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Abstract 

Using a mathematical model for an RNA molecule as a family of disjoint edge-colored 
interior planar graphs on a circle, we determine the expected number of secondary RNA 
structures that can form under various assumptions on the type and number of ribonucleotide 
bonds. 
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1. Introduction 

A ribonucleic acid (RNA) molecule consists of a sequence of ribonucleotides. Each 

ribonucleotide contains one of four bases - adenine, cytosine, guanine, and uracil, 

commonly denoted by A, C, G, and U, respectively. As the molecule forms, chemical 
bonds join certain adenine and uracil nucleotide pairs and certain cytosine and 
guanine nucleotide pairs. These bonds constrain the three-dimensional configuration 
of the molecule which in turn influences its function. 

The sequence of bases in an RNA molecule is referred to as its primary structure, the 
set of bonded nucleotide pairs is the molecule’s secondary structure, and the three- 
dimensional configuration is the tertiary structure of the molecule. Waterman [4], 

Stein and Waterman [3], and Schmidtt and Waterman [2] have studied the number 

of secondary structures possible when any two bases can bond to each other. Zuker 

and Sankof [S] refined some of the calculations in [4,3] by imposing the constraint 
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that only certain base pairs can bond to each other and calculating the expected 
number of secondary structures when the sequence of bases (the primary structure) is 

chosen randomly. 
Continuing in this line of research, we consider the expected number of structures 

under various constraints on the type and the number of bonds allowed. As in [S], we 
assume that the sequence of bases is chosen randomly. We begin with a mathematical 
description. 

AstructureSon {l,... , n} is a collection of disjoint pairs (i,j) where 1 < i < j < n. 
The order of S is the number of pairs it contains. Its loop length is the smallest 
difference between the elements of a pair. Two pairs (i,j) and (i’,j’) intersect if 
(i’ - i) . (j’ - j) > 0. The depth of S is the smallest integer d such that S can be 
partitioned into d structures, each having the property that no two of its pairs intersect. 

To “visualize” S, place the integers from 1 to n in increasing order on a circle and for 
every pair (i, j) E S draw the corresponding chord. By definition, the number of chords 
is the order of S, each chord connects two distinct integers, and no integer is connected 
to more than one chord. The loop length of S is the minimum difference between the 
integers at the endpoints of a chord. Two pairs intersect if their corresponding chords 
cross each other. S is of depth 1 if no two chords cross. The structure S is of depth < d 
if the chords can be drawn in d colors so that no two chords of the same color cross. 
Fig. 1 illustrates the circles corresponding to two structures. Note that a structure of 
depth 2 corresponds to a planar graph on a circle: draw the edges of one colored set 
inside the circle, and the others outside. 

Throughout the paper, we assume a fixed set 98 of bases and a symmetric relation 
&? of matching base-pairs. Namely, 9 E ?J x k%Y’, and (b, b’) E W implies (b’, b) E 9. Let 

def 
s =s 1, . . . , s, be a sequence of n bases. A pair (i, j) of distinct indices matches in s if 
(sip sj) is a matching base-pair. A structure on ( 1, . . . , n} is valid for s if all its pairs 
match in s. In the visualization above, all chords connect indices corresponding to 
matching base-pairs. 

For RNA molecules, # = {A, C, G, U} and 9%? is the symmetric relation 
((A,U),(U,A),(C,G),(G,C)). The pair (1,2) matches in the sequence s= UAGC 
while the pair (1,3) does not. The order-2, depth-i, loop-length-l, structure 
{( 1,2),(3,4)} is valid for s whereas the order-2, depth-2, loop-length-5 structure 
{( 1,3),(2,4)} is not. Secondary RNA structures have been frequently modeled as 
structures of depth 1 or 2 and minimum loop length 4 or 5 on long sequences. 

Let Td*‘(n,m) be the set of structures on { 1, . . . ,n> that have order m, depth < d, 
and loop length > 1. Note that Td,‘(n, m) is independent of W. Let T$‘(s, m) be the set 
of structures in Td**( n, m) that are valid for a sequence s of length n (under 9) and let 

L GJ 
2$‘(s) = (J T$(s,m) 

m=O 

be the set of structures of depth < d, loop length 2 1, and arbitrary order, that are 
valid for s (under 9%). 
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(a) @I 

Fig. 1. Two structures of loop length 2 on { 1,. ,16}. Structure (a) has depth 1 and, as indicated by the 

solid and dotted lines, structure (b) has depth 2. 

We are mostly interested in the expected values of 1 T$‘( s, m) 1 and 1 T$‘( s) 1 when the 
sequence s is formed randomly - each element si is chosen independently according to 
some probability distribution P over 24. The match probability of the distribution 
P with respect to W is 

ydZ 1 P(a)P(b), 
(a,b)EP 

the probability that two elements of 93, chosen independently according to P, are 
a matching base-pair. By construction of s, it is also the probability that a given 
structure pair matches in a sequence s chosen randomly according to P. We will see 
that the expected values of I T$‘(s, m)l and I T$‘( s)l depend on P and 93 only through 
y, and we denote them by t$‘(n, m) and t:*‘(n), respectively. By linearity of expecta- 
tions, 

L n/ZJ 
q’(n) = 1 t,“J( 12, m). 

m=O 

We are mostly interested in structures of depth 1 and loop length >, 1. To simplify 
notation, we omit the superscripts d and I if both are 1. For example, Td,’ (n, m) is the 
set of order-m structures on { 1, . . . , n} that have depth < d and arbitrary loop length; 
T&‘( s, m) is the set of depth-l, order-m structures on { 1, . . , n} that have loop length 
2 1 and are valid for the sequence s; and tY( n, m) is the expected number of structures 

on {l,..., n} that have depth 1, order m, arbitrary loop length I 2 1, and are valid for 
a randomly chosen sequence s. 

1. I. Notational conventions 

Define 0’ = 1. When explicit limits are absent in sums of the form &, it is to be 
understood that the summation variable (here k) ranges over all integer values in the 
range -coto+cg. 
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The rising factorial aE is defined for every real a and integer k > 0 by 

a’ = a(a + 1) ... (a + k - 1). 

Similarly, the falling factorial ak is defined for real a and integer k 3 0 by 

ak = a(a - 1) ... (a -k + 1). 

(In accordance with the usual custom that a product over a null set is 1, we set 
a0 = a? = 1.) The binomial coefficients (;) are defined for every real r and integer k by 

Y 0 i 0 if k < 0, 
= 

k 6 if k > 0. 

We will also have recourse to multinomial coefficients: if ml, . . . ,mj are integers, 
xi= i mi = m, define 

(L.,J = {A i: Ey;[op3 

The general hypergeometric series with m upper parameters and n lower parameters is 
formally defined by 

None of the lower parameters bi can be zero or a negative integer, but other than that 
the upper parameters ai and the lower parameters bi can be arbitrary. 

All logarithms (with one clearly indicated exception) are to base 2. Finally, if 

{a l,..., elk) is a discrete probability distribution, define the binary entropy function by 

h(a 1, . . ..a.) = - i: ~ilOgCri, 
i=l 

with the usual convention Olog 0 = 0. In accordance with customary usage, for 
a Bernoulli probability distribution {CC, 1 - CX} we write h(a) instead of h(cc, 1 - CI). 

1.2. Overview of results 

In Section 2 we determine an exact expression for tY( n, m), the expected number of 
structures on ( 1, . . . , n} that have depth 1, order m, and arbitrary loop length 12 1 that 
are valid for a randomly chosen sequence s with match probability y. We show that 

t,(n, m) = &(m,m,iY- 2m) ‘“’ 

For large n and for m proportional to II, i.e., m = an with a = O(1) bounded above 
(away from l/2) and below (away from 0), approximations show that 
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We prove that, for fixed n, t,(n, m) is maximized when m takes a value m* given by 

m* 

n 2.5 

= 1 + - 
2+1/J 

1.5 + 0 ( 1 
n 

,1 
and that its value then is 

t,(n, m*) = &Cl + 2Ji)n+2.s 
(I+ o(i))- 

In Section 3 we consider the expected number t?(n) of depth-l structures on 
{l,... , n} having arbitrary order and loop length. For y = l/4, which corresponds to 
uniformly distributed RNA sequences, we use direct calculations to show that 

2-” 
tii4(n) = - 

2n + 2 

( ) n+2 n+l ’ 

For general values of y we use generating functions to show that ty(n) has the 
hypergeometric representation 

t.,(n) = 2F1 ( -+n++,--+n 

2 I > 
4Y > 

and prove that 

t 
Y 

(n) = (1 + 4h)“+3’2 
2Y 3/4 +2 n3/2 

In particular, 

tl(n) = 

3”+ 3/z 

2n112n3’i(1 + o((logL)3/2)) 

is the number of structures on { 1, . . . , n> determined previously by Stein and Water- 
man [3]. 

In Section 4 we address structures of depth < d where d is any fixed integer. Each 
pair in such a structure can be viewed as being colored in one of d colors so that no 
two pairs of the same color intersect. We approximate the number of structures on 
( 1, . . . , n} that have arbitrary loop length and a given number of pairs of each color. 
We show that the largest number of structures, 

1 

(2xy)d 
(1 + 2dd)“+2d+1’2 

(I+ o(t))9 

is obtained when there are about (J/(1 + 2d&)) n pairs of each color. We then 
approximate the total expected number t$’ (n) of depth Q d structures of arbitrary 
order and loop length, and show that 
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Finally, in Section 5 we consider structures of depth 1, order m, and loop length > 1. 
Setting up a recurrence for t:"(n,m), we obtain the following simple closed form 
expression for the bivariate generating function 

Wz, w) = CC $‘(n, m)z”w” = 2pwz2b(z w) 

[ 

1 - Jl - 4ywzQJ(z,w)2 ) ” m 3 1 
where 

P(z, w) = 
l-z 

l-22+(1 +yw)z2-ywzl+i’ 

The particular case I= 2, namely structures where adjacent elements cannot be 
matched, is of interest. An examination of the generating function yields the interest- 
ing result 

t+'2(n,m) =t(:,3(" ,"y ')y", 

The particularization of this result when y = 1 has also been obtained recently by 
Schmidtt and Waterman [2] using an ingenious, nonintuitive argument whose key 
element is the replacement of the problem at hand by an equivalent combinatorial 
problem on linear trees which has a known solution. The approach outlined here in 
contradistinction is a straightforward combinatorial attack on the generating func- 
tion. 

For large n and m proportional to n, i.e., m = un with a = O(1) bounded above 
(away from l/2) and below (away from 0), approximations show that 

’ t?2(ny m) = 2nazn2 
22n(h(2a) - h(a)+u(2 + 1ogJ;)) 1 ( +0(t)). 

Carrying the analysis further, we show that, for fixed n, t:*2(n, m) attains its maximum 
value when m takes a value m* given by 

n + O(l), 

and we show that this maximum value is 

ti*2(n,m*) = (I+ 4fi) 1 1+JT& 2n 

*(1+2~-~~77)~ ( 2 ) (I++)). 

In particular, when y = 1 we obtain the interesting result 

t:*2(n,m*) = 0 5 , 
( > 
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where 4 = (1 + $)/2 z 1.618 is the golden ratio. As for the d = 1, 1 = 1 case, for 
general values of y we show that t:*‘(n) has the hypergeometric representation 

t;‘2(n) = $3 
-+n+1, -+n+f,-+n++,-*n 

2,-n+l,-n 

and we show that 

p(n) = 0 (( 1 l + Jl + “d)2Rj. 
n ? 

Again, when y = 1, tiV2(n) 

log +2(n) N 2nlog4 

L 
/ / 

has the very alluring dependence on the golden ratio: 

(n + co). 

For general 1, a series solution for ti”(n, m) (and hence for t:,‘(n) also) is readily 
obtained from the generating function. It does not appear likely, however, that the 
series solution can be resolved into a simple closed form for general 1. 

2. Structures of depth 1, given order, and arbitrary loop length 

Recall that t,(n,m) is the expected number of depth-l, order-m, arbitrary loop 
length 1 > 1 structures on { 1, . . . , n> valid for a sequence chosen according to a prob- 
ability distribution with match probability y. We first calculate t,(n, m), then approx- 
imate it for large it and m. 

A sequence of parentheses is well formed if it contains the same number of left and 
right parentheses, and when scanned from left to right, the number of right paren- 
theses never exceeds the number of left parentheses. The number of well-formed 
sequences of 2m parentheses is well known to be the mth Catalan number 

1 
C, Ef- 

2m 

( 1 m+l m * 
(1) 

An order-m structure on { 1, . . . , 2m) can be mapped into a well-formed sequence of 2m 
parentheses by setting the ith parenthesis to be a left parenthesis if i is the smaller 
integer in its structure pair, and making it a right parenthesis if i is the larger integer in 
its pair. This mapping is surjective but not injective. However, when restricted to 
depth-l, arbitrary loop length structures, i.e., to structures in T(2m, m), the mapping 
can be shown to be a bijection. For example, the structures { (1,6), (2,3), (4,5)} and 

{(1,3), (2,6), (4,5)} both map into (( ))( )); h owever, { (1,6), (2,3), (4,5)} is the only 
depth-l structure mapped to (( )( )). Therefore, 

IT(2m,m)l= C,. 

Each structure in T( n, m) corresponds to a 2m-element subset of { 1, . . . , n} (consisting 
of the elements included in structure pairs) and to an order-m structure on { 1, . . . ,2m}. 
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Hence, 

For the expected value, let l(statement) be the indicator function that is 1 if 
“statement” is true and is 0 otherwise. We noted that the probability that a given 
structure pair matches for a random sequence s under 92 is the match probability Y. By 
independence, the probability that a given structure of order m is valid for s under .%? is 
Y”. Therefore, 

r,(n,m) = 1 P(s)IT&s,m)l 
SE.P 

= ,&P(s) ..g nt) l(a is valid for s under 92) 

= c 1 P(s) l(o is valid for s under 9%‘) 
o~T(n,m)s~sS” 

P CT 
= OEL ( 

is valid for a random string under 99) 

= 0EL ym 

= I T(n,m)ly”. 

We have hence obtained the following simple expression for t,(n,m). 

Assertion 1. For any match probability y E (0, 11, sequence length n, and order m, 

t,(n,m) = 
Kki(m,m,,“- 2rn)‘.* 

We now approximate tY( n, m) for large n and m. Applying Stirling’s approximation 
formula 

to the assertion, we see that for m proportional to n, 

t,(n, m) = 
1 n 

J-- 

n” 

2nm(m + 1) n - 2mm”m”(n - 2m)“- ,.1.(1 + o(t)) 

1 n =2nm(m+ 1) J-- n-2m 2nlt~m/n,nr/n,~n-2mt/nt+m10sr ( 1 + 0 (nD 1 

We hence have the following insight into the growth pattern of t,,( n, m) as n increases 
and the relative order m/n = a remains fixed. In fact, suppose m is proportional to n, 
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Fig. 2. Exponential part of t?(n,m) vs. m/n for various values of y. 

i.e., m = an with a = O(1) bounded above (away from l/2) and below (away 
Then 

Thus, when the relative order m/n = a is fixed, tY( n, m) grows exponentially with 

n(h(2a) + 2a(l + log&)). 

from 0). 

(2) 

Fig. 2 shows how this exponent varies with m/n for y = 1 (all base-pairs match), for 
y = l/4 (uniformly distributed RNA sequences), and for y = l/16. Note that when 
y < l/4, for large relative orders the exponent is negative, hence the expected number 
of structures decreases with n. We now determine the order having the maximal 
expected number of structures. We first do so informally, concentrating only on the 
exponent, then perform a precise calculation. 

Differentiation shows that for any y, 

max (h(x) + xy) = y + log(1 + 2-7, 
O<x<l 

and that this value is achieved when x takes a value x* = l/(1 + 2-“). It follows that 

max {h(x) + (1 + log&)x} = log(1 + 2J;) 
O<x<l 

(3) 

and that this value is achieved when x takes the value x* = l/(1 + l/2&). 
Hence, the exponent of tY( n, m), given in (2), is maximized when m attains the value 

n/(2 + l/A), and the exponent then is nlog( 1 + 2&). The preceding derivation 
however ignored the nonexponential part of t,(n, m). This, however, can affect the 
location of the maximum of t,(n, m) by at most a constant. Thus, t,(n, m) is maximized 
when m attains a value 

m* = n 

2+1/& 
+ O(l), 
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and 

logt,(n,m*) - nlog(1 + 2Jj) (n + c-o). 

In order to determine the O(1) term in m*, let 

R(m) d2f t,(n,m + 1) = (n - 2m - I)@ - 2m) y 

444 ml (m+l)(m+2) 

be the ratio between successive values of tr( n, m) for m E (0, . . . ,Ln/2] - 1). It is simple 
to see that R(m) decreases with m, hence tY( n, m) is unimodal, achieving its maximum 
value at the first integer m* satisfying R(m*) < 1. 

Let 

R(xl d&f (n - 2x - l)(n - 24 

(x+1)(x+2) y 

interpolate R(m). Solving for R(x*) = 1, we have 

(4y - 1) (x*)2 - (4yn - 2y + 3)x* + (yn2 - yn - 2) = 0. 

Suppose y # l/4. Then 

x* = 4yn - 2y + 3 + J4yn2 + 20yn + 4y2 + 2Oy + 1 
8y - 2 

= 4yn-2y+3+2J;n(l+5/2n)+0 f 

8y - 2 0 n ’ 

The + solution falls outside the range (0, . . . ,Ln/2 J} (both for y < l/4 and for 
y > l/4), hence 

n + 2.5 

=2+1/J; 
- 1.5 + 0 1 

0 n ’ 

in accord with the heuristic calculation in (4). (It is easy to verify that this also 
subsumes the case y = l/4.) We therefore have: 

Theorem 1. The expected number t,(n,m) of depth-l, order-m, loop length 12 1 
structures on { 1, . . . , n} that are valid for a random sequence with match probability y is 
maximized when m attains the value 

m* = n + 2.5 

2+%./5 
- 1.5 + 0 ; 

01 

, 

and its value then is 

t,(n,m*) = &(I + 2&+5’2 (1+0(i))- 
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3. Structures of depth 1 

Now consider ty(n), the expected number of depth-l structures of arbitrary order 
and loop length on { 1, . . . , n > that are valid for a random sequence selected according 
to a probability distribution with match probability y. Using results derived in the last 
section, we express ty(n) as a simple sum and determine its value when y = l/4. We 
employ generating functions to evaluate t&n) for y # l/4. 

Using Assertion 1 we have 

L”P1 1 LnPJ 
t?(n) = 1 t,(n,m) = - I( n+l 

m=O n+l,=, m,m+l,n-2m > 
Yrn. (5) 

In the special case where y = l/4, which corresponds to uniformly distributed RNA 
sequences, we can determine t?(n) exactly. 

1 LnPl 
t1,4(n) = - c( n+l 1 I?3 

n+ l,=, m,m+ l,n-2m 4 )( ) 

2-n LnPj 

I( 

n+l 

n + 1 m=O m,m+l,n-2m > 

2n-2m. 

To calculate the sum, consider the set of ( 2nc 2 ) binary sequences of length 2n + 2, 
consisting of n zeros and n + 2 ones. The parsing of such a sequence into n + 1 pairs of 
consecutive bits contains m both-zero-pairs, m + 1 both-one-pairs, and n - 2m 
mixed-pairs, where 0 < m <[n/21. For example, the lo-bit (n = 4) sequence 
0111100011 is parsed into 01,11,10,00,11, hence contains one both-zero-pair, two 
both-one-pairs, and two mixed-pairs. The number of sequences yielding a given m is 

( m.m::,~-2mP”-2”. 

Therefore, 

Lni21 

m=O m,m-Lt~-2m)2nV2m=(2n:2)’ c( 

implying that 

With Cn+l denoting the (n + 1)th Catalan number, we hence have the following 
particularly simple expression for tIi4(n). 

Assertion 2. For any sequence of length n, when the match probability y = l/4, we have 

tIi4(n) = 2-” C,, 1. (6) 
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For y # l/4, we could use the results of the last section only to obtain a crude 
estimate. Bounding the right-hand side of (5), we obtain 

t,(n)GJ(:+ 1) mm’20 c ( 

n+l 

m+;n’~n+l 

m,m’,n+l-m-m’ > 
Y (rP)(m+m’) 

= &(j + &1 + 2JG)“+1, 

where the last equality follows from the multinomial theorem. 
On the other hand, Theorem 1 implies that 

ty(n) > t,(n, m*) = &(’ +&h) n+s/2(1+ o(k)). 
The two bounds differ by a factor proportional to n. To eliminate this discrepancy, we 
use generating functions. 

We begin by setting up the base for a recurrence: 

t?(n) = 
i 

0 if n < 0, 

1 if n = 0 or n = 1. 

The extension of the domain of ty(n) to the negative integers accords later notational 
simplicity; when n is 0 or 1, only the empty structure is permissible, hence 
t,(O) = t,(l) = 1. We can now set up the recurrence 

n-l 

t?(n) = t&n - 1) + y C t,(i - l)t,(n - i - 1) (n 2 2). 
i=l 

The first summand represents the expected number of structures when no match 
contains 1, and the ith term in the second summand represents the expected number of 
structures when 1 is matched to i + 1, and relies on the fact that, as the structure has 
depth 1, this match partitions such a structure into two independent structures, one on 
(2, . . . ,i>, the other on (i + 2,... ,n}, hence the expectation of the product is the 
product of the expectations. 

Let 

H(s) = 1 t,(n)9 
n 

be the generating function of { ty(n)}. Then 

y&Y(s)2 + (s - l)H(s) + 1 = 0. 

Trivial case 0: y = 0 - no matches can be made. We then have 

(7) 

H(s) = & = 1 +s+s2+ . ..) 
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implying 

t”(n) = 1. 

Without loss of generality now assume y # 0. Then 

H,(s) = 
1 - s f J(l - s)2 - 4ys2 

2ys2 

= 1 - s + [l - (1 + 2~)s]“z[1 - (1 - 2&)s]“2 

2ys2 

Case 1: y = l/4. As mentioned earlier, this corresponds to uniformly distributed 
RNA sequences. The boundary conditions eliminate H+(s), leaving 

H_(s) = $1 - s - (1 - 2s)“2] 

31 -s-j;0(‘~)(-2s)‘] 

= nF,( _ 1)n-1 V2 
( 1 n+2 

2”+3s” 

Using the identity 

(I:‘) =(,;;:;‘(;:;), 

we have 

t1,Jn) = ( - 1),-l n1f2 2”+3 = 
( > 

1 2n + 2 

( > 
(n + 2)2” n + 1 = 2-“G+r, 

in agreement with (6). 

Case 2: 1;# {0,1/4 >, Let c( dAf 1 + 2,,/5 and /? dLf 1 - 2&. We have 

(1 - as)“2(1 - j?sy = c 1 ( - 1y+j 
i>Oj>O 

('r')(y)$pj,i+j 

= Zo['- 1,h~o(1~2)(h1/2i)njBL-j]s" 

Then 

‘kf ,Fo dhsh. 
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and 

dl= -(l~)(li2)oo~~_(l~)(l~)~lpo~ -F$LL -1. 

Again, the boundary conditions eliminate H+ (s) leaving 

H_(s) = 
1 _S_Ch>OdhSh 

2ys2 
= -h;2$= -n;o+sn. (9) 

Equating corresponding coefficients in expressions (7) and (9), we have the following: 

Assertion 3. For any match probability y E (0, l] and sequence length n, 

t 
Y 

(n) = ( - 1)n-l n+2 
2Y 

z. (‘i’)(. +y_ i)u + %hYl - 2JYi+2. 

Note that the expression for ty(n) also subsumes the case y = l/4. Now write ty(n) in 
the form 

t?(n) = co + cl + ... + c.+~, 

where 

c, d&f( - l)n-l l/2 

, 2y ( i )(n;g(l +2Jh -2&J)“-‘+2. 

Define 

*=1+2& 
l-2&’ 

By simple algebra, 

%=,A, (1 + 3/(2n - 2i + 1)) 

(1 + 3/(2i - 1)) * 

It is hence clear that 1 Ci + I //I AC,1 monotonically increases with i. As 1 A 1 > 1, it follows 
that for some integer io, the sequence { 1 cil} decreases monotonically for 0 < i c i. 
and increases monotonically for i. < i < n + 2 (i. can be 0, as when InI > 4). Note, 
however, that as In I > 1, it suffices for I Ci+ 1 I > lcil that I Al/(2n - 2i + 1) > 1/(2i - l), 
or i > (2n + IAl + 1)/2(1/11 + 1). Hence, 

2n+Inl+l n 

i” G 2(lLll+ 1) 3’ 

Henceforth in this section, let log = log,,, . Then, 

Icol= $ n1f2 (1 -,A).+2 = O(l1 -2JjI”) 
I( > 
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is exponentially subdominant with respect to 

IC n+2-logn 
, _ (1 + &/5)“*2-10gnIl - 2JPgn = a(, 1 + 2J ,“) 

8ym3’2 (log n)3’2 

Therefore all terms co, . . . , c,+ 1 _ log ,, are dominated by (c,+ 2 _ log ,, I. 

Write 

nf2 n+ 1-logn n-+2 

ty(n) = C Ci = C Ci + C ci d~ffc(l) + C(Z)_ 

i=O i=O i=n+z-logn 

Then 

IpI Q nlcn+z-lognl = 0 ( n 
(1 + 2qm4-‘““” = o 

n312 (log n)3/2 1 ( (1 + 2J5;)” 
n3f2 (log nj3j2 ) 

and 

= (1 + 2J3+2 
+,$/Zn3/2 (l -;yi'(l + '(F))(' + O((lug&))' 

Also 

(1 _.;)“‘=(I _ :3y2=(1~~~~‘2=(l+2~)l,2~ 
Thus, 

We have therefore shown: 

Theorem 2. For any match probability y E (0, 13, 

t (n) = (1 + 2JG)“+3’2 
V &,W7cWnW (’ + ’ ((lo&)) 
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(this includes the case y = l/4 where (6) gives better error terms). In particular&or y = 1, 

h(n) = 

3” + 3/2 

2n”‘n’/2(l + O((log&)) 

is the number of structures on { 1, . . . , n}. 

Stein and Waterman directly estimated tl(n), the maximum number of depth-l 
structures on { 1, . . . , n], using a “folk theorem” in combinatorics. 

From Theorems 1 and 2 we can now argue that a typical depth-l, arbitrary loop 
length 12 1 structure has order 

n 

2+1/& 
(1 + o(1)). 

In particular, if y = 1 the typical depth-l, 1 2 1 structure has roughly n/3 matching 
base-pairs, while for uniformly distributed RNA sequences (y = l/4) the typical 
depth-l, I B 1 structure has roughly n/4 matching base-pairs. 

4. Structures of depth Q d 

For structures of depth d larger than 1, we can imagine that each structure pair is 
colored with one of d given colors so that no two pairs of the same color intersect. Let 
m “zf(mI , . . . , md) and define t;“(n,m) to be the expected number of depth < d, 
arbitrary loop length 1 2 1 structures on { 1, . . . , n} that are: (1) valid for a random 

sequence selected according to a probability distribution with match probability y; 
and (2) for 1 < i < d have mi (nonintersecting) pairs colored with the ith color. 
Throughout this section we assume that d is fixed. Define 

d 

m d2f C mi 

i=l 

to be the total number of matches, i.e., the order of the structure. Arguments similar to 
those used in Section 2 yield 

$‘(n,m) = 
2m,,...,2:,,n-2m)(~~(~i))ym’ 

We hence have the following: 

Assertion 4. Let m = (m, , . . . , ma) where the mi are integers summing to m. Then 
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To maximize t$l(n,m) and determine the value m* of m that attains it, we first 
approximate $‘(n,m) for M,‘S which are proportional to m. In consonance with 
earlier usage, for each i scx m, = Uin, and let m = an. (Of course, a = Cf= 1 Qi.) Here, as 
before, a = O(1) is bounded above (away from l/2) and below (away from 0). Using 
Stirling’s approximation formula we get 

x 2nW4+2~(1 tlogJ;+h(ada. &,qJ”(l + o(;)). 

For any given large m, this expression is maximized when each mi is m/d, i.e., when 
ai = a/d. For large n, these values can be well approximated by actual rnts 

t$‘(n,m*) = 
dzd 

(2x)d(an)zdJTZiL 
~(~~~a)+Za(l+lo~~+lo~d)) 

According to (3), the exponent on the right-hand side is maximized when a = m/n 
takes the value 

a* = 1 

2 + IId&’ 

As argued earlier, the nonexponential part can affect the estimate of m* only by 
a constant, we hence have: 

Theorem 3. For any match probability y E (0, 11, fixed depth d, and fixed sequence 
length n, t$‘(n,m) is maximized when m attains the value 

m* = n 

42 + WJ;) 
+W) O,...,l), 

> 

and its value then is 

This estimate can be used to bound t;,‘(n), the expected number of depth-d 
structures on { 1, . . . , n} valid for a sequence chosen according to a probability 
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distribution with match probability y. On the one hand, 

t$‘(n) > t$‘(n,m*) = 
1 

(2rcy)d nZd 
(1 + 2dJ++Zd+1’2 

(1+0(i)). 

On the other hand, 

$7’(n) = C 
ml . . . . . ,,,d (~~)(m~,m,,...,m*,~d,n -2~fzlmi)yzd.‘mi 

1 

=n!=,(n + i) 

X 

= ( n+d 

ml ,..., md ml,ml + I,..., mdPmd+1,n+d-2~id,1mi > 
,,X:, I& 

xmi C n/2 

1 
< 

yd12n4=, (n + i) 

X c ( n+d 

mt,m;,.*. ,md,m&,n+d-zid,1(mi+mf) 
WE;=, wi+m;) 

rnl,rni ,.... m*,m’d 
C(mi+ml)cn 

(1 + 2d&)n+d 
=rd12flf=l(n + i)’ 

where the last equality follows from the multinomial theorem. 
We have therefore shown: 

Theorem 4. For any match probability y E (O,l], and sequence length n, the total 
number of structures of depth < d is bounded by 

In particular, log t;*‘(n) - n log( 1 + 2d&) as n -P co . 

Thus, the typical depth < d, loop length > 1 structure has 

n 

d(2 + l/d&) 
(1 + o(l)) 

matching base-pairs in each of d colors. In particular, when d = 2 and y = 1 the 
typical structure has approximately n/5 matching base-pairs in each of two colors; for 
uniformly distributed RNA sequences (y = l/4) with d = 2 a typical structure has 
approximately n/6 matching base-pairs in each of two colors. 
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5. Structures of depth 1, order m, and loop length 2 1 

We now turn our attention to ti”(n, m), the expected number of depth-l, order-m 
structures on { 1, . . . , n} with loop length B 1. A generating functionological’ ap- 
proach is indicated. 

We begin by setting up the boundary conditions for a recurrence. We have 

t;“(n,m) 

i 

0 for (m -C 0) or (m = 0 and n < 0) or (m > 0 and n < 2m + I - l), = 

1 for (m = 0 and n 3 0). 

Arguments similar to those before show that for all m > 1 and n 3 2m + 1 - 1 we 
have the recurrence: 

t,“‘(n,m) = t:*‘(n - l,m) 

n-1 min(m- l,LCi-l)/ZJ) 

WC c ti,l(i - l,j)tts’(n - 1 - i,m - 1 -j). 
i=l j=max(O,m- 1 -L(n-i-WZJ) 

The boundary conditions allow us to extend the summation over j to range from 
- 03 to + 00 as one or the other term in the product is identically zero outside the 

range indicated above. Similarly, the upper limit on the sum over i can be extended to 
+ co. Therefore, 

tivL(n,m) = ti”(n - 1,m) + y C Cti,‘(i - 1, j)t:,‘(n - 1 - i,m - 1 -j) 
i>l j 

= ti”(n - 1,m) + y 2 Ct:“(i,j)t:*‘(n - 2 - i, m - 1 -j) 
itl-l j 

= t:“(n - 1,m) + yCCtis’(i,j)tt*‘(n - 2 - i,m - 1 -j) 
i j 

- yi<~_~~t:,‘(i,j)tt,~(n - 2 - i,m - 1 -j). 
. 

An examination of the boundary conditions shows that this recurrence applies 
whenever - cc < m < CC and n # 0. A final application of the boundary conditions 

hence yields 

t:*‘(n,m) = t:*‘(n - 1,m) + yCCt:*‘(i,j)t{*‘(n - 2 - i,m - 1 -j) 
i j 

1-2 

- y C ti”(n - 2 - i,m - 1) (n # 0; - cc < m < co). 
i=O 

Define the ordinary bivariate generating function: 

H(z,w) ~f~7t~~‘(n,m)i?wm. 
n m 

(10) 

’ Coined by H. Wilf. 
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Multiplying both sides of the above recurrence by z”wm and summing over the allowed 
ranges of n and m yields 

l-2 

H(z, w) - c tyco, m w’” = zH(z, w) + yz’wH(z, w)’ - ywz’H(z, w) C zi. 1 

m i=O 

Thus H is obtained as a root of the quadratic 

f-2 

ywz’H(z, w)’ - 1 - z + ywz2 1 zi H(z, w) + 1 = 0. 
i=O > 

Define 

1 
P(z~w)=l -z++wz2~f=;zi 

l-z 

=1-22+(1 +yw)z2-ywzl+i’ (11) 

Then 

H(z, w) 
ywz’H(z, w)’ - ___ 

P(z 3 w) + l= O. 

The boundary conditions specify which root of the quadratic is permissible. We hence 

have 

H(z, w) = 
1 

2ywzZP( z, w) 
1 - Jl - 4ywz2P(z, w)2 1 . (12) 

The above expression for the generating function H is nice and compact, and for 
general values of 1 this may be all we can hope for. For special values of 1, however, we 
can go further. Before we proceed, let us detour through a hypergeometric identity. 

Lemma 1. Let a be any real number, m a positive integer, and c any real number which is 
not zero or a negative integer. Then 

F 2 1 

=(c+m-a-l)?. 

(c + m - 1)” 

Proof. Let us begin with the familiar convolution identity (“Vandermonde’s convolu- 
tion”) 

valid for any real r and s and integer m. (It is easy to verify equality above by 
multiplying both sides by xm and summing over all m to obtain the same generating 
function (1 + x)r+’ for both sides.) Anticipating later algebraic simplification, let 
a = - r and c = s - m + 1, and write the sum on the left-hand side as 
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We then have 

and for h > 0, we have the term ratios 

sh+l (h;~)Gz~: ) (h+a)(h-m) 1 

sh 
= (;“)(c’,“-t’) = 

@ + 4 (h+ (13) 

The term ratios sh+ 1/s,, are hence rational functions of h; it follows that S can be 
expressed in terms of a hypergeometric series (cf. [ 11, for instance). It is easy to verify 
that for a general hypergeometric series 

we have f0 = 1, while the term ratios fh+ l/fh satisfy 

ff- h+l _(h+a,P(h+4 z 
fh (h + b,) ... (h + b,) (h’ (14) 

i.e., the term ratios fh+ l/fh are ratiOna functions Of h. COIYIparing (13) with the 
standard form (14), we hence obtain 

S=s,,,F, (a~~"~l)=(c+~-l)lFl(u~i_mll). 

But, by Vandermonde’s convolution, 

S= 
( 

c+m-u-l 

m 1. 

Equating the two forms for S gives the desired result. 0 

Extend the definition of Catalan numbers, given in (l), to all integers h by 

c, = 
i 

0 if h < 0, 

A(",") if h > 0. 

For general X, we then have the familiar identity 

- 1)h22h~hj = ;C,,Xhtl, 

where we have again invoked (8). Substituting in (12) we obtain 

H(z, w) = c C&WhZ2hP(Z, W)2h+ ‘. 
h 
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Case 1: I = 1 - structures with no loop constraints. In (ll), P(z, w) = l/(1 - z). It 
follows therefore that 

P(z, w)’ = (1 - 2))’ = 1 i (y’)(-+$+;-‘)zi. 

Substituting in (15), we now have 

H(z,w) = CCC, 
h i 

where the second equation follows with the substitutions n t 2h + i and m t h. 

Comparing term by term with (10) we have 

in accordance with the results of the direct argument leading to Assertion 1. Now 

t!,‘(n) = 2 t;“(n,m) = 1 
ma0 .,,(& 2J& 

is the total number of depth-l structures on { 1, . . . , n}. (See Assertion 3 for an 
alternative form.) Writing 

$‘(n) dzf 1 s, 
m>O 

it is easy to see that the sum is a hypergeometric series. Indeed, so = 1, and for m > 0 
the term ratios 

s,+i (m - $n + f)(m - in) 4y -= 
s, (m +2) (m + 1) 

are rational functions of m. The following assertion now follows by comparison with 
the standard form (14) for the term ratios. 

Assertion 5. For any match probability y and sequence length n, 

t;,~(n) = 2F, ( - 3n :iy - fn 4y I > . 

Note that for n > 1 - the cases n = 0 and n = 1 are trivial - either - n/2 or 
- (n - 1)/2 is a negative integer. Thus, when y = l/4, Lemma 1 applies and the above 

hypergeometric series yields the simple closed form of Assertion 2. For general values 
of y, however, the hypergeometric does not yield a simple closed form. 

Case 2: 1= 2 - structures where adjacent elements cannot be matched. That is, any 
nested set of matched parentheses must have at least one unmatched node in the 
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center: 

(((a .)))((.)) etc. 

From (11) we have 

P(z, w)’ = (1 - z + ywz2)_l 

= ?( > -j r ( - l)‘z’(l - ywz)’ 

= j?T( _ l)i+_i -’ i #,i+j,j, 
( )O i J 

Subtituting in (15) gives 

H(z,w) = CCC( - qi+jch 
h ij 

(~2~~1)(~)yh+jz2h+i+jwh+j 

=T;T'-""-'"ch (;_2;:;)(n ---; h)7"z"w", (16) 

where the second equation obtains from the successive replacements m +- h + j and 
n c m + h + i. Using the simple identity 

we can now compare (10) and (16) to obtain 

t;‘2(n,m) = c ( - l)m-h 
ha0 

= ,;,t - l)m-h 

( 

n-mfh 

> 

Y” 

, h,h,m-h,n-2m h+l’ (17) 

The multinomial coefficients in the summand will be nonzero only when the following 
conditions hold simultaneously: 0 < h < m < n/2. In particular, t:*“( n, m) = 0 when 
m < 0 or n < 2m, as required by the boundary conditions. The case n = 2m is of 
interest as the boundary conditions require 

t:fT2(2m,m) = 
i 

1 if m = 0, 

0 if m # 0. 

For notational expedience, define 

pm = t:p2(2m,m) = y* C ( - l)m-h 
ha0 (h,;:! ,)A- 

The following lemma shows that the boundary conditions are indeed satisfied. 
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Lemma 2. 

Proof. The case m < 0 is obvious as m - h -c 0 (h 2 0). It suffices hence to show 
/I,,, = 0 (m > 0). Consider the generating function B(x) = Cm&,,xm. Substituting for 

B m, we have 

B(x) = c ( - 1)h 
2h 1 

ha0 0 
h h+l;,(-‘1” 

= ,F,(;)i%;o(;hj - xy’ 

the first equation following by replacing the multinomial by a product of binomials, 
and the second equation resulting from the substitution r t m + h. Recalling the 
simple identities 

t 

(1 -yYY+l =rBO z() i y* (integer t > 0) 

and 

we now have 

B(x)=&);o(2hh)&[&] 
1 (1 +x)’ =---(l-Jyg) 

(1 + x) 2x 

2!&2(, -!I?) 

= 1. 

The claim is proved. 0 

To complete verification of the boundary conditions, consider 

ty(n,o) = 5 (- l)m-h 
n-m+h Yrn 

h=O h,h,m - h,n - 2m )-I h + 1 ,,,=o 

= 0 n n = i 0 1 for for n n 2 < 0, 0, 

as was to be verified. 
Finally, consider n 2 1, m 2 1. Eq. (17) admits of further simplification. 
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Assertion 6. For any match probability y, 

I:,‘(n,m)=~(~~‘;)(“,“T’)1- (nZl;mZl). 

175 

(18) 

Proof. Write R = ti*‘(n, m) for simplicity. Using (17), set 

R = 1 ( - l)m-h 
n-m+h 

ha0 h,h,m-h,n-2m 

Assume, without loss of generality, that 1 < m < n/2. Then 

ro = ( - 1)” ;r,“, ( > ym 

is nonzero; further, for h >, 0, 

rh+l (h + n - m + l)(h - m) 1 
-= 

rh (h + 2) (h + 1)’ 

so that the term ratios are rational functions of h. Comparing with the standard form 
(14), it follows that 

R=ro2F1 
n-m+l,-m 

2 I) 
1 . 

Using Lemma 1 and the expression for ro, we finally obtain 

R = ( - 1)” 
( - n + 2m)” ym 

(m + l)m 

(n - m)! (n - 2m)” 

=(n-2m)!m! (m+l)! ’ 

m 

(n - m)! (n - m - l)! 

= m!(n - 2m)! (m + l)! (n - 2m - l)! ym. 

Simple algebraic manipulations complete the proof. 0 

Schmidtt and Waterman [2] have also recently demonstrated Assertion 6 (for 
y = 1). Their approach, in sharp contradistinction to the straightforward combina- 
torial attack on the generating function espoused here, involves an ingenious, nonin- 
tuitive transformation of the problem to a combinatorial problem on linear trees for 
which there is a known solution. 

For fixed n, we can now find the value of m for which ti*‘( n, m) is maximized. As for 
the depth-l, arbitrary loop length 12 1 case, the maximum will occur when m is 
proportional to n. Accordingly, suppose m = an where a = O(1). Stirling’s approxi- 
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mation applied to (18) then gives 

By differentiation, the exponent 

0(a) = 2n(h(2a) - h(a) + a(2 + lo&./$)) 

achieves its maximum when a attains a unique value a* in the range [0,0.2764) 
given by 

Simple algebra shows then that the exponent maximum is given by 

(1 - a*) 
e(a*) = 2nlog(l _ 2a*) = 2n( - 1 + log(1 + Jr&)). 

This argument has neglected the nonexponential part of tlY2(n, m). As before, this can 
affect the location of the maximum by at most a constant term. Thus, we have shown: 

Theorem 5. The expected number t:72(n,m) of depth-l, order-m, loop length 12 2 
structures on { 1, . . . , n > that are valid for a random sequence with match probability y is 
maximized when m attains a value 

and its value then is 

t:‘2(n,m*) = (1+4&d 1 

n(l+2J-JG7$7 ( 

l+JlFJ 
)2”(1+ o(i)). 

An interpolative approach similar to that for the case 1 = 1 can be used to 
determine the O(1) term in m*. This will require determining the roots of a fourth- 
degree polynomial. 

When y = 1 we have the interesting result 

t:v2(n,m*) = 5 J+$(l +o(t>)+J, 
7c(3 - Js, n 

where C$ = (1 + a)/2 z 1.618 is the golden ratio. 
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As for the depth-l, arbitrary loop length 1 >, 1 case, we can represent 
t;‘2(n) = c ,,, a 0 t:,“( n, m) as a simple hypergeometric. Using Assertion 5, write 

The term ratios 

qm+l (m-+n+l)(m-+n+;)(m-;n+t)(m-tn) 16~ 
-= 

%I (m + 2)(m - n + l)(m - n) (m + 1) 

are rational functions of m and q. = 1. Comparing with the standard form (14), we 
have hence shown the following identity. 

Assertion 7. For any match probability y and sequence length n, 

tiv2(n) = 4Fg 
-+n+l, -in++,-in++, 

2,-n+l,-n 

While simple closed forms do not exist for t:*2(n) for general values of y, an 
application of Theorem 5 shows that 

log tj!p2(n) - 2nlog 
( 

l+ (n-m) 
2 ) 

and, in particular, 

logtiv2(n) - 2nlog4 (n + co). 

Theorem 5 also implies that a typical depth-l, loop length 3 2 structure has order 

; l- 
( 

1 

J-7) 
(1 + o(1)). 

1+4 y 

In particular, for y = 1 a typical (d = 1; 12 2) structure has approximately 0.276n 
matching base-pairs, while for uniformly distributed RNA sequences (y = l/4) a typi- 
cal (d = 1; 12 2) structure has approximately 0.211n matching base-pairs. 

Case 3: 12 3 - structures with matching pairs separated by at least two elements. In 
this case (11) gives 
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Thus, 

H(z,w) = c ( - l)‘+kCg 
g.h,iJ,k (2gh+h)(r)(;) 

x i+j-1 

( > j 
Y 

g+iWg+iZ2g+h+i+j+k(I-1) 

Substituting n + 2g + h + i + j + k( 1 - l), m c g + i in turn, we obtain 

t:J(n,m) = y” C ( - l)“-“+kL 2g + h 

g,h,k km-g-k,h-m+g,g,g > 

x n-2g-h-kl-1 

( > m-g-l ’ 

It does not seem likely that the expression above can be further simplified to obtain 
a simple closed form for general values of 1; for such cases we have to be satisfied with 
the compact form (12) for the generating function. 
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