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A self-affine tile in Rn is a set T of positive measure with A(T )=� d # D (T+d),
where A is an expanding n_n real matrix with |det(A)|=m an integer, and
D=[d, d2 , ..., dm]�Rn is a set of m digits. It is known that self-affine tiles always
give tilings of Rn by translation. This paper extends known characterizations of
digit sets D yielding self-affine tiles. It proves several results about the structure of
tilings of Rn possible using such tiles, and gives examples showing the possible rela-
tions between self-replicating tilings and general tilings, which clarify results of
Kenyon on self-replicating tilings. � 1996 Academic Press, Inc.

1. Introduction

A self-affine tile is a compact set T in Rn of positive Lebesgue measure
for which there is an expanding matrix A such that the affinely inflated
copy A(T ) of T can be perfectly tiled with essentially disjoint translates of
T. Here an n_n real matrix A is expanding if all of its eigenvalues satisfy
|*i |>1. In other words T satisfies a set-valued functional equation

A(T )= .
m

i=1

(T+di), (1.1)

in which D=[d1 , d2 , ..., dm] is a set of vectors in Rn, which we call a digit
set, and ``essentially disjoint'' means that the measure of (T+di) & (T+dj)
is zero when i{ j. A necessary condition for the set T to have positive
measure together with the ``essentially disjoint'' property is that |det(A)|=
|D|=m.
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More generally, for any expanding matrix A, and any finite set D in Rn

the functional equation (1.1) determines a unique compact set T, given by

T :={ :
�

j=1

A&jd ij : each dij # D=. (1.2)

Uniqueness does not hold in the converse direction. In fact, any self-affine
tile T arises from infinitely many different pairs (A� ,D� ).

Self-affine tiles arise in many contexts, including radix expansions ([12],
[26], [27], [38]), the construction of multidimensional wavelet bases
having compact support ([8], [14], [15], [35], [36]), and the construc-
tion of Markov partitions ([5], [28]). They also have been studied directly
as objects giving interesting tilings of Rn ([1], [2], [9], [10], [11],
[16], [19], [37]). Kenyon [19] gives general results on self-affine tiles, in
a study of self-replicating tilings (defined in 9 2). Many authors have con-
sidered self-affine properties for sets of tiles of several different shapes, for
the construction of sets of tiles which only tile Rn aperiodically, see
Gru� nbaum and Shepard [16] and Kenyon [19] for references. A self-
similar tile is a special kind of self-affine tile for which the matrix A is a
similarity, i.e., A=*Q where *>1 and Q is an orthogonal matrix. Self-
similar tiles are somewhat easier to analyze than general self-affine tiles,
and a number of results have been proved specific to them, see [33], [34],
[36].

This paper presents three theorems about the existence, structure and
tiling properties of general self-affine tiles. The first theorem gives conditions
characterizing when a pair (A, D) gives a self-affine tile, generalizing
known conditions, and also asserts that such tiles are set-theoretically
rather nice objects. The second theorem reproves the well-known fact that
every self-affine tile T(A, D) gives a tiling of Rn by translation, and adds
the extra information that there is a tiling whose translations form a subset
of a set 2(A, D) defined in 9 2. It also shows that every self-affine tile T can
be used as a prototile for a self-replicating tiling of Rn in the sense of
Kenyon [19]. The third theorem adds a converse to Kenyon's rigidity
theorem concerning quasiperiodic self-replicating tilings. The theorems are
stated in 9 2 and proved in 9 3. We also present several examples indicating
limits of the results. The examples are stated in 9 2 and proofs of their
properties are given in 9 4.

Our results sharpen and complement some of the fundamental results of
Kenyon [19] and Vince [38]. Our focus differs from Kenyon's in that we
treat the self-affine tile T=T(A, D) as the fundamental object, and study
all possible tilings by T, while Kenyon is concerned only with self-replicat-
ing tilings. Vince [38] studies the related question of when a tile T(A, D)
has a self-replicating tiling that is a lattice tiling. It turns out that self-affine
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tiles give many different tilings of Rn, including some that are not self-
replicating tilings. In particular we show that there are self-affine tiles that
have no self-replicating tiling that is a periodic tiling, but which have a
non-self-replicating tiling that is a lattice tiling, see Example 2.3. This
example shows that Theorem 12 of Kenyon [19] is not correct.

There remain many open questions about tilings with self-affine tiles. We
state several of these in 9 5. An interesting problem no addressed here con-
cerns when a self-affine tile is connected or is a topological disk. Work on
these questions appears in Bandt and Gelbrich [2] and Gro� chenig and
Haas [14].

We thank K.-H. Gro� chenig and Andy Haas for discussions concerning
Kenyon [19] and to R. Kenyon, D. Lind, B. Praggastis and C. Radin for
helpful comments. K.-H. Gro� chenig also supplied Figures 2.1, 4.1 and 4.3.

2. Statements of Results

The set-valued functional equation (1.1) for a self-affine tile has an equiv-
alent form

T= .
m

i=1

A&1(T+d i). (2.1)

This equation makes sense more generally for any expanding matrix
A # Mn(R), not necessarily having an integer determinant, and for any
finite set D=(d1 , ..., dl] in Rn. The maps

,i (x)=A&1(x+d i), 1�i�l,

are all contractions in an appropriate metric on the space of all compact
subsets of Rn, as shown in 9 3. Results of Hutchinson [17] then imply that
there is a unique compact set T(A, D) satisfying (2.1). The collection
[,i : 1�i�l] form a hyperbolic affine iterated function system in the ter-
minology of Barnsley [3], and T(A, D) is its attractor. The attractor is
explicitly given by

T(A, D)={ :
�

j=1

A&jdij : all d ij # D=. (2.2)

However only for special data (A, D) will T(A, D) have positive Lebesgue
measure.

In what follows we restrict to the case that A # Mn(R) with |det(A)|=m,
an integer greater than one, and to digit sets D=[d1 , d2 , ..., dm] containing
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exactly m digits. Furthermore in studying attractors T(A, D), we can
always reduce to the case that 0 # D, using the fact that

T(A, D+x)=T(A, D)+\ :
�

j=1

A&j+ x. (2.3)

That is, translating all the digits by x just translates the set T(A, D) by
(A-I)&1x.

The first theorem is a criterion for (A, D) to give a self-affine tile.
Associate to (A, D) the sets

DA , k={ :
k&1

j=0

A jd ij : all dij # D= (2.4)

DA , �= .
�

k=1

DA , k . (2.5)

Note that 0 # D implies DA , k�DA , k+1 for all k�1. We say that a set
/�Rn is uniformly discrete if there exists $>0 such that x, x$ # / implies
&x-x$&>$.

Theorem 1.1 (Interior Theorem). Let A # Mn(R) be an expanding
matrix such that |det(A)|=m is an integer and let D�Rn have cardinality
m, and suppose that 0 # D. The following four conditions are equivalent.

(i) T(A, D) has positive Lebesgue measure.

(ii) T(A, D) has nonempty interior.

(iii) T(A, D) is the closure of its interior T%, and its boundary
�T :=T&T% has Lebesgue measure zero.

(iv) For each k�1, all mk expansions in DA , k are distinct, and DA , �

is a uniformly discrete set.

The equivalence of (i) and (ii) is due to Kenyon [19], while the other
two equivalences are apparently new in this generality. Proving the equiv-
alence of (iv) to (i) uses an idea of Odlyzko [27, Lemma 9]. Con-
ditions (i), (ii) and (iii) are still equivalent when 0 � D, but (iv) is not.

As a complement to this result, there are self-affine tiles consisting of an
infinite number of disconnected pieces, even in one dimension. Figure 2.1
exhibits a two-dimensional example, similar to some pictured in Gro� chenig
and Madych [15].

The criterion (iv) of Theorem 1.1 yields the following corollary, recover-
ing results of Kenyon [19] and Bandt [1].
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Fig. 2.1. T(A, D) for A=[ 3 0
0 3] and D=[[ 0

0], [ 0
1], [ 0

2], [ 1
0], [ 1

1], [ 1
2], [ 2

0], [ 2
1], [ 5

5]].

Corollary 1.1. Suppose that A # Mn(Z) and that D�Zn with
|D|=|det(A)|=m. Then T(A, D) contains an open set if and only if DA , k

contains mk distinct elements for all k�1. This condition holds if D forms
a complete residue system of Zn�A(Zn).

The second theorem concerns tilings of Rn by self-affine tiles T(A, D).
What is the nature of the tilings of Rn obtainable using self-affine tiles? Let
S denote a set of translations such that T+S is a tiling of Rn. We say that
S is a lattice tiling if S is a lattice 4 in Rn. We say that S is a periodic
tiling if it is invariant under n linearly independent translations, i.e. S is a
union of finitely many cosets of a lattice 4, and it is non-periodic otherwise.
More generally, S is a j�n-periodic tiling if the lattice of translations leav-
ing S invariant is of rank j; in particular a 0-periodic tiling is called
aperiodic. We say that a tiling S is a quasiperiodic tiling, if the following
two conditions hold:

(i) Local Finiteness Property. For each integer k�1 and each
positive real r, there are only finitely many translation-inequivalent
arrangements of k points in S which are contained in some ball of radius r.

(ii) Local Isomorphism Property.1 For each ``patch'' 7k of k points
in S, there is a constant R=R(7k) such that inside every ball of radius R
in Rn the tiling S contains a translate 7k+t of 7k .

25SELF-AFFINE TILES IN Rn
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Note that lattice tilings are periodic tilings and periodic tilings are
quasiperiodic tilings.

A tiling T+S of Rn by a tile T is a self-replicating tiling (abbreviation:
SRT) with matrix B if B # Mn(R) is expanding, and for each s # S there is
a finite subset J(s)�S with

B(T+s)= .
s$ # J(s)

(T+s$). (2.6)

It follows that a self-replicating tiling is completely determined by the finite
set of tiles C0 in it that touch the origin 0, by repeated applications of (2.6).
We call a self-replicating tiling atomic if C0 consists of a single tile,
otherwise it is non-atomic. The concept of self-replicating tiling is due to
Kenyon [19], who proves that all the tiles in any self-replicating tiling are
necessarily self-affine tiles T(B, D) for some digit set D. Theorem 1.2 below
gives a converse, showing that every self-affine tile T(A, D) serves as a
prototile for some atomic self-replicating tiling, taking B=Ak, for some
sufficiently large k. There is no general inclusion relation between self-
replicating tilings and any of the other tiling concepts above, as indicated
by examples 2.1-2.3 below.

To state results on the existence of tilings, we need additional notation.
To any set / in Rn we associate the difference set

2(/) :=/&/=[x&x$ : x, x$ # /].

We now define the differenced radix expansion set

2(A, D) := .
�

k=1

2(DA , k)

= .
�

k=1

(DA , k&DA , k). (2.7)

It is clear that

2(A, D+y)=2(A, D), all y # Rn,

and if 0 # D then 2(A, D)=2(DA , �).

Theorem 1.2 (Tiling Theorem). Let A # Mn(R) be an expanding matrix
and D a digit set with |D|=|det(A)|, and suppose that T(A, D) contains an
open set. Then:

(i) There exists a set of translations S�2(A, D) such that
T(A, D)+S tiles Rn. Furthermore there is a translate S+x of one such
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tiling that is an atomic self-replicating tiling of Rn with matrix B=Ak for
some sufficiently large k�1.

(ii) If 2(A, D) is a lattice, then 2(A, D) is a tiling set for T(A, D).

Concerning (i), it seems plausible that any self-affine tile T(A, D) actually
admits a self-replicating tiling with matrix A. There are however examples
of such tiles having no atomic SRT with matrix A, cf. Example 2.2.

Concerning (ii), we note that the set 2 :=2(A, D) is always A-invariant
in the sense that A(2)�2. Consequently a necessary condition for 2(A, D)
to be a lattice is that the differenced digit set

2(D) :=D&D=DA , 1&DA , 1�2(A, D), (2.8)

be contained in an A-invariant lattice. We call T(A, D) a lattice self-affine
tile if 2(D) is contained in some A-invariant lattice. If so, let Z(A, D)
denote the smallest A-invariant lattice containing 2(D), which is

Z(A, D) :=Z[2(D), A(2(D)), A2(2(D)), ...]. (2.9)

It is clear that

2(A, D)�Z(A, D). (2.10)

It follows that 2(A, D) can be a lattice if and only if 2(A, D)=Z(A, D),
because 2(A, D) is A-invariant and contains 2(D). We have:

Corollary 1.2. A lattice self-affine tile T(A, D) has a lattice tiling of
Rn with the lattice Z(A, D) if and only if 2(A, D)=Z(A, D).

This corollary follows immediately from Theorem 1.2, for (ii) states that
if 2(A, D)=Z(A, D) then Z(A, D) is a tiling set, while if 2(A, D){
Z(A, D) then (i) and (2.10) produce a tiling S which is a strict subset
of Z(A, D).

The case that T(A, D) has a lattice tiling with Z(A, D) is exactly what
Vince [38] calls a replicating tesselation, and he calls (A, D) a rep-tiling
pair. He gives an algorithm which decides for a given pair (A, D) whether
or not 2(A, D)=Z(A, D) holds. Example 2.3 below gives a case where
2(A, D){Z(A, D).

We can reduce lattice self-affine tiles to a simpler form using the inver-
tible linear map L : Rn � Rn that maps the lattice Z(A, D) to Zn. In that
case set A� :=LAL&1 and D� =LDL&1. From (2.2) it is easy to see that

T(A� , D� )=L(T(A, D))L&1,

hence the measure and tiling properties of T(A, D) are recoverable from
T(A� ,D� ). In particular T(A� ,D� ) is a lattice self-affine tile with Z(A� ,D� )=Zn.

27SELF-AFFINE TILES IN Rn
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The only matrices A� having Zn as an A� -invariant lattice are integer
matrices, i.e. A # Mn(Z). We call a self-affine tile T(A, D) with A # Mn(Z)
and D�Zn an integral self-affine tile.

The difference set 2(A, D) is not always uniformly discrete, see Exam-
ple 2.1. However, for a lattice self-affine tile, the difference set 2(A, D) is
contained in the lattice Z(A, D), hence is uniformly discrete.

The third theorem concerns quasiperiodic self-replicating tilings. An
important result, due to Kenyon [19], stated below, is that if a self-affine
tile T(A, D) gives a quasiperiodic self-replicating tiling of Rn, then T(A, D)
must be a lattice self-affine tile. By the remarks above, the set of tilings of
Rn obtainable using T(A, D) are then structurally the same as those using
some integral self-affine tile T(A� , D� ).

Theorem 1.3 (Rigidity Theorem). (i) If the self-affine tile T(A, D)
gives a quasiperiodic self-replicating tiling of Rn for the expanding real
matrix A, then A is similar to an integer matrix and the set of vectors
[Ak(D&D) : k�0] generates a full rank A-invariant lattice 4 in Rn, and
T(A, D) is a lattice self-affine tile.

(ii) Conversely, if A is similar to an integer matrix and the digit set D
has |D|=|det(A)| and [Ak(D&D) : k�0] generates a full rank A-invariant
lattice, and if the Lebesgue measure +(T(A, D))>0, then T(A, D) tiles Rn

with a quasiperiodic self-replicating tiling with matrix Ak for some k�1,
which moreover is atomic.

The difficult part (i) of this theorem is due to Kenyon [19, Theorem 7].
We prove here only the easier converse result (ii). A good deal more can
be said about the tilings of Rn possible using integral self-affine tiles; in par-
ticular, a large subclass of them have lattice tilings, cf. Lagarias and Wang
[22], [23].

We give four examples that illustrate various possibilities for tilings and
self-replicating tilings with self-affine tiles, with proofs deferred to Sect. 4.
Examples 2.1 and 2.2 are essentially due to Kenyon [19], but we derive
stronger properties of these examples than Kenyon does. Recall that to
describe an SRT it suffices to specify the finite set of tiles C0 that touch 0,
since the tiling is then uniquely determined by repeated inflation of C0

using (2.6).

Example 2.1. For A=[ 3 0
0 3] and D=[[ &1

0], [ 0
0], [ 1

0], [ &1
1], [ 0

1], [ 1
1],

[ &1+=
&1 ], [ =

&1], [ 1+=
&1 ]] with == 1

4 - 2, the tile T(A, D) is a non-integral self-
affine tile in R2. Then 0 # T%, hence there is a self-replicating tiling with
matrix A, with C0=T. This tiling has the local isomorphism property but
not the local finiteness property, so it is not a quasiperiodic tiling. There is
also a lattice tiling of R2 using the tile T with lattice Z2, which however is
not an SRT. The set 2(DA , �) is not uniformly discrete.
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Example 2.2. For A=[ 2 0
0 2] and D=[[ 0

0], [ 0
1], [ 1

0], [ 1
1]], the tile

T(A, D) is the unit square, so is an integral self-affine tile in R2. There is
a (non-atomic) self-replicating tiling with matrix B=A2=[ 4 0

0 4] using the
tile T which is generated by the configuration C0=(T+[ &2�3

0 ]) _ (T+[&1�3
&1 ]).

This tiling has the local finiteness property but not the local isomorphism
property, so it is not a quasiperiodic tiling. There is also a lattice tiling of
R2 with lattice Z2, which is a (non-atomic) SRT with matrix A and with
C0=T _ (T+[ &1

0 ]) _ (T+[ 0
&1]) _ (T+[ &1

&1]). There are no atomic
SRT's for T having the inflation matrix A.

Example 2.3. For A=[ 2 1
0 2] and D=[[ 0

0], [ 3
0], [ 0

1], [ 3
1]], the tile

T(A, D) is an integral self-affine tile. All self-replicating tilings using this tile
have matrix B=Ak for some k�1, and all self-replicating tilings using T
are non-periodic tilings which are 1

2-periodic. However, there is also a lattice
tiling of R2 by T, using the lattice 3Z�Z.

Example 2.4. For A=[4] and D=[0, 1, 8, 9], the tile T(A, D) is
[0, 1] _ [2, 3], so is an integral self-affine tile in R. There is a periodic til-
ing of R using T with period lattice 4Z, but there is no lattice tiling of R
using T.

We prove the properties stated above for the first three of these examples
in 94, and a proof for example 2.4 appears in Lagarias and Wang [22]. In
example 2.3 the digit set D forms a complete set of coset representatives of
Z2�A(Z2), and D is not contained in any A-invariant proper sublattice of
Zn, therefore Theorem 12 of Kenyon [19] is not correct.

3. Proofs of Main Results

In the remainder of this paper +(T ) denotes the Lebesgue measure of the
set T, and &x& denotes the Euclidean norm of a vector x.

Before beginning the proofs, we recall facts concerning the existence of
the attractor T=T(A, D). We first construct a metric on Rn with respect
to which all the maps

,i (x)=A&1(x+d i), 1�i�m, (3.1)

are strict contractions, following Lind [25]. Since A is expanding, we may
choose a constant \ with

1<\<min |*i |,

29SELF-AFFINE TILES IN Rn
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where [*i] denote the eigenvalues of A. We define

&x&$= :
�

k=0

\k &A&kx&. (3.2)

Since the eigenvalues of \A&1 are strictly smaller than 1, this series con-
verges and defines a norm & }&$ on Rn, and it satisfies

&A&1x&$=\&1 :
�

k=1

\k &A&kx&�\&1 &x&$. (3.3)

All the maps ,i (x) are strict contractions in Rn with respect to the metric
d(x1 , x2)=&x1&x2 &$, with the contractivity factor \&1. Thus the
mappings [,i : 1�i�m] acting on the complete metric space (Rn, & }&$)
form a (hyperbolic) iterated function system (IFS) in the terminology of
Barnsley [3]. A basic result of [17] is that the set-valued operator

,(Y) := .
m

i=1

A&1(Y+d i) (3.4)

is also a strict contraction with contractivity factor \&1 when acting on the
metric space H(Rn) of all compact subsets of Rn taken with the Hausdorff
metric dH( } , } ) induced from the metric & }&$ on Rn. It therefore has a
unique fixed point T=T(A, D), which is called the attractor of the IFS.
Furthermore, starting with any nonempty compact set W the iterates
,(n)(W) converge to the attractor T in this metric on H(Rn), see Barnsley
[3, Theorem 1, p. 82]. The set defined by the right side of (2.2) is the
attractor T, for it is compact and satisfies the functional equation

A(T )= .
m

i=1

(T+di), (3.5)

hence it also satisfies

T= .
m

i=1

A&1(T+d i), (3.6)

so T is a fixed point of (3.4).

Proof of Theorem 1.1. It is immediate that (iii) O (ii) O (i).
We begin by verifying (ii) O (iii). Suppose that T has nonempty interior,

and let T% denote the closure of T%. Now (3.6) gives

.
m

i=1

A&1(T%+di)�T%,
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because the left side is an open set contained in T. Taking the closure of
both sides yields

.
m

i=1

A&1(T%+di)�T%, (3.7)

where we used A&1(T%+d i)=A&1(T%+d i), since A&1 is a homeomor-
phism. Thus (3.7) says that

,(T%)�T%, (3.8)

where , is the operator (3.4) acting on the space H(Rn). Now applying the
k-fold iterated map ,(k) yields ,(k+1)(T%)�,(k)(T%), whence

,(k+1)(T%)�T%.

However the basic fact about hyperbolic IFS's is that the iterates ,(n)(W)
of any compact W converge to the attractor T in the Hausdorff metric.
Thus every point of the attractor is a limit point of a sequence in ,(n)(T%)
whence

T�T%,

and this yields T=T% as required.
To prove that +(�T )=0, we note first that iterating (3.5) gives

Ak(T )= .
d # DA, k

(T+d). (3.9)

The Lebesgue measure +(Ak(T )) satisfies

+(Ak(T ))=|det(A)| k +(T )

� :
d # DA, k

+(T+d)

=|det(A)|k +(T ). (3.10)

If +(T)>0, equality can hold in (3.10) only if all of the |det A|k digit
sequences [�k&1

j=0 A jdij : all dij # D] in DA , k are distinct, and in addition

+((T+d) & (T+d$))=0 (3.11)

whenever d,d$ are distinct elements of DA , k , since

+ \ .
d # DA, k

(T+d)+�\ :
d # DA, k

+(T+d)+&+((T+d) & (T+d$)).
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Since T contains an open set, some Ak(T ) contains an open ball of
diameter 2diam(T), hence it necessarily contains an entire copy T+d in
(3.9). Then the boundary �T+d is entirely covered2 by boundaries �T+d$
of the other tiles in DA , k . Hence

+(�T+d)� :
d$ # DA, k&[d]

+((�T+d) & (�T+d$))=0,

and +(�T )=0.
We next prove (i) O (iv). Since +(T )>0, the argument above shows that

(3.11) holds. Suppose (iv) were false. Then there exists a sequence
[(f (1)

l , f (2)
l ) : l�1] where f (1)

l and f (2)
l are distinct elements of some DA , kl

with

lim
m � �

&f (1)
l &f (2)

l &=0.

Now T(A, D) is closed, hence measurable, and by hypothesis
+(T(A, D))>0. We claim that for all y # Rn sufficiently close to 0

+(T & (T+y))>0. (3.12)

Indeed the characteristic function /T is in L1(R), hence there is a point
x* # T with

lim
r � 0

1
+(Br(x*)) |Br(x*)

/T (y) dy=/T (x*)=1,

where Br(x)=[y : &x&y&�r], cf. Stein [32, p. 5]. That is, x* is a
Lebesgue point of /T , and for each =>0 one has

+(Br(x*) & T )�(1&=) +(Br(x*)) (3.13)

for all sufficiently small r. Now for &y&<=$, the ball Br&=$(x*+y)�Br(x*),
hence

+(Br(x*) & (T+y))�+(Br&=$(x*+y) & (T+y))

=+(Br&=$(x*) & T )

>(1&=) \r&=$
r +

n

+(Br(x*))

>(1&=") +(Br(x*)).
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By inclusion-exclusion

+((T+y) & T )�+(Br(x*) & T)++(Br(x*) & (T+y))&+(Br(x*))

>(1&=&=") +(Br(x*))>0,

proving (3.12).
Applying (3.12) yields

+((T+f (1)
l ) & (T+f (2)

l ))=+(T & (T+f (1)
l &f (2)

l ))>0

for all sufficiently large l, which contradicts (3.11). Thus (i) O (iv).
Next we prove (iv) O (i). Again consider the mapping , given by (3.4),

which is a strictly contractive map with factor \&1 on (H(Rn), d ).
Consider the closed ball in the & }&$-norm,

B$r=B$r(0)=[x # Rn : &x&$�r], (3.14)

where & }&$ is the norm (3.2). We claim that

,(B$r)�B$r (3.15)

for all sufficiently large r. This follows from (3.3) since x # B$r gives

&A&1(x+di)&$�&A&1x&$+&A&1di &$

�\&1 &x&$+\&1 &d i&$

�\&1(r+&di&$)�r,

provided

r�
\

\&1
max

1�i�m
(&d i&$).

Now (3.15) yields ,(k+1)(B$r)�, (k)(B$r). However, the sequence [, (n)(B$r)]
converges to the attractor in the Hausdorff metric, and since it forms a
nested sequence of compact sets, we have

T(A, D)= ,
�

k=1

, (k)(B$r).

Consequently (by Lebesgue's dominated convergence theorem)

+(T(A, D))= lim
k � �

+(,(k)(B$r)). (3.16)
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The uniform discreteness property of DA , � guarantees that there is a
positive constant $ such that for all f1 , f2 # DA , � ,

&f1&f2&$>$ if f1 {f2 . (3.17)

Consider a ball B$= with 0<=< 1
2$. By (3.4)

,(k)(Y) := .
d # DA, k

A&k(Y+d),

hence

Ak,(k)(B$=)= .
d # DA, k

(B$=+d). (3.18)

However, DA , k has |det(A)|k distinct elements by hypothesis (iv), and all
sets on the right side of (3.18) are disjoint by (3.17). Thus the measure of
both sides satisfies

|det(A)|k +(,(k)(B$=))=|det(A)|k+(B$=).

Choose 0<=<r such that B=�Br , and we then have

+(,(k)(Br))�+(,(k)(B$=))=+(B$=),

which with (3.14) yields

+(T(A, D))�+(B$=)>0,

which proves (i).
It remains to prove (i) O (ii). This is essentially a result of Kenyon [19,

Theorem 10]. For completeness we give a proof. Now (i) implies that
T(A, D) has a Lebesgue point x*, i.e. there is a sequence rk � 0 and =k � 0
with

+(Brk(x*) & T )�(1&=k) +(Brk(x*)). (3.19)

We already showed (i) O (iv), hence the set DA , � is uniformly discrete with
a constant $, say.

Claim. There exist positive constants r0 , c0 and $0 such that for each
m�1 there exists in Rn a finite set Em�Br0

(0), of cardinality at most c0 ,
with &e&e$&�$0 for any distinct e, e$ # Em , such that

+(B1(0) & (T+Em))�(1&5n+1=m) +(B1(0)), (3.20)

where B1(0) is the Euclidean unit ball centered at the origin.
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To prove the claim, (3.19) gives

+(Al (Brm(x*) & T ))�(1&=m) +(A lBrm(x*)), all l�0. (3.21)

We first show that for sufficiently large l, there exists a unit ball
B1(y)�A l (Brm(x*)) with

+(B1(y) & Al (T ))�(1&5n+1=m) +(B1(0)). (3.22)

Indeed, since A is expanding, Al (Brm(x*)) is an ellipsoid El, m whose shor-
test axis goes to infinity as l � �. Let E$l, m be the homothetically shrunk
ellipsoid with shortest axis decreased in length by 2, so that all points in
E$l, m are at distance at least 1 from the boundary of El, m . By a standard
covering lemma (Stein [32, p. 9]) applied to E$l, m there is a set [B1(y$)]
of disjoint unit balls with centers in El, m that cover volume at least
5&n+(E$l, m). Also 5&n+(E$ l, m)�5&n&1+(El, m) provided that the shortest
axis of El, m is of length at least 2(n+1). All these balls lie inside El, m . Now
(3.21) allows at most =m+(AlBrm(x*)) of the volume of AlBrm(x*) to be
uncovered by Al (Brm(x*) & T), so even if this entire uncovered volume is
distributed into the disjoint balls [B1(y$)], at least one of them must satisfy
(3.22).

Next we use the inflation property (3.9) to rewrite (3.22) as

+ \B1(y) & \ .
d # DA, l

(T+d)++�(1&5n+1=m) +(B1(y)),

hence

+ \B1(0) & \ .
d # DA, l

(T+d&y)++�(1&5n+1=m) +(B1(y)).

This shows that if we choose

Em=[e=d&y : d # DA , l with (T+d&y) & B1(0){<].

then (3.21) holds. Also DA , l�DA , � is uniformly discrete with constant $,
hence

&e&e$&�$

for all e, e$ # Em . Since T is compact, all possible e lie inside the ball Br0
(0)

with r0=1+max[&x& : x # T]. The ball Br0
(0) can be packed with disjoint

balls of radius 1
2 $ centered at the points of Em , hence there is an upper

bound c0=(2r0 �$)n on the cardinality of Em , which proves the claim.
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To finish the proof of (i) O (ii), we apply the claim and choose a con-
vergent subsequence of [Em], call it Emk , with mk � � and we set

E* := lim
k � �

Emk .

Clearly E* has cardinality at most c0 . Now

+(B1(0) & (T+E*))�lim inf
k � �

+(B1(0) & (T+Emk))

�lim inf
k � �

(1&5n&1=mk) +(B1(0))

=+(B1(0)).

Since T+E* is a closed set, this forces

B1(0) & (T+E*)=B1(0).

Now T+E* is a finite union of translates of T, hence at least one of them
must have nonempty interior, so T%{<. K

The method of proof of (i) O (ii) given above generalizes in a
straightforward fashion to give the following result.

Theorem 3.1. Let A # Mn(R) be an expanding matrix and let
D=[di : 1�i�l]�Rn be any finite set containing 0. Suppose that the set
DA , � is uniformly discrete, but different expansions in DA , � are permitted
to be equal. If T(A, D) is the attractor of the hyperbolic iterated function
system [,j (x)=A&1(x+dj) : 1� j�l] then +(T(A, D))>0 implies that
T(A, D) has nonempty interior.

This immediately yields:

Corollary 3.1. If A # Mn(Z) is an expanding matrix and D�Zn is any
finite set, then +(T(A, D))>0 implies that T(A, D) has nonempty interior.

We reduce to the case 0 # D and apply Theorem 3.1.

Proof of Theorem 1.2. We may without loss of generality suppose that
0 # D so 2(A, D)=2(DA , �). Indeed, 2(A, D)=2(A, D+y), so if (i), (ii)
are proved for any (A, D+y) they hold also for (A, D).

Result (i) is proved by repeatedly applying the inflation property

Ak(T )= .
d # DA, k

(T+d).

Since 0 # D we have 0 # DA , k�DA, k+1, and these sets give consistent
tilings of larger and larger ``patches'' Ak(T) of Rn. Now 0 # D implies 0 # T,
and we treat two cases, depending on whether 0 is in the interior T% of T
or not.
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Suppose first that 0 # T%. Then, since A is expanding, ��
i=1 Ak(T )=Rn,

hence T tiles Rn with the tiling set S=DA , � . The criterion (2.6) for a self-
replicating tiling with matrix B is equivalent, when B=A, to

A(S)+D�S, (3.23)

as can be seen using (1.1). It is then immediate that S=DA , � is an atomic
self-replicating tiling with matrix A, because A(DA , k)+D=DA , k+1 ,
whence A(DA , �)+D�DA , � . Finally DA , ��2(DA , �), because 0 # DA , � .

We turn to the harder case where 0 is on the boundary of T. We use the
fact that, for all k�1,

T(A, D)=T(Ak, DA , k), (3.24)

which follows from iterating (2.1). The basic idea is that for large
enough k, we can find some digit d* # DA , k such that the translated digit
set D$=DA , k&d* has the tile

T(Ak, D$)=T(Ak, DA , k)&\ :
�

j=1

A&jk+ d*

=T(A, D)&\ :
�

j=1

A&jk+ d*, (3.25)

which contains 0 in its interior. If so, then since 0 # D$, the proof above
applies to show that the tile T(Ak, D$) gives an atomic self-replicating tiling
of Rn with B=Ak and S$=D$Ak, � . Thus T(A, D) also gives an atomic
self-replicating tiling of Rn with matrix Ak and translation set

S"=S$+\ :
�

j=1

A&jk+ d*.

Furthermore T(A, D) also tiles Rn using the translation set S$, and it is
easy to check that

S$=D$Ak, ��2(DA , �). (3.26)

The tiling T+S$ is not guaranteed to be a self-replicating tiling.

37SELF-AFFINE TILES IN Rn



File: 607J 153418 . By:MB . Date:09:08:96 . Time:11:29 LOP8M. V8.0. Page 01:01
Codes: 2265 Signs: 1112 . Length: 45 pic 0 pts, 190 mm

It remains to find a large k and a digit d* as above. By Theorem 1.1,
T% is nonempty, and since the set

{ :
k

j=1

A&jdij : k�1 and all dij # D=
is dense in T, we can find some point

x*= :
k0

j=1

A&jd ij , with x* # T%. (3.27)

Some open ball B(x*, $)=[y : &x*&y&<$] is contained in T%, and by
(3.25) it suffices to find k and d* # DA , k so that

"\ :
�

j=1

A& jk+ d*&x*"<$. (3.28)

We take k�k0 and set d*=Akx*, so

d*=Akx*= :
k0

j=1

Ak&jd ij # DA , k .

Now

"\ :
�

j=1

A&jk+ d*&x*"="\ :
�

j=1

A&jk+ x*"�&x*& \ :
�

j=1

&A&k& j+ ,

where &A&k& is the Euclidean operator norm. Since A is expanding,
&A&k& � 0 as k � �, hence (3.28) holds for all large enough k. This
proves (i).

To prove (ii), suppose 0 # D and that 2(DA , �) is a lattice 4. Since
A(2(DA , �))�2(DA , �) , this gives A(4)�4, and this case can only occur
if A is similar to a matrix in Mn(Z). It suffices to show that if f and f $ are
distinct points in 2(DA , �), then

+((T+f) & (T+f$))=0. (3.29)

For if so then all tiles in [T+f : f # 2(DA , �)] have disjoint interiors, while
(i) shows that the union of some subset S of them tiles Rn, and we must
have S=2(DA , �). To prove (3.29) we note that it asserts that

+(T & (T+(f $&f))=0. (3.30)
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However f$&f # 2(DA , �) since 2(DA , �) is a lattice. Thus f$&f=d&d$
with d,d$ # DA , � , so (3.30) is equivalent to

+((T+d) & (T+d$))=0. (3.31)

However, d,d$ # DA , k for sufficiently large k, and d{d$ since f{f$, so (3.31)
holds by the measure disjointness of all tiles in the subdivision (3.9) of
Ak(T ). K

Proof of Theorem 1.3. Part (i) is a result of Kenyon [19, Theorem 7].
To show part (ii), we use the self-replicating tiling with matrix Ak con-

structed in the proof of Theorem 1.2 (ii). This tiling was constructed by
inflating a translate T $=T+u of the original tile T=T(A, D) such that
T $=T(Ak, D$) contains 0 in its interior, and the digit set D$ contains 0. We
prove that this tiling is quasiperiodic. The assumption that A(4)�4 and
D�4 implies that D$�4 also. In consequence the tile T $ tiles with tiling
set S :=D$Ak, ��4. Consequently any finite ``patch'' of tiles has all trans-
lates at lattice points, so the local finiteness property is satisfied. To verify
the local isomorphism property, note that ��

j=0 (Ak) j (T $)=Rn since 0 is in
the interior of T $. Thus any finite patch C of tiles lies inside some A jk(T $).
However inflation by A jk, shows that the tiles in the tiling T $+S combine
to give a tiling of Rn with translates of tiles T"=A jk(T $), and each of these
tiles contains a copy of C. Furthermore every ball of radius twice the
diameter of T" in Rn contains a copy of T", so the local isomorphism
property is established. K

Remarks. It seems conceivable that the converse condition (ii) of
Theorem 1.3 may remain true with the stronger conclusion that using the
tile T(A, D) there exists a (possibly non-atomic) quasiperiodic SRT with
matrix A. If this is so, a nontrivial modification of the proof above is
needed to prove it, see Example 2.2.

4. Proofs for Examples

We justify the assertions made about the examples in 92.

Proof for Example 2.1. To show that the tile T is self-affine, we verify
property (iv) of Theorem 1.1. The set DA , � consists of certain vectors of
the form [ m0+m1 =

m2
] with m0 , m1 , m2 # Z. Recall that every l # Z has a unique

finite expansion

l= :
k&1

j=0

aj3
j, aj # [&1, 0, 1]; (4.1)
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this is called the balanced ternary expansion of m, cf. Knuth [21, p. 190].
It is easy to see that the 32k elements of DA , k are distinct, in which m0 and
m2 can be arbitrary integers of the form (4.1), while m1 is completely deter-
mined from the expansion (4.1) of m2 by

m1= :
aj=&1

3 j, where m2= :
k

j=0

aj 3 j. (4.2)

We show that DA , � is uniformly discrete with $=1. To see this, note that
the centers of two elements of DA , k can be at Euclidean distance less than
1 only if they have the same value of m2 . Then they must have the same
value of m1 by (4.2), and since their values of m0 differ they are at distance
at least 1. Thus (iv) is verified.

Using the formula for DA , � it is easy to check that

2(DA , �)={_m0+m1 =
m2 & : m0 , m1 , m2 # Z=.

This set is not uniformly discrete since == 1
4 - 2 is irrational.

We next verify that 0 # T%, by showing that T includes all points (x, y)
with |x|, | y|� 1

4. The set of balanced ternary expansions

y= :
�

j=1

bj3
&j, bj # [&1, 0, 1]

covers [& 1
2 , 1

2]. Hence y with | y|� 1
4 has such an expansion, and associated

to it is a unique value

x~ := 1
4 - 2 \ :

bj=&1

3& j+ ,

for which

0�x~ � 1
4 - 2 \ :

�

j=1

3& j+< 1
4.

For any x with |x|� 1
4 set x~ * :=x&x~ , so |x~ |� 1

2 , and x~ * has a balanced
ternary expansion x~ *=��

j=1 aj3
& j. Then the sequence of digits

dj=_aj+b� j =
bj & # D (4.3)
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with b� j=1 if bj=&1 and b� j=0 otherwise, has

_x
y&= :

�

j=1

A&jd j , (4.4)

as required. The tile T is pictured in Figure 4.1.
Since 0 # T% and 0 # D the choice C0=T(A, D) generates a SRT with til-

ing set S=DA , � (by the proof of Theorem 1.2). The description of DA , �

shows that this tiling is invariant under the translation [ 1
0]. We claim that

it is a 1
2-periodic tiling. If it were a periodic tiling, then it would automati-

cally satisfy the local finiteness property, and we now show it does not.
Compare all tiles with centers at m2= 1

2(3k&1&1) and m$2= 1
2 (3k&1+1).

The associated values of m1 are m1=0 and m$1= 1
2 (3k&1&1). These tiles lie

in two strips parallel to the x-axis invariant under the translation [ 1
0],

hence there are tiles from the two strips with center distance less than 2 and
offset by (m$1 �4)= (mod 1) in the x-direction. Since == 1

4 - 2 is irrational, all
values [l=(mod 1) : l # Z] are distinct, hence we have produced infinitely
many different local neighborhoods with radius R=2, which violates the
local finiteness property.

Fig. 4.1. T(A, D) for A=[ 3 0
0 3] and D=[[ &1

0], [ 0
0], [ 1

0], [ &1
1 ], [ 0

1], [ 1
1], [ &1+=

&1 ], [ =
&1],

[ 1+=
&1 ]] with == 1

4 - 2.
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Finally, the explicit form of expansions (4.4) for elements in T(A, D)
allows one to show that the tile T has flat horizontal top and bottom bound-

aries at y=&1
2 and y= 1

2 respectively, and that the SRT above tiles all the
horizontal strips [ y : m& 1

2� y�m+ 1
2] for m # Z. It is periodic in each

strip under the translation [ 0
1]. We can slide strips horizontally to obtain

a lattice tiling with lattice 4=Z2. K

Proof for Example 2.2. It is clear that the tile T(A, D)=[0, 1]_
[0, 1], so is self-affine. Certainly C0=(T+[ &2�3

0 ]) _ (T+[ 1�3
&1]) includes 0

in its interior, and to show that it gives a SRT with matrix B=[ 4 0
0 4] it suf-

fices to check that the original tiles T+[ &2�3
0 ] and T+[ 1�3

&1] appear in the
inflated tiling B(C0); see Fig. 4.2.

The resulting SRT clearly tiles the upper and lower half-planes each with
a checkerboard tiling, and these two tilings are displaced by [ 1�3

0 ] along the
x-axis. Thus tiles touching the line y=0 have different local neighborhoods
than tiles elsewhere (taking radius r=2), so the local isomorphism
property does not hold for this SRT.

The existence of a non-atomic Z2 lattice SRT using T is obvious. Finally,
there can be no atomic SRT by T with the inflation matrix A. For, if there
were, it would have C0 :=T $=T+[ x

y], with &1< y<0. Then the inflated
tile A(T $) would contain four translates of T, which have y-coordinates 2y
and 2y+1, so that T $ is not a sub-tile of A(T $), a contradiction. K

Fig. 4.2. A non-atomic SRT using the unit square with B=[ 4 0
0 4]. (a) Region C0 . (b)

Inflated region B(C0).
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Proof for Example 2.3. Since the digit set D is a complete set of repre-
sentatives of Z2�A(Z2), T (A, D) is a self-affine tile by Corollary 1.1 or
Bandt [1]. It is pictured in Fig. 4.3.

Now, since A&j=[ 2& j

0
& j2& j&1

2& j ] for j�1, we have [ x
y] # T(A, D) if

_x
y&= :

�

j=1

A& j _3d j, 1

d j, 2 & , (4.5)

where all dj, 1 , dj, 2 # [0, 1] may be chosen arbitrarily, whence

y= :
�

j=0

2&jdj, 2 , (4.6)

x=3 \ :
�

j=0

2&jdj, 1+& g( y), (4.7)

where

g( y)= :
�

j=1

j2& j&1dj, 2 . (4.8)

From these formulae one sees first that 0� y�1 and also that for each
fixed value of y the allowed values of x form an interval of length 3. The

Fig. 4.3. T(A, D) for A=[2 1
0 2] and D=[[ 0

0], [ 3
0], [ 0

1], [ 3
1]].
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tile T thus has horizontal top and bottom sides at y=0 and y=1, respec-
tively. Its other two sides consist of parallel fractal-like boundaries given by
[(g( y), y) : 0� y�1] and [(g( y)+3, y) : 0� y�1]. The function g( y) is
discontinuous at every dyadic rational3 l�2k, where it has a jump of size

k2&k&1& :
�

j=k+1

j2& j&1=&2&k (4.9)

as y increases. This gives a serrated appearance to the sides of the tile T.
The largest jumps are of size 1�2, and are exactly at half-integer values of
y, and the tile T has a horizontal edge from (&3

4 , 1
2) to (&1

4 , 1
2); see Fig. 4.3.

This has the following consequence. Any horizontal neighbor of any tile in
a tiling S must either have the same lower boundary as this tile or else
have its lower boundary translated by 1

2 , for otherwise the largest jump in
the serration will not match. Now we show:

Claim 0. Every tiling of R2 with translates of T is at least 1
2-periodic.

The period lattice always includes one of the periods [&1�2
1 ] and [ 3

0]. If there
are two tiles T, T $ in the tiling with T $&T=[ x

1�2] for some x, then the
period lattice includes [ &1�2

1 ], while if there are two tiles with T $&T=[ x
1]

for some real &1<x<2, then the period lattice includes [ 3
0].

To prove Claim 0, for a given tile T, look at a neighboring tile T $
adjacent to its right serrated edge. By the remark above, T $ either has a
common horizontal edge with T, so T $=T+[ 3

0], or else T $ is shifted verti-
cally up or down by 1

2, the possibilities being T $=T+[ 3
0]\[ &1�4

1�2 ].
Suppose that there are two tiles where [ 3

0]\[ &1�4
1�2 ] occurs. Then the two

tiles create two corners, which can only be filled by tiles placed at T\[ 1�2
1 ]

and T $�[ &1�2
1 ], respectively. These create new corners, and by induction

the tiling must contain an infinite strip two tiles wide:

{T+ j _&1�2
1 & : j # Z=_ {T $+ j _&1�2

1 & : j # Z=.

Now the jumps in the serrated edges of this strip force all neighboring tiles
in either side to be in similar strips, with each strip invariant under the
translation [ &1�2

1 ]. By induction one establishes that the whole tiling is
periodic with period [ &1�2

1 ].
If there are no such neighboring tiles, then every tile has a single right

neighbor translated by [ 3
0], so the tiling has [ 3

0] as a period.
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3 Here l is odd, and y=l�2k has two dyadic expansions (4.6), one having dj, 2=1 for all
j�k+1, the other dj, 2=0 for all j�k+1. These produce the jump. We define g(l�2k) to be
the value after the jump, i.e. we take the terminating dyadic expansion.
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Finally, suppose T has a top neighbor T $=T+[ x
1], with &1<x<2.

This creates two corners which can only be filled with tiles placed at
T+[ 3

0] and T $&[ 3
0], respectively. As in the argument above, new corners

are created, forcing a perfect tiling of the horizontal strip [[ x
y] : 0� y�2,

x # R] by translates of T invariant under translation by [ 3
0]. Then

neighboring strips of height one must also be perfectly tiled, with tilings
invariant under [ 3

0], so the whole tiling has [ 3
0] as a period. This proves

Claim 0.
The proof above did not establish the existence of any tilings of R2 by

T. To show existence of the various tilings above, one must show that the
serrated edges of T and T $=T+d fit perfectly together, for d=[ 3

0], [ 11�4
1�2 ],

[ 13�4
&1�2], respectively. For [ 3

0] this is guaranteed by the inflation rule, since
[ 3

0] # D. In fact it is also true for [ 11�4
1�2 ] and [ 13�4

&1�2], but we do not prove
it here, since we will not need it in the sequel.

The tile T clearly lattice tiles R2 using the lattice 3Z � Z =
[[ 3m

n ]] : m, n # Z. By the remarks above the set [T+m[ 3
0] :m # Z] perfectly

tiles the horizontal strip [[ x
y] : x # R and 0� y�1]; the rest is obvious.

Now we study SRT's by T. We will show that the ``serration function''
g( y) contains an aperiodic pattern which shows up under inflation and
makes all SRT's non-periodic. We proceed by a series of claims.

Claim 1. If B # M2(R) is an expanding matrix such that B(T ) can be
tiled with translates of T, then necessarily B=Ak for some k�1. The tiling
of B(T) by copies of T is unique.

To prove this claim, observe that since the tiles T have a horizontal side,
so must B(T ), hence it preserves the x-axis, so must have the form
B=[ :

0
;
#]. Now B(T ) has a unique tiling by translates of T, for its bottom

horizontal edge must have tiles uniquely packed in a row along it, filling
it perfectly. The partially packed region B(T ) still has a horizontal bottom
edge, so a second row of tiles packs uniquely, and so on. Next, since there
are an integral number of tiles in each row, : is an integer, and since there
must be an integral number of rows, so is #. To continue, we examine the
effect of B on the serrations (4.9). We have

B _g(y)
y &=_:g(y)+;y

#y & . (4.10)

Since the length of the discontinuities are inflated by the factor :, we
must have :=2k or else the inflated jump discontinuities fit no tile. The
inflation factor # stretches the vertical spacing between jump discon-
tinuities, and it will not preserve the correct spacing pattern unless
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#=:=2k. Finally, since T and B(T) both have lower left corner at 0, the
leftmost serrated edge [ 2k g(y)+;y

2ky ] of B(T) must coincide with that of T for
0� y�1�2k. This range of y makes dj, 2=0 for 0� j�k, and (4.8) now
implies that ;=k2k&1. Thus B=Ak and Claim 1 is proved.

Claim 2. Let f ( j) (mod 3) denote the x-coordinates of the bottom
corners of any tile in the j-th horizontal row of the unique tiling of Ak(T )
with copies of T. Then f (0)=0 and f ( j) satisfies the recursions

f (2 j)#2 f ( j)+ j (mod 3), (4.11a)

f (2 j+1)# f (2 j) (mod 3). (4.11b)

To prove Claim 2, note that f ( j) (mod 3) is well-defined. Now Ak(T ) is
derived by repeated inflation under A, and we proceed by induction on k.
Suppose [ f ( j)+3l

j ] is the corner of some tile in Ak&1(T ). Then, by (1.1),

A \T+_ f ( j)+3l
j &+= .

d # D
\T+_2f ( j)+ j+6l

2j &+d+ .

Taking d=[ 0
0] on the right, there is a tile at height 2 j, so

f (2 j)#2 f ( j)+ j+6l (mod 3),

which is (4.11a). Taking d=[ 0
1] we obtain (4.11b), proving Claim 2.

Claim 3. If j has the binary expansion �k&1
i=0 bi 2

i, then

f ( j)# :
k&1

i=0

ibi2
i (mod 3). (4.12)

The function f ( j) is aperiodic. That is, for any positive integer m, there exist
positive integers j, j $ with

f ( j+m)& f ( j) � f ( j $+m)& f ( j $) (mod 3). (4.13)

To prove Claim 3, (4.12) is verified by checking that the right side
satisfies the recursions (4.11) and the initial condition f (0)=0. To verify
(4.13), suppose m has binary expansion �l

i=0 ci2
i, with cl=1, and choose

j=2l+1 and either take j $=2l if l � 1 (mod 3) or else take j $=2 l+2l+1

if l#1 (mod 3). Then (4.13) follows by residue calculations using (4.12),
proving Claim 3.

We now show that all self-replicating tilings using T are non-periodic.
We begin by observing that [ 3

0] is always a period of any SRT for T.
Indeed, Claim 2 gives f (0)=0, f (1)=0, hence the tiling of B(T) by copies
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of T contains in its bottom row and next row upward tiles T and T $,
respectively, with T $&T=[ 0

1], whence Claim 0 shows that [ 3
0] must be a

period of the tiling. Thus the SRT must tile in horizontal strips.
We now argue by contradiction. Suppose there were a periodic SRT with

period lattice 4. Since [ 3
0] is a period, it is in 4. Also, since the tiling S

lies in horizontal strips of height one, there is an independent period [ l
m]

in 4, in which l # R and m{0 is an integer. We show that l is rational. To
do this it suffices to establish that all tiles C0 touching 0 are of the form
T+v for rational vectors v, because then all tiles in S are rational trans-
lates of T, so the periods must be also. Suppose v=[ x

y], and B=Ak, and
we have

Ak \T+_x
y&+= .

d # DA, k
\T+_2kx+k2k&1y

2ky &+d+ .

The tiling is in horizontal strips; hence we have y#2ky (mod 1) so that
y # Q. Now if 0 is in the interior of T+[ x

y] then some tile on the right must
coincide with T+[ x

y], hence

x#2kx+k2k&1y+d1 (mod 3), (4.14)

which forces x # Q. If 0 lies on the boundary of T+[ x
y], on a serrated edge,

then [ &x
&y] lies on a serrated edge, so x=g(&y) or g(&y)+3, and the fact

that g( y) is rational whenever y is rational forces x # Q. Finally if 0 is on
a horizontal edge, i.e. [ x

y]=[ x
0], then (4.14) still applies, so x # Q. Now we

have shown l=p�q is rational, so 3q[ l
m]=[ 3p

3qm] # 4, consequently there is
a vertical period [ 0

3qm] in 4. But this contradicts the three claims. Claim 1
says that this SRT has inflation by Ak for some k, so we can inflate one tile
in S to a large enough size using some A jk that its unique tiling with
copies of T excludes vertical period 3qm using Claims 2 and 3. This con-
tradiction proves the SRT is non-periodic, hence it must be 1

2-periodic. K

5. Open Problems

The most fundamental unsolved problem concerns restrictions on the
form of the matrix A in a self-affine tile.

Conjecture 1. If T(A, D) is a self-affine tile, then A is similar to an
integer matrix.

This conjecture may be viewed in light of Theorem 1.1 (iv), which puts
a severe restriction on the digit set D.

Another class of unsolved problems concerns how regular are the tilings
possible with an arbitrary self-affine tile. The weakest of these is the following:
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Conjecture 2. For each self-affine tile T there is a quasiperiodic tiling of
Rn using T as a prototile.

This tiling need not be self-replicating. Radin and Woolf [30] show that
any tile T that tiles by translation has a tiling satisfying the local isomorphism
property, but not necessarily the local finiteness property. They also show
that if a tile T can have its boundary completely covered in only finitely many
(translation-inequivalent) ways by translates of itself with disjoint interiors,
and if T tiles Rn by translation, then it has a quasiperiodic tiling.

Related to Conjecture 2 is the question of whether there is a self-affine
tile T that tiles Rn by translation but only aperiodically. No such tile, of
any kind, is known to exist in Rn for any n�1. Tiles in R2 that are
topological disks always have a periodic tiling, see Girault�Beauquier and
Nivat [13]. Work of Schmitt [31] recently led to the discovery of a con-
vex polyhedron with eight faces that tiles R3 using translations and rota-
tions, for which all tilings are aperiodic, see Danzer [6].

Note that the truth of Conjecture 1 implies the truth of Conjecture 2 in
all cases where D generates a lattice for A, by Theorem 1.3 (ii).

A strengthening of Conjecture 2, which is open even for the special case
of integral self-affine tiles, is:

Conjecture 3. For each self-affine tile in Rn there is a periodic tiling of
Rn using translates of T.

Finally we formulate a conjecture concerning the regularity of self-
replicating tilings.

Conjecture 4. Every self-replicating tiling in Rn is at least 1�n-periodic.

Example 2.2 shows that a self-replicating tiling need not be
quasiperiodic. This conjecture is proved for n=1 and 2, with the case n=2
settled in Kenyon [19], [20].
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