXB) = d^{H}_{\gamma}(X)$$

The matrix AX does not depend of x because the pth column of AX is null. Then AXB does not depend of x and the same happens for $d_{\gamma}^{H}(AXB)$. However,

$$d_{\chi}^{H}(X) = \chi(id) x u_{p},$$

which is a contradiction. In a similar way we prove that *B* is nonsingular. Assume that *B* is singular. Then there exists a nonzero row $v = [v_i]$ such that vB = 0. Let x be an arbitrary element of \mathbb{F} and let p be the small integer such that $v_n \neq 0$. Let Y be the $n \times n$ matrix whose pth row is xv, and the kth row, $k \neq p$, of Y has a 1 in the kth entry and the remaining entries are null. The rest of the proof goes in a similar way.

2. The set $\overline{\tau}(H, \chi)$

In this section we are going to present a characterization of the set $\overline{T}(H, \chi)$. So the Theorem 2.3 in the main result of this section.

Remark that if σ_1 , $\sigma_2 \in S_n$, χ is an irreducible character of H (subgroup of S_n) such that $\chi((\sigma_1 \sigma_2)^{-1})$ \neq 0 then $\sigma_1 \sigma_2 \in H$.

Proposition 2.1. Let *H* be a subgroup of S_n and χ be an irreducible character of *H*. The pair (A, B) is in $\overline{T}(H, \chi)$ if and only if there exists $\sigma_1, \sigma_2 \in S_n$ such that $\chi((\sigma_1 \sigma_2)^{-1}) \neq 0$, and lower triangular matrices L_1 and L_2 with the entries of the main diagonal equal to 1 satisfying

$$\begin{array}{l} (1) \ L_1^{-1} P(\sigma_1^{-1}) A, \ L_2^{-1} P(\sigma_2^{-1}) B \in T_n^U(\mathbb{F}); \\ (2) \ \det(AB) = \frac{\epsilon((\sigma_1 \sigma_2)^{-1}) \chi(id)}{\chi((\sigma_1 \sigma_2)^{-1})}; \\ (3) \ d_{\chi}^H(P(\sigma_1) L_1 Z L_2 P(\sigma_2)) = \chi((\sigma_1 \sigma_2)^{-1}) \ \det(Z), \ for \ all \ Z \in T_n^U(\mathbb{F}). \end{array}$$

Proof. Let $(A, B) \in \overline{\mathcal{T}}(H, \chi)$. Then there exists $\sigma_1, \sigma_2 \in S_n$ such that

 $A = P(\sigma_1)L_1R_1$ and $B = R_2L_2P(\sigma_2)$,

where L_1 and L_2 are lower triangular matrices with the entries of the main diagonal equal to 1, and R_1 and R_2 are upper triangular matrices. Then,

 $L_1^{-1}P(\sigma_1^{-1})A = R_1$, and $BP(\sigma_2^{-1})L_2^{-1} = R_2$,

and so we have (1). Let $X = [x_{ij}] \in T_n^U(\mathbb{F})$. Since $(A, B) \in \overline{\mathcal{T}}(H, \chi)$ we have,

$$d^{H}_{\gamma}(AXB) = d^{H}_{\gamma}(X).$$

Let $Z = R_1 X R_2$. Since R_1 and R_2 are nonsingular, $Z \in T_n^U(\mathbb{F})$ is arbitrary and we have $d_{\gamma}^{H}(P(\sigma_{1})L_{1}ZL_{2}P(\sigma_{2})) = d_{\chi}^{H}(R_{1}^{-1}ZR_{2}^{-1}).$

Taking $Z = I_n$ we have

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}L_{2}P(\sigma_{2})) = d_{\chi}^{H}(R_{1}^{-1}R_{2}^{-1})$$

= $\chi(id) \prod_{i=1}^{n} (r_{ii}^{(1)})^{-1} (r_{ii}^{(2)})^{-1} \neq 0,$

where $r_{ii}^{(1)}$ and $r_{ii}^{(2)}$ are the (i, i) entry of R_1 and R_2 , respectively. But

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}L_{2}P(\sigma_{2})) = \begin{cases} \chi((\sigma_{1}\sigma_{2})^{-1}) & \text{if}(\sigma_{1}\sigma_{2})^{-1} \in H \\ 0 & \text{otherwise} \end{cases}$$

so $(\sigma_1 \sigma_2)^{-1} \in H$ and $\chi((\sigma_1 \sigma_2)^{-1}) \neq 0$. Hence,

$$\det(R_1R_2) = \frac{\chi(id)}{\chi((\sigma_1\sigma_2)^{-1})}.$$

Now it is easy to get (2). Since

$$d_{\chi}^{H}(R_{1}^{-1}ZR_{2}^{-1}) = \chi(id) \prod_{i=1}^{n} (R_{1}^{-1}ZR_{2}^{-1})_{ii} = \chi(id) \det(R_{1}^{-1}) \det(R_{2}^{-1}) \det(Z),$$

we have

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}ZL_{2}P(\sigma_{2})) = d_{\chi}^{H}(P(\sigma_{1})L_{1}R_{1}R_{1}^{-1}ZR_{2}^{-1}R_{2}L_{2}P(\sigma_{2}))$$

= $d_{\chi}^{H}(R_{1}^{-1}ZR_{2}^{-1})$
= $\chi(id) \det(R_{1}^{-1}) \det(R_{2}^{-1}) \det(Z),$

and so

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}ZL_{2}P(\sigma_{2})) = \chi(id) \frac{\chi((\sigma_{1}\sigma_{2})^{-1})}{\chi(id)} \det(Z)$$
$$= \chi((\sigma_{1}\sigma_{2})^{-1}) \det(Z)$$

and the proof of the necessity of the conditions is complete.

Assume now that the matrices *A*, *B*, *L*₁, *L*₂, *P*(σ_1) and *P*(σ_2) satisfy the three conditions. Let $X \in T_n^U(\mathbb{F})$. Then

$$\begin{aligned} d_{\chi}^{H}(AXB) &= d_{\chi}^{H}(P(\sigma_{1})L_{1}L_{1}^{-1}P(\sigma_{1}^{-1})AXBP(\sigma_{2}^{-1})L_{2}^{-1}L_{2}P(\sigma_{2})). \\ \text{By (1), } L_{1}^{-1}P(\sigma_{1}^{-1})A, \ L_{2}^{-1}P(\sigma_{2}^{-1})B \in T_{n}^{U}(\mathbb{F}), \text{ and using (2) and (3) we have} \\ d_{\chi}^{H}(P(\sigma_{1})L_{1}L_{1}^{-1}P(\sigma_{1})^{-1}AXBP(\sigma_{2}^{-1})L_{2}^{-1}L_{2}P(\sigma_{2})) &= \chi((\sigma_{1}\sigma_{2})^{-1})\det(L_{1}^{-1}P(\sigma_{1})^{-1}AXBP(\sigma_{2}^{-1})L_{2}^{-1}) \\ &= \chi((\sigma_{1}\sigma_{2})^{-1})\epsilon(\sigma_{1}\sigma_{2})\frac{\epsilon(\sigma_{1}\sigma_{2})\chi(id)}{\chi((\sigma_{1}\sigma_{2})^{-1})}\det(X) \\ &= \chi(id)\det(X) \\ &= d_{\chi}^{H}(X) \end{aligned}$$

and the proof is complete. $\ \ \Box$

Notation 2.2. Let $\sigma \in H$ such that $\chi(\sigma)^{-1} \neq 0$. In [2] it was defined the set $V_{\sigma}(H, \chi)$ of the lower triangular matrices *L* with diagonal elements equal to 1, satisfying

$$d_{\chi}^{H}(P(\sigma)LX) = \chi(\sigma^{-1}) \det(X),$$

for all $X \in T_n^U(\mathbb{F})$. So, if $\sigma_1, \sigma_2 \in S_n$ are such that $\chi((\sigma_1 \sigma_2)^{-1}) \neq 0$, we denote by $V_{(\sigma_1, \sigma_2)}(H, \chi)$ the set of the pairs of lower triangular matrices (L_1, L_2) , with 1 in the entries of the main diagonal, that satisfy

$$d_{\chi}^{H}(P(\sigma_1)L_1XL_2P(\sigma_2)) = \chi((\sigma_1\sigma_2)^{-1})\det(X),$$

for all $X \in T_n^U(\mathbb{F})$.

Using Proposition 2.1 and the previous notation we conclude that

Theorem 2.3

$$\overline{\mathcal{T}}(H,\chi) = \bigcup_{\substack{\sigma_1,\sigma_2 \in H,\\\chi((\sigma_1\sigma_2)^{-1}) \neq 0}} \left\{ (P(\sigma_1)L_1R_1, R_2L_2P(\sigma_2)) : (L_1,L_2) \in V_{(\sigma_1,\sigma_2)}(H,\chi), \\ R_1, R_2 \in T_n^U(\mathbb{F}) \text{ and } \det(R_1R_2) = \frac{\chi(id)}{\chi((\sigma_1\sigma_2)^{-1})} \right\}$$

By this result we conclude that if we want to characterize the set $\overline{T}(H, \chi)$ we have somehow to obtain a characterization of the set $V_{(\sigma_1,\sigma_2)}(H, \chi)$.

Proposition 2.4. Let $\sigma_1, \sigma_2 \in H$ such that $\chi((\sigma_2 \sigma_1)^{-1}) \neq 0$. Then

$$V_{(\sigma_1,\sigma_2)}(H,\chi) = V_{(\sigma_2\sigma_1,id)}(H,\chi) = V_{(id,\sigma_2\sigma_1)}(H,\chi).$$

Proof. Let $X \in T_n^U(\mathbb{F})$. By definition

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \sum_{\rho \in S_{n}} \chi(\sigma_{2}^{-1}\rho\sigma_{1}^{-1}) \prod_{i=1}^{n} (L_{1}XL_{2})_{i\rho(i)}.$$

Since χ is a class function of *H*, we have

$$\chi(\sigma_2^{-1}\rho\sigma_1^{-1}) = \chi((\sigma_2\sigma_1)^{-1}\rho) = \chi(\rho(\sigma_2\sigma_1)^{-1}).$$

herefore

Therefore.

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \sum_{\rho \in S_{n}} \chi((\sigma_{2}\sigma_{1})^{-1}\rho) \prod_{i=1}^{n} (L_{1}XL_{2})_{i\rho(i)} = d_{\chi}^{H}(L_{1}XL_{2}P(\sigma_{2}\sigma_{1}))$$

and

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \sum_{\rho \in S_{n}} \chi(\rho(\sigma_{2}\sigma_{1})^{-1}) \prod_{i=1}^{n} (L_{1}XL_{2})_{i\rho(i)} = d_{\chi}^{H}(P(\sigma_{2}\sigma_{1})L_{1}XL_{2})$$

Consequently, we have the result. \Box

Proposition 2.5. Let $\sigma \in H$ such that $\chi(\sigma^{-1}) \neq 0$. Then $V_{\sigma}(H, \chi) \times \{I_n\} \subseteq V_{(\sigma, id)}(H, \chi).$

Proof. Let $L \in V_{\sigma}(H, \chi)$ and $X \in T_n^U(\mathbb{F})$. Since

$$\chi(\sigma^{-1}) \det(X) = d^{H}_{\chi}(P(\sigma)LX) = d^{H}_{\chi}(P(\sigma)LXI_{n}),$$

then $(L, I_{n}) \in V_{(\sigma, id)}(H, \chi).$

1340

Notation 2.6. Let $\sigma \in H$ such $\chi(\sigma^{-1}) \neq 0$. We denote by $(H)_{\sigma}^{T}$ the subgroup of H spanned by all transpositions τ such that $\chi(\sigma^{-1}\tau) = -\chi(\sigma^{-1})$. Let $\sigma_{1}, \sigma_{2} \in S_{n}$ such $\chi((\sigma_{1}\sigma_{2})^{-1}) \neq 0$. We denote by $(H)_{(\sigma_{1},\sigma_{2})}^{T}$ the subgroup of S_{n} spanned by all

Let σ_1 , $\sigma_2 \in S_n$ such $\chi((\sigma_1 \sigma_2)^{-1}) \neq 0$. We denote by $(H)_{(\sigma_1, \sigma_2)}^T$ the subgroup of S_n spanned by all transpositions τ such that $\chi(\sigma_2^{-1}\tau\sigma_1^{-1}) = -\chi(\sigma_2^{-1}\sigma_1^{-1})$.

Since χ is a class function in *H*, it is easy to prove the following proposition.

Proposition 2.7. Let σ_1 , $\sigma_2 \in H$ such $\chi((\sigma_1 \sigma_2)^{-1}) \neq 0$. Then

 $(H)_{(\sigma_1,\sigma_2)}^T = (H)_{\sigma_2\sigma_1}^T.$

Notation 2.8. Let *x* be an indeterminate over \mathbb{F} . Then $E^{(i)+x(j)}$ is the matrix obtained from the identity matrix by adding *x* times column *j* to column *i*.

Theorem 2.9. Let $L_1 = [I_{ij}^{(1)}]$ and $L_2 = [I_{ij}^{(2)}]$ be two lower triangular matrices with 1 in the entries of the main diagonal and let $\sigma_1, \sigma_2 \in S_n$ such that $\chi((\sigma_1\sigma_2)^{-1}) \neq 0$. If $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$ then $l_{ij}^{(1)} = l_{ij}^{(2)} = 0$ whenever i and j are in different orbits of $(H)_{(\sigma_1, \sigma_2)}^T$.

Proof. Let $k \in \{1, ..., n\}$ such that for all $s > k, s \in \{1, ..., n\}$, the transposition $(k, s) \notin (H)_{(\sigma_1, \sigma_2)}^T$. Then *s* and *k* are in different orbits of $(H)_{(\sigma_1, \sigma_2)}^T$. We are going to show that

$$l_{k+1,k}^{(1)} = \cdots = l_{n,k}^{(1)} = l_{k+1,k}^{(2)} = \cdots = l_{n,k}^{(2)} = 0.$$

Let *x* be an arbitrary element of \mathbb{F} and let

$$X = E^{(k+1) + x(k)}$$

Since $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$ and $X \in T_n^U(\mathbb{F})$ we have

$$d^{H}_{\chi}(P(\sigma_1)L_1XL_2P(\sigma_2)) = d^{H}_{\chi}(P(\sigma_1)XP(\sigma_2)) = \chi((\sigma_1\sigma_2)^{-1}).$$

The (k, k + 1) entry of L_1XL_2 is x, the (k + 1, k) entry of L_1XL_2 is $l_{k+1,k}^{(1)} + l_{k+1,k}^{(2)} l_{k+1,k}^{(2)} x + l_{k+1,k}^{(2)}$, and the entries (k + 1, k + 1) and (k, k) are $l_{k+1,k}^{(1)}x + 1$ and $l_{k+1,k}^{(2)}x + 1$, respectively. Assume that $(k + 1, k) \notin H$. Then,

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \chi((\sigma_{1}\sigma_{2})^{-1})(l_{k+1,k}^{(1)}l_{k+1,k}^{(2)}x^{2} + l_{k+1,k}^{(1)}x + l_{k+1,k}^{(2)}x + 1),$$

and since $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$ we obtain

$$l_{k+1,k}^{(1)}l_{k+1,k}^{(2)}x^{2} + l_{k+1,k}^{(1)}x + l_{k+1,k}^{(2)}x = 0.$$

Then

$$l_{k+1,k}^{(1)} = l_{k+1,k}^{(2)} = 0.$$

If $(k + 1, k) \in H$ then

$$\begin{aligned} d^{H}_{\chi}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) &= \chi((\sigma_{1}\sigma_{2})^{-1})(l^{(1)}_{k+1,k}l^{(2)}_{k+1,k}x^{2} + l^{(1)}_{k+1,k}x + l^{(2)}_{k+1,k}x + 1) \\ &+ \chi(\sigma_{2}^{-1}(k,k+1)\sigma_{1}^{-1})(l^{(1)}_{k+1,k}l^{(2)}_{k+1,k}x^{2} + l^{(1)}_{k+1,k}x + l^{(2)}_{k+1,k}x) \\ &= \chi((\sigma_{1}\sigma_{2})^{-1})(l^{(1)}_{k+1,k}l^{(2)}_{k+1,k}x^{2} + l^{(1)}_{k+1,k}x + l^{(2)}_{k+1,k}x + 1) \\ &+ \chi((\sigma_{2}\sigma_{1})^{-1}(k,k+1))(l^{(1)}_{k+1,k}l^{(2)}_{k+1,k}x^{2} + l^{(1)}_{k+1,k}x + l^{(2)}_{k+1,k}x) \end{aligned}$$

Since $(k + 1, k) \notin (H)_{(\sigma_1, \sigma_2)}^T$ and $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$ we have

$$l_{k+1,k}^{(1)}l_{k+1,k}^{(2)}x^{2} + l_{k+1,k}^{(1)}x + l_{k+1,k}^{(2)}x = 0,$$

and then

$$l_{k+1,k}^{(1)} = l_{k+1,k}^{(2)} = 0.$$

Next, using $E^{(k+2)+x(k)}$, because $(k + 2, k) \notin (H)_{(\sigma_1, \sigma_2)}^T$ we conclude that

$$l_{k+2,k}^{(1)} = l_{k+2,k}^{(2)} = 0.$$

Now it is easy to complete the proof. \Box

The converse of this result is not true (see [2]). However in certain situations the converse holds:

Proposition 2.10. *If* $(\sigma_2, \sigma_1) \in \overline{\mathcal{U}}(H, \chi)$ *then*

$$V_{(\sigma_1,\sigma_2)}(H,\chi) = V_{(id,id)}(H,\chi).$$

Proof. Let $X \in T_n^U(\mathbb{F})$. By definition

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \sum_{\rho \in S_{n}} \chi(\sigma_{2}^{-1}\rho\sigma_{1}^{-1}) \prod_{i=1}^{n} (L_{1}XL_{2})_{i\rho(i)}.$$

Since $(\sigma_2, \sigma_1) \in \overline{\mathcal{U}}(H, \chi)$ we have

$$\chi(\sigma_2^{-1}\rho\sigma_1^{-1}) = \frac{\chi((\sigma_1\sigma_2)^{-1})}{\chi(id)}\chi(\rho),$$

and so

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \frac{\chi((\sigma_{1}\sigma_{2})^{-1})}{\chi(id)} \sum_{\rho \in S_{n}} \chi(\rho) \prod_{i=1}^{n} (L_{1}XL_{2})_{i,\rho(i)}$$

Hence, $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$ if and only if

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \frac{\chi((\sigma_{1}\sigma_{2})^{-1})}{\chi(id)}d_{\chi}^{H}(X),$$

that is, if and only if

$$\frac{\chi((\sigma_1\sigma_2)^{-1})}{\chi(id)}d_{\chi}^H(L_1XL_2) = \frac{\chi((\sigma_1\sigma_2)^{-1})}{\chi(id)}d_{\chi}^H(X),$$

if and only if

$$(L_1, L_2) \in V_{(id, id)}(H, \chi). \quad \Box$$

Theorem 2.11. Let $L_1 = [l_{ij}^{(1)}]$ and $L_2 = [l_{ij}^{(2)}]$ be two lower triangular matrices with 1 in the main diagonal and let $\sigma_1, \sigma_2 \in H$ such that $(\sigma_2, \sigma_1) \in \overline{\mathcal{U}}(H, \chi)$. Then, $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$ if and only if $l_{ij}^{(1)} = l_{ij}^{(2)} = 0$ whenever i and j are in different orbits of $(H)_{\sigma_2\sigma_1}^T$.

Proof. If $(\sigma_2, \sigma_1) \in \overline{\mathcal{U}}(H, \chi)$ is easy to prove that

$$(H)_{\sigma_2\sigma_1}^T = (H)_{id}^T.$$

Let $L_1 = [l_{ij}^{(1)}]$ and $L_2 = [l_{ij}^{(2)}]$ be two lower triangular matrices with 1 in the main diagonal and such that $l_{ij}^{(1)} = l_{ij}^{(2)} = 0$ whenever *i* and *j* are in different orbits of $(H)_{\sigma_2\sigma_1}^T$. If $i, j \in \{1, ..., n\}$ are in different

orbits of $(H)_{\sigma_2\sigma_1}^T$ then *i* and *j* are in different orbits of $(H)_{id}^T$ and so, by Theorem 1.1, $(L_1, L_2) \in \overline{C}(H, \chi)$. Let $X \in T_n^U(\mathbb{F})$. Then

$$d_{\chi}^{H}(P(\sigma_{1})L_{1}XL_{2}P(\sigma_{2})) = \frac{\chi((\sigma_{1}\sigma_{2})^{-1})}{\chi(id)} d_{\chi}^{H}(L_{1}XL_{2})$$
$$= \frac{\chi((\sigma_{1}\sigma_{2})^{-1})}{\chi(id)} d_{\chi}^{H}(X)$$
$$= \chi((\sigma_{1}\sigma_{2})^{-1}) \det(X),$$

and so $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(H, \chi)$. The converse is Theorem 2.9.

3. The set $V_{(\sigma_1,\sigma_2)}(S_n, \chi)$

Let χ be an irreducible character of S_n and σ_1 , $\sigma_2 \in S_n$ such that $\chi(\sigma_1 \sigma_2) \neq 0$. In this section we are going to present a characterization of some sets $V_{(\sigma_1,\sigma_2)}(S_n, \chi)$.

In [2] it was proved the following Theorems and Propositions.

Proposition 3.1 [2]. Let $\pi \in S_n$ such that $\chi(\pi) \neq 0$. If χ is self-associated or χ is the principal character of S_n , then there is no transposition τ such that

 $\chi(\pi \tau) = -\chi(\pi),$ *i.e.*, $(S_n)_{\pi}^T = \{id\}.$

Theorem 3.2 [2]. Let χ be an irreducible character of S_n . Then

$$\bigcup_{\sigma \in S_n, \ \chi(\sigma) \neq 0} V_{\sigma}(S_n, \chi) = \{I_n\}$$

if and only if

 $\chi = 1$ or χ is self-associated.

Proposition 3.3 [2]. Let $\chi = (s, 1^{n-s})$ be the irreducible character of S_n where

(1) $s - 1 > n - s \ge 1$ (2) if $s \ge 5$ and s is odd then $2(n - s) \ne s - 1$ (3) if s = 6 then $n \notin \{9, 10\}$.

Let (a, b) be a transposition of S_n and $\sigma \in S_n$ be a cycle with length s - 1 such that $\chi(\sigma) \neq 0$. Then $\chi(\sigma(a, b)) = -\chi(\sigma)$ if and only if $\sigma(a) = a$, $\sigma(b) = b$.

Theorem 3.4 [2]. Let $\chi = (n - 1, 1)$ be the irreducible character of S_n with n > 3. Let $\sigma \in S_n$ be a cycle with length n - 2 and $L = [l_{ij}] \in T_n^L(F)$ with diagonal elements equal to 1. Then

 $L \in V_{\sigma}(S_n, \chi)$

if and only if L satisfies the condition:

"For r > p, if there exists an integer k such that $p \le k \le r$ and $\sigma(k) \ne k$ then $l_{rp} = 0$."

Theorem 3.5 [2]. Let $\chi = (s, 1^{n-s})$ be the irreducible character of S_n satisfying

(i) $s - 1 > n - s \ge 1$

(*ii*) *if* s = 6 *then* $n \notin \{9, 10\}$

(iii) if s is odd and $s \ge 5$ then $2(n - s) \ne s - 1$.

Let $\sigma \in S_n$ be a cycle with length s - 1 such that

 $\{j: \sigma(j) \neq j\} = \{u, u+1, \dots, u+s-2\}$

for some integer u < n - s + 2. Let $L = [l_{ij}] \in T_n^L(F)$ with diagonal elements equal to 1. Then

 $L \in V_{\sigma}(S_n, \chi)$

if and only if L satisfies the condition:

"For r > p, if there exists an integer k such that $p \le k \le r$ and $\sigma(k) \ne k$ then $l_{rp} = 0$."

Now, we are going to prove similar results in the set $V_{(\sigma_1,\sigma_2)}(S_n, \chi)$. Using Theorem 2.11, Propositions 2.5 and 3.1 and Theorem 3.2 we have the following result.

Theorem 3.6. Let χ be an irreducible character of S_n . Then

 $\bigcup_{\sigma_1,\sigma_2\in S_n, \ \chi(\sigma_1\sigma_2)\neq 0} V_{(\sigma_1,\sigma_2)}(S_n,\chi) = \bigcup_{\sigma\in S_n, \ \chi(\sigma)\neq 0} V_{(\sigma,id)}(S_n,\chi) = \{(I_n,I_n)\}$

if and only if

 $\chi = 1$ or χ is self-associated.

Theorem 3.7. Let $\chi = (n - 1, 1)$ be the irreducible character of S_n with n > 3. Let $\sigma_1, \sigma_2 \in S_n$ such that $\sigma_2 \sigma_1$ is a cycle with length n - 2 and $L_1 = [l_{ij}^{(1)}], L_2 = [l_{ij}^{(2)}] \in T_n^L(F)$ with diagonal elements equal to 1. Then

 $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$

if and only if L_1 and L_2 satisfy the condition:

"For r > p, if there exists an integer k such that $p \le k \le r$ and $\sigma_2 \sigma_1(k) \ne k$ then $l_{rp}^{(1)} = 0$ and $l_{rp}^{(2)} = 0$."

Proof. Since n > 3 then, if $n - 1 \ge 5$ and n - 1 is odd we have $2(n - (n - 1)) = 2 \ne n - 2$. If n - 1 = 6 then $n \notin \{9, 10\}$. Using Proposition 3.3, if $(a \ b)$ is a transposition of S_n , then $\chi(\sigma_2\sigma_1(a \ b)) = -\chi(\sigma_2\sigma_1)$ if and only if $\sigma_2\sigma_1(a) = a$ and $\sigma_2\sigma_1(b) = b$.

Since $\sigma_2 \sigma_1$ is a cycle of length n - 2, there are only two integers $u, v \in \{1, ..., n\}, u > v$ such that $\sigma_2 \sigma_1(u) = u$ and $\sigma_2 \sigma_1(v) = v$. Consequently, $(S_n)_{\sigma_2 \sigma_1}^T = \langle (u v) \rangle$.

Necessity. Suppose that $(L_1 = [l_{ij}^{(1)}], L_2 = [l_{ij}^{(2)}]) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$. By Theorem 2.9, if $a > b, a, b \in [1, \dots, n]$ and $\sigma_2 \sigma_1(a) \neq a$ or $\sigma_2 \sigma_1(b) \neq b$ then $l_{ij}^{(1)} = 0$ and $l_{ij}^{(2)} = 0$

{1,..., *n*} and $\sigma_2 \sigma_1(a) \neq a$ or $\sigma_2 \sigma_1(b) \neq b$ then $l_{ab}^{(1)} = 0$ and $l_{ab}^{(2)} = 0$. Suppose there exists an integer *k* such that u > k > v and $\sigma_2 \sigma_1(k) \neq k$. Let *Z* be the matrix whose (v + 1)th column is the *v*th column of I_n and the *u*th column of *Z* is the (v + 1)th column of I_n , the remaining columns of *Z* are the columns of I_n . Then

$$d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = (\chi((\sigma_2\sigma_1)^{-1}(\nu+1, u)) + \chi((\sigma_2\sigma_1)^{-1}(\nu+1, u, \nu)))l_{u\nu}^{(1)}$$

Since $(\sigma_2\sigma_1)^{-1}(\nu+1) \neq \nu+1$ and $(\sigma_2\sigma_1)^{-1}(u) = u$ then $(\sigma_2\sigma_1)^{-1}(\nu+1, u)$ is a cycle with length n - 1. Using the Murnaghan–Nakayama rule,

 $\chi((\sigma_2\sigma_1)^{-1}(\nu+1, u)) = 0.$

But $\chi((\sigma_2\sigma_1)^{-1}(v+1, u, v))$ is a cycle with length *n*, then $\chi((\sigma_2\sigma_1)^{-1}(v+1, u, v)) = -1$. Therefore, $d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = -l_{uv}^{(1)}$. Since $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$,

$$-l_{uv}^{(1)} = d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = d_{\chi}^{S_n}(P(\sigma_1)ZP(\sigma_2)) = 0.$$

1344

Consequently, $l_{uv}^{(1)} = 0$.

Let *B* be the matrix whose (u - 1)th row is the *u*th row of I_n and the *v*th row of *B* is the (u - 1)th row of I_n , the remaining rows of *B* are the rows of I_n . Then

$$d_{\chi}^{S_n}(P(\sigma_1)L_1BL_2P(\sigma_2)) = (\chi((\sigma_2\sigma_1)^{-1}(u-1, v)) + \chi((\sigma_2\sigma_1)^{-1}(u-1, u, v)))l_{uv}^{(2)}$$

Since $(\sigma_2 \sigma_1)^{-1}(u-1) \neq u-1$ and $(\sigma_2 \sigma_1)^{-1}(v) = v$ then $(\sigma_2 \sigma_1)^{-1}(u-1, v)$ is a cycle with length n-1. Using the Murnaghan–Nakayama rule,

$$\chi((\sigma_2\sigma_1)^{-1}(u-1, v)) = 0.$$

But $\chi((\sigma_2\sigma_1)^{-1}(u-1, u, v))$ is a cycle with length *n*, then $\chi((\sigma_2\sigma_1)^{-1}(u-1, u, v)) = -1$. Therefore, $d_{\chi}^{S_n}(P(\sigma_1)BL_2P(\sigma_2)) = -l_{uv}^{(2)}$. Since $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$,

$$-l_{uv}^{(2)} = d_{\chi}^{S_n}(P(\sigma_1)L_1BL_2P(\sigma_2)) = d_{\chi}^{S_n}(P(\sigma_1)BP(\sigma_2)) = 0.$$

Consequently, $l_{uv}^{(2)} = 0$ and we have the condition.

Sufficiency. Let $L_1 = [I_{ij}^{(1)}]$ and $L_2 = [I_{ij}^{(2)}]$ be matrices satisfying the condition of the theorem. Then

$$L_{1} = \begin{cases} I_{n} & \text{if } u \neq v + 1 \\ I_{n} + E^{v + l_{uv}^{(1)}(u)} & \text{if } u = v + 1 \end{cases}$$

and

$$L_{2} = \begin{cases} I_{n} & \text{if } u \neq v + 1 \\ I_{n} + E^{v + I_{uv}^{(2)}(u)} & \text{if } u = v + 1 \end{cases}$$

Let
$$X \in T_n^U$$
.
If $u \neq v + 1$,
 $d_{\chi}^{S_n}(P(\sigma_1)L_1XL_2P(\sigma_2)) = d_{\chi}^{S_n}(P(\sigma_1)I_nXI_nP(\sigma_2)) = d_{\chi}^{S_n}(P(\sigma_1)XP(\sigma_2))$
If $u = v + 1$,
 $d_{\chi}^{S_n}(P(\sigma_1)L_1XL_2P(\sigma_2)) = \chi((\sigma_2\sigma_1)^{-1})\prod_{s=1}^n x_{ss} = d_{\chi}^{S_n}(P(\sigma_1)XP(\sigma_2)).$

Consequently, $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$. \Box

Theorem 3.8. Let $\chi = (s, 1^{n-s})$ be the irreducible character of S_n satisfying

(i) $s - 1 > n - s \ge 1$ (ii) if s = 6 then $n \notin \{9, 10\}$ (iii) if s is odd and $s \ge 5$ then $2(n - s) \ne s - 1$.

Let $\sigma_1, \sigma_2 \in S_n$ such that $\sigma_2 \sigma_1$ is a cycle with length s - 1 such that

$$\{j: \sigma_2 \sigma_1(j) \neq j\} = \{u, u+1, \dots, u+s-2\}$$

for some integer u < n - s + 2. Let $L_1 = [I_{ij}^{(1)}]$, $L_2 = [I_{ij}^{(2)}] \in T_n^L(\mathbb{F})$ with diagonal elements equal to 1. Then

 $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$

if and only if L_1 and L_2 satisfy the condition:

"For r > p, if there exists an integer k such that $p \le k \le r$ and $\sigma_2 \sigma_1(k) \ne k$ then $l_{rp}^{(1)} = 0$ and $l_{rp}^{(2)} = 0$."

Proof. Using Proposition 3.3, we see that $(S_n)_{\sigma_2\sigma_1}^T$ is generated by those transpositions, (a b) such that $\sigma_2\sigma_1(a) = a$ and $\sigma_2\sigma_1(b) = b$. Consequently, if $\pi \in (S_n)_{\sigma_2\sigma_1}^T$, π , $(\sigma_2\sigma_1)^{-1}$ are disjoint permutations and by Murnaghan-Nakayama rule we have, $\chi((\sigma_2\sigma_1)^{-1}\pi) = \epsilon(\pi)\chi((\sigma_2\sigma_1)^{-1}) = \epsilon(\pi)$.

Necessity. Using Theorem 2.9, if a > b, a, $b \in \{1, ..., n\}$ and $\sigma_2 \sigma_1(a) \neq a$ or $\sigma_2 \sigma_1(b) \neq b$ then

 $\int_{ab}^{(1)} = 0 = l_{ab}^{(2)}$ Suppose that $i > j, i, j \in \{1, ..., n\}$ and there exists i > k > j such that $\sigma_2 \sigma_1(k) \neq k$. We are going to prove that $l_{ij}^{(1)} = 0 = l_{ij}^{(2)}$. Using the hypothesis of the Theorem, then j < u and i > u + s - 2. Let t, f two integers, $t, f \in I$.

{u, ..., u + s - 2} such that t < f and $\sigma_2 \sigma_1(t) = f$. We are seeing that $l_{u+s-1}^{(1)} = 0 = l_{u+s-1}^{(2)} = 1$. Let *Z* be the matrix those tth column is the u - 1th column of I_n , the *f*th column of *Z* is the *t*th

column of I_n and the (u + s - 1)th column of Z is the fth column of I_n , the remaining columns of Z are the columns of I_n . Then

$$d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = (\chi((\sigma_2\sigma_1)^{-1}(t, f, u+s-1)) + \chi((\sigma_2\sigma_1)^{-1}(u-1, t, f, u+s-1)))l_{u+s-1,u-1}^{(1)}.$$

Since $\sigma_2 \sigma_1(t) = f$ and $(\sigma_2 \sigma_1)^{-1}(t, f, u + s - 1)$ is a cycle with length s - 1, using the Murnaghan-Nakayama rule,

$$\chi((\sigma_2\sigma_1)^{-1}(t, f, u+s-1)) = 1.$$

But $\chi((\sigma_2\sigma_1)^{-1}(u-1, t, f, u+s-1))$ is a cycle with length s and $n-s \ge 1$, then $\chi((\sigma_2\sigma_1)^{-1})$ (u - 1, t, f, u + s - 1)) = 0. Since $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$,

$$-I_{u+s-1\ u-1}^{(1)} = d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = d_{\chi}^{S_n}(P(\sigma_1)ZP(\sigma_2)) = 0.$$

Consequently, $I_{u+s-1 \ u-1}^{(1)} = 0$. Let *B* be the matrix those (u - 1)th row is the *t*th row of I_n , the *t*th row of *B* is the *f*th row of I_n and the *f*th row of *B* is the (u + s - 1)th row of I_n , the remaining rows of *B* are the rows of I_n . Then

$$d_{\chi}^{S_n}(P(\sigma_1)L_1BL_2P(\sigma_2)) = (\chi((\sigma_2\sigma_1)^{-1}(t, f, u+s-1)) + \chi((\sigma_2\sigma_1)^{-1}(u-1, t, f, u+s-1)))l_{u+s-1}^{(2)}u_{u+s$$

Since $\sigma_2 \sigma_1(t) = f$ and $(\sigma_2 \sigma_1)^{-1}(t, f, u + s - 1)$ is a cycle with length s - 1, using the Murnaghan-Nakayama rule,

$$\chi((\sigma_2\sigma_1)^{-1}(t, f, u+s-1)) = 1.$$

But $\chi((\sigma_2\sigma_1)^{-1}(u-1, t, f, u+s-1))$ is a cycle with length *s* and $n-s \ge 1$, then $\chi((\sigma_2\sigma_1)^{-1})$ (u - 1, t, f, u + s - 1)) = 0. Since $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$,

$$-l_{u+s-1\ u-1}^{(2)} = d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = d_{\chi}^{S_n}(P(\sigma_1)ZP(\sigma_2)) = 0.$$

Consequently, $I_{u+s-1}^{(2)} = 0$. Now, let *Z* be the matrix those *t*th column is the (u - 2)th column of I_n , the *f*th column of *Z* is the th column of I_n and the (u + s - 1)th column of Z is the f th column of I_n , the remaining columns of *Z* are the columns of I_n . Then we can conclude that $I_{u+s-1}^{(1)} = 0$. If *B* is the matrix those (u-2)th row is the *t*th row of I_n , the *t*th row of *B* is the *f*th row of I_n and the *f*th row of *B* is the (u+s-1)th row of I_n , the remaining rows of B are the rows of I_n . Then we can conclude that $l_{u+s-1}^{(2)} = 0$. In this

way we can show that $l_{u+s-1}^{(1)} = l_{u+s-1}^{(2)} = 0 \cdots l_{u+s-1}^{(1)} = l_{u+s-1}^{(2)} = 0.$ Next, in the same way we prove that $l_{u+s}^{(1)} = l_{u+s}^{(2)} = \cdots = l_{u+s}^{(1)} = l_{u+s}^{(2)} = 0.$ Therefore, we can conclude that $l_{ij}^{(1)} = 0 = l_{ij}^{(2)}$.

Sufficiency. Let L_1 and L_2 be matrices satisfying the condition of the theorem. Then

1346

$$L_1 = \begin{bmatrix} L_{11} & 0 & 0 \\ 0 & L_{12} & 0 \\ 0 & 0 & L_{13} \end{bmatrix}$$

and

$$L_2 = \begin{bmatrix} L_{21} & 0 & 0 \\ 0 & L_{22} & 0 \\ 0 & 0 & L_{23} \end{bmatrix}$$

where L_{11} , $L_{21} \in T_{u-1}^{L}(\mathbb{F})$ with diagonal elements equal to 1, $L_{22} = L_{12} = I_{s-2}$ and $L_{13}, L_{23} \in T_{n-u-s+3}^{L}(\mathbb{F})$ with diagonal elements equal to 1. Let $Z \in T_{n}^{U}(\mathbb{F})$,

$$Z = \begin{bmatrix} Z_1 & * & * \\ 0 & Z_2 & * \\ 0 & 0 & Z_3 \end{bmatrix}$$

where $Z_1 \in T_{u-1}^U(\mathbb{F}), Z_2 \in T_{s-2}^U(\mathbb{F})$ and $Z_3 \in T_{n-u-s+3}^U(\mathbb{F})$. Since $\chi((\sigma_2\sigma_1)^{-1}) = 1$ and $\chi((\sigma_2\sigma_1)^{-1}\rho) = \epsilon(\rho)$ if $\rho \in (S_n)_{\sigma_2\sigma_1}^T$, then

$$d_{\chi}^{S_n}(P(\sigma_1)L_1ZL_2P(\sigma_2)) = \chi((\sigma_2\sigma_1)^{-1})(det(L_{11}Z_1L_{12})det(Z_2)det(L_{13}Z_3L_{23}))$$

= $\chi((\sigma_2\sigma_1)^{-1})det(Z).$

Then $(L_1, L_2) \in V_{(\sigma_1, \sigma_2)}(S_n, \chi)$. \Box

References

- A. Duffner, G.N. de Oliveira, Pairs of matrices satisfying certain polynomial identities, Linear Algebra Appl. 197 (1994) 177-188.
- [2] R. Fernandes, Matrices that preserve the value of the generalized matrix function of the upper triangular matrices, Linear Algebra Appl. 401 (2005) 47–65.
- [3] J.A. Dias da Silva, M. Purificação Coelho, (λ, G)-critical matrices, Linear Algebra Appl. 140 (1990) 1–10.
- [4] R. Merris, Multilinear Algebra, Gordon and Breach Science Publishers, 1997.
- [5] G.N. Oliveira, J.A. Dias da Silva, Equality of decomposable symmetrized tensors and *-matrix groups, Linear Algebra Appl. 49 (1983) 191–219.
- [6] G.N. Oliveira, J.A. Dias da Silva, On matrix groups defined by certain polynomial identities, Portugal. Math. 43 (1985–1986) 77–92.