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Abstract An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for

trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint

capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes

(CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues

parameters (MRPs) are employed to describe the angular displacements, and the equations of

motion are derived using Kane’s equations. The controller for each link or the base is designed sep-

arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and

nonlinear uncertainties are classified as a ‘‘lumped” matched uncertainty with unknown upper

bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain

is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen-

eral amplification function is designed and incorporated in the adaptation laws to reduce the control

error without conspicuously increasing the magnitude of the control input. Uniformly ultimate

boundedness of the closed loop system is proved by Lyapunov’s method. Simulation results based

on a three-link system verify the effectiveness of the proposed controller.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Space robot has been playing an important role in space ser-

vice missions. Accurate trajectory tracking control is com-
monly required to complete the operations such as refuelling
and module replacing. However, the nonlinear dynamical cou-
pling between the base motion and manipulator arm motion

makes the control very complex and incapacitates the direct
application of the control algorithms for terrestrial robotic sys-
tems to space systems. To achieve superior system perfor-
mance of a space robot, extensive researches focusing on

control algorithms have been carried out, which are subject
to different missions and problems.1–6

However, in general, system performance depends upon not

only the active control schemes and algorithms, but also the
dynamical characteristics. Traditional space robots are actu-
ated by joint torque actuators. When the joint torque is exerted

on the manipulator arm, the reaction torque is also exerted on
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the base. Such action/reaction torques definitely increase the
dynamical coupling between the base and arm, and hence
decrease system performance. To eliminate or reduce the

dynamical coupling, the concept of ‘‘reactionless actuator”
was proposed for space robots or robot-like space multibody
systems. Billing-Ross and Wilson designed a reactionless drive

pointing system, and summarized several advantages of reac-
tionless actuation over traditional actuation.7

One typical concept of reactionless space robot is actuating

the system using angular momentum exchange devices instead
of joint torque actuators. In the design concept, the manipula-
tor links are connected via free rotational joints, and the links
are driven by angular momentum exchange devices, such as

control moment gyroscopes (CMGs) or reaction wheels,
mounted on the links. Since the actuating torques are directly
exerted on the moving bodies (links or the base) and the joints

are free, the action/reaction torques about the joints do not
exist anymore, and consequently the dynamical coupling could
be expected to be eliminated or reduced. In 1994, Osuka et al.8

proposed a design concept of space manipulator called
‘‘torque-unit manipulator”. In the design concept, each joint
is free joint with one degree of freedom (DOF), and a DC-

servo motor is mounted on each link to accelerate or decelerate
a wheel hence to actuate the link motion. Though the concept
was proposed mainly for easy maintenance, it is indeed a reac-
tionless space robot design. Later, Peck et al.9,10 applied

CMGs to rigid robotic systems, and compared power con-
sumption of the systems employing CMGs actuation, reaction
wheel actuation and joint torque actuation. They pointed out

that the CMGs actuating manipulator arm reduces the reac-
tion torque on the base in comparison with joint actuating
arm, and the system with CMGs actuation can radically out-

perform the other two systems in power saving for high-
agility maneuvers. Utilizing the advantages of less reaction,
power saving and torque amplification for CMGs, Carpenter

and Peck designed a three-link mechanism for agile coelostat
telescope with each link actuated by a scissored pair of
CMGs,11 and investigated power-optimal control of the sys-
tem.12,13 Refs.14–16 presented further researches on power

and energy consumption of similar system.
It is noticeable that all the reactionless systems mentioned

above use one-DOF free joint as link connection. Since the

joint is free, it is possible to use three-DOF ball joint to
replace the one-DOF joint so that more DOF of the end
effector/payload can be obtained using less joints. Such

design concept has been proposed recently,17,18 and the
results in Ref.17 verified the advantages of the system on
increasing the DOF of the end effector/payload and decreas-
ing the system dynamical coupling. Trajectory tracking con-

trol approaches were also presented in Refs.17,18, but the
control laws were based on accurate system dynamics and
no system uncertainty was taken into consideration. How-

ever, uncertainties of space robot systems, such as unknown
disturbances, inertia parameter uncertainty and nonlinearity
uncertainty, are almost inevitable in practical use. Therefore,

a robust control law against system uncertainties is required
to accomplish the control mission. Sliding mode control
(SMC) is considered to be an effective strategy for control

of uncertain systems, and has been widely applied to robotic
systems.19–21 Conventional SMC design usually requires a
priori knowledge of the upper bound on the model uncer-
tainty; however, such a bound may not be easily determined
or estimated due to the complexity of the uncertainty struc-
ture. To solve the problem, the adaptive sliding mode control
(ASMC) was proposed. Yoo and Chung,22 and Leung et al.23

proposed sliding mode controllers in which the control gains
were tuned by integral-form adaptation laws designed to esti-
mate the upper bound of the matched uncertainty, and

smoothed the controller by introducing a boundary layer to
alleviate chattering. Later, Wheeler et al.24 pointed out that
the control gains in Refs.22,23 may grow infinite in the bound-

ary layer because the ideal sliding surface cannot always be
achieved. To overcome the drawback, he improved the adap-
tation laws to guarantee the boundedness of both the states
and estimated control gains. Besides the integral-form adap-

tation laws, some other algorithms such as fuzzy algorithm25

and artificial neural network,26 were also applied to adapt the
control gain. In recent years, many approaches have been

proposed to improve the performance of the ASMC, for
example, the methodologies designed to reduce the overesti-
mation of the control gain,27,28 and the adaptive high-order

sliding mode controllers aimed at low chattering and finite-
time convergence.29,30

The objective of this paper is to propose a robust controller

for the ball-joint-connected space robot actuated by CMGs.
Equations of motion are firstly derived using Kane’s equations
for a chain-configuration space robot system with arbitrary
given number of joints. Dynamics analysis shows that for the

rotational motion of each link or the base, the influences of
various types of uncertainties can be classified as a ‘‘lumped”
matched uncertainty with unknown upper bound. Then,

inspired by Ref.24, an ASMC law is proposed which guaran-
tees uniformly ultimate boundedness of the closed loop system.
The proposed controller not only inherits the advantages of

chattering free response and finite control gains from Ref.24,
but also holds the following improvements: (1) in Ref.24, it is
assumed that the model uncertainty is bounded by a linear

function of the state norm, and in this paper, the linear func-
tion is extended to a polynomial function of the state norm
with arbitrary given order. This expands the application scope
of the controller, especially for the systems with heavy nonlin-

ear uncertainties; (2) a general amplification function is
designed and incorporated in the adaptation law, and the nec-
essary conditions of the amplification function are also pre-

sented explicitly. The function increases the estimation
sensitivity within a small given range around the sliding sur-
face, and therefore it can reduce the control error without

increasing the control input magnitude evidently. Finally, sim-
ulation results and comparison are presented to demonstrate
the effectiveness of the proposed controller.
2. System description

Fig. 1 shows the space robot studied in this paper. The system
consists of n rigid bodies (a base and n � 1 links) which are

connected by n � 1 free ball joints. Each joint has three rota-
tional DOF. A cluster (no less than three) of CMGs is installed
on each body to actuate the system. The base is denoted as B1,

and the links are denoted as B2, B3, . . . ,Bn (the links are num-
bered outward from the base). The joint which connects Bi and
its inner body is numbered as joint i. We denote ni as the num-

ber of CMGs installed on Bi, and call the ni CMGs as the ith
cluster of CMGs.



Fig. 1 Space robot actuated by CMGs.
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For the proposed system, we make the following
assumptions.

Assumption 1. The position of the mass center of each CMG
does not change as the CMG rotates about its gimbal axis, so
the total first moment of Bi (including the CMGs on Bi,
i= 1,2, . . . ,n) is constant in any body-fixed coordinate of Bi.

Assumption 2. The variation of the total moment of inertia for
Bi (including the CMGs on Bi, i = 1,2, . . . ,n) due to the rota-
tion of the CMGs on Bi is small, so it can be ignored, i.e., the

total moment of inertia of Bi is constant in any body-fixed
coordinate of Bi.

From the view of robotic system level, the system can be
regarded as a multibody system consisting of n moving bodies
(the base and the links), and each cluster of CMGs can be con-

sidered as a part of the corresponding moving body. In the
sequel, unless specified, Bi refers to the moving body plus the
ith cluster of CMGs.

3. Equations of motion

3.1. System coordinates and basic vectors

In this section, we propose to develop the equations of motion
of the system using Kane’s equations. To describe the motion

of the system, several coordinate systems are introduced as
follows (see Fig. 2).

(1) Inertial coordinate system F0 (o0–x0y0z0). The origin o0
is located at an arbitrary point in inertial space, and
the axes of x0, y0 and z0 are fixed in the inertial space.

(2) The body-fixed coordinate system of the base, denoted
as F1 (o1–x1y1z1). The origin o1 is located at an arbitrary
Fig. 2 Coordinate systems and position vectors.
point of B1, and the axes of x1, y1 and z1 are fixed in the

base.
(3) The body-fixed coordinate system of the link Bi

(i= 2,3, . . . ,n), denoted as Fi (oi–xiyizi). The origin oi
is located at the center of the joint i, and the axes of
xi, yi and zi are fixed in Bi.

On the basis of the above coordinate systems, we denote

ei ¼ evix; e
v
iy; e

v
iz

h iT
(i = 0,1, . . . ,n) as the vectrix31 of Fi, where

evix, eviy and eviz are the directional unit vectors of the xi, yi
and zi axes of Fi, respectively. With the definition of the vectri-
ces, an arbitrary three-dimensional vector xv can be expressed

as xv ¼ eTi x, where x 2 R3 is the component column matrix of

xv in Fi. Given the definitions above, some vectors are defined
as follows (see Fig. 2).

(1) Rv ¼ eT0R, the position vector from o0 to o1, with R 2 R3

the component column matrix of Rv in F0.

(2) rvi ¼ eTi ri ði ¼ 1; 2; . . . ; nÞ, the position vector from oi to a

generic point in Bi, with ri 2 R3 the component column
matrix of rvi in Fi.

(3) rvi;iþ1 ¼ eTi ri;iþ1 ði ¼ 1; 2; . . . ; nÞ, the position vector from

oi to oi+1, with ri,i+1 2 R
3 the component column matrix

of rvi;iþ1 in Fi.

(4) xv
i ¼ eTi xi ði ¼ 1; 2; . . . ; nÞ, the angular velocity vector of

Fi with respect to F0, with xi 2 R3 the component col-
umn matrix of xv

i in Fi.

3.2. System kinematics

Since the links are connected by ball joints, we use the modified
Rodrigues parameters (MRPs), instead of the traditional joint

angles, to describe the angular displacements of the bodies.

Denoting ri ¼ ri1; ri2; ri3½ �T (i= 1,2, . . . ,n) as the MRPs of
Fi with respect to F0, we have32–34

_ri ¼ HiðriÞxi ð1Þ
where

HiðriÞ ¼ 1

2
Iþ r�

i þ rir
T
i � 1

2
1þ rT

i ri

� �
I

� �
ð2Þ

with the superscript ‘‘�” the skew-symmetric cross product
matrix of a 3 � 1 column matrix.

Choose the generalized speed matrix as

v ¼ _RT; xT
1 ; xT

2 ; . . . ; xT
n

� �T ð3Þ
and the generalized displacement matrix as

q ¼ RT; rT
1 ; rT

2 ; . . . ; rT
n

� �T ð4Þ
then we obtain the kinematical equation of the system

_q ¼ HðqÞv ð5Þ
where

HðqÞ ¼

I 03�3 . . . 03�3

03�3 H1 . . . 03�3

..

. ..
. ..

.

03�3 03�3 . . . Hn

2
66664

3
77775 ð6Þ
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3.3. System dynamics

Now we begin to derive the dynamical equations of the system.
The velocity of a generic point in Bi (i= 1,2, . . . ,n) can be
written in the form of Eq. (7).

vvi ¼ eT1Giv ð7Þ
where Gi 2 R3�(3n+3) is the partial velocity matrix of the gen-

eric point in Bi, and given by the recursive expressions of
Eq. (8).

G1 ¼ A1;0;�r�1 ;03�ð3n�3Þ
� �

G2 ¼ A1;0;�r�1;2;�A1;2r
�
2 ;03�ð3n�6Þ

h i
..
.

Gi ¼ A1;0;�r�1;2;�A1;2r
�
2;3;�A1;3r

�
3;4; . . . ;�A1;ir

�
i ;03�ð3n�3iÞ

h i
..
.

Gn ¼ A1;0;�r�1;2;�A1;2r
�
2;3;�A1;3r

�
3;4; . . . ;�A1;ðn�1Þr�n�1;n;�A1;nr

�
n

h i

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð8Þ
where Ai,j 2 R3�3 represents the transform matrix from Fj to
Fi. The angular velocity of Bi (i = 1,2, . . . ,n) can also be

written in the similar form to Eq. (7), that is,

xv
i ¼ eT1Wiv ð9Þ

where Wi 2 R3�(3n+3) is the partial angular velocity matrix of

Bi, and given by

W1 ¼ 03�3; I; 03�ð3n�3Þ
� �

W2 ¼ 03�6;A1;2; 03�ð3n�6Þ
� �

..

.

Wi ¼ 03�3i;A1;i; 03�ð3n�3iÞ
� �

..

.

Wn ¼ 03�3n;A1;n½ �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

The acceleration vector of the generic point in Bi can be
obtained by taking time derivation of Eq. (7).

avi ¼ eT1Gi _vþ eT1
_Givþ eT1x

�
1 Giv ð11Þ

According to the Kane’s equations in matrix form,35 the

generalized inertial force of the system can be evaluated by

F�
I ¼ �

Xn

i¼1

Z
Bi

GT
i a

1
i dm ¼ �MðqÞ _v�Qðq; vÞ ð12Þ

where a1i is the component column matrix of avi in F1; and

MðqÞ ¼
Xn

i¼1

Z
Bi

GT
i Gi dm ð13Þ

is the positive definite mass matrix of the system, with m the
total mass of the system; and

Qðq; vÞ ¼
Xn

i¼1

Z
Bi

GT
i ðx�

1 Givþ _GivÞdm ð14Þ

is the nonlinear inertial force matrix. The expressions of M(q)

and Q(q, v) are given in Appendix A.
The active forces taken into consideration contain the fol-

lowing parts: (1) the control force acting on the base, denoted
as Fv
1 ¼ eT1F

1
1 (F

1
1 is the component column matrix of Fv

1 in F1);

(2) the output torque of the ith cluster of CMGs acting on Bi

(i= 1,2, . . . ,n), denoted as Tv
gi ¼ eT1T

1
gi (T

1
gi is the component

column matrix of Tv
gi in F1); (3) the disturbance torque acting

on Bi (i= 1,2, . . . ,n), denoted as Tv
di ¼ eT1T

1
di (T

1
di is the compo-

nent column matrix of Tv
di in F1). Here we assume that the line

of Fv
1 passes through the point o1, and then the active force

matrix can be evaluated as

F�
A ¼ ðGo1

1 ÞTF1
1 þ

Xn

i¼1

WT
i T

1
gi þ

Xn

i¼1

WT
i T

1
di ð15Þ

where Go1
1 is the partial velocity matrix of o1, and given by

Go1
1 ¼ A1;0; 03�3n½ � ð16Þ

Substituting Eqs. (10) and (16) into Eq. (15) yields

F�
A ¼ FT

1 ;T
T
g1 þ TT

d1;T
T
g2 þ TT

d2; . . . ;T
T
gn þ TT

dn

h iT
ð17Þ

where F1 ¼ A0;1F
1
1 is the component column matrix of Fv

1 in F0;

Tgi ¼ Ai;1T
1
gi and Tdi ¼ Ai;1T

1
di are the component column

matrices of Tv
gi and Tv

di in Fi, respectively.

For a cluster of variable speed control moment gyroscopes

(VSCMGs), Tgi can be expressed as36

Tgi ¼ �AgiIcgi€ci � AtiIwsi½Xi�d _ci � AsiIwsi _Xi

� x�
i ðAgiIcgi _ci þ AsiIwsiXiÞ ð18Þ

where ci ¼ ci1;ci2; . . . ;cini
� �T 2 Rni and Xi ¼ Xi1;Xi2; . . . ;Xini½ �T

2 Rni are column matrices whose elements are the gimbal

angles and the rotor spin rates of the ith cluster of CMGs,
respectively; Agi, Asi and Ati are 3 � ni matrices, whose col-
umns are the component column matrices of the gimbal, rotor

spin and transverse directional unit vectors in Fi, respectively;
Icgi 2 Rni�ni is a diagonal matrix, whose elements are the

moments of inertia of the whole CMGs (gimbal plus rotor)
about the gimbal axes; Iwsi 2 Rni�ni is a diagonal matrix whose
elements are the moments of inertia of the rotors about the

rotor spin axes; ½Xi�d 2 Rni�ni is a diagonal matrix given by

½Xi�d ¼ diag Xi1;Xi2; . . . ;Xinið Þ ð19Þ
In this study, we only consider using constant speed CMGs,

and hence the term AsiIwsi _Xi in Eq. (18) can be eliminated.
Generally, the gimbal acceleration term AgiIcgi€ci is small

enough to be ignored;37 moreover, the angular momentum of
the gimbal velocity term AgiIcgi _ci is small in comparison with

the term AsiIwsiXi, so it can also be ignored.38 Therefore, Tgi

can be simplified as

Tgi ¼ �AtiIwsi½Xi�d _ci � x�
i AsiIwsiXi ð20Þ

We reasonably assume that the rotors of the CMGs in the
ith cluster have the same magnitude of angular momentum,
denoted as hi. Given this, Eq. (20) can be written as

Tgi ¼ �hiAti _ci � x�
i Asihi ð21Þ

where

hi ¼ IwsiXi ¼ ½hi; hi; . . . ; hi�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ni

T ð22Þ
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According to the Kane’s equations in matrix form,35 the
dynamical equation of the system can be written in the form
of Eq. (23).

F�
I þ F�

A ¼ 0 ð23Þ
Substituting Eqs. (12) and (17) into Eq. (23), we can

arrange the dynamical equation as

MðqÞ _vþQðq; vÞ ¼ Fc þ Fd ð24Þ
where

Fc ¼ FT
1 ;T

T
g1;T

T
g2; . . . ;T

T
gn

h iT
ð25Þ

Fd ¼ 0T3�1;T
T
d1;T

T
d2; . . . ;T

T
dn

� �T ð26Þ
The dynamical Eq. (24) and the kinematical Eq. (5)

together constitute the governing equations of motion of the
system, and can be used for dynamical simulation, as well as
the basis of system controller design.

4. Control problem statement

In general, the control objective of a space robot is to drive the

manipulator variables to track their desired trajectories. With-
out loss of generality, here the manipulator variable is defined
as

W ¼ RT; rT
1 ; RT

n ; rT
n

� �T ð27Þ
where Rn is the position of the end effector/payload (the tip
body of the multibody system); W is related to system displace-

ment q by Jacobian matrix J(q) as

_W ¼ JðqÞ _q ð28Þ
Denote Wd(t) as the desired trajectory of the manipulator

variable W, and qd ¼ RT
d ; r

T
1d; r

T
2d; . . . ; r

T
nd

� �T
as the desired

value of q, then _qd and €qd can be derived as

_qd ¼ JþðqdÞ _WdðtÞ ð29Þ

€qd ¼ JþðqdÞ €WdðtÞ þ _JþðqdÞ _WdðtÞ ð30Þ
where J+(qd) = JT(qd)(J(qd)J

T(qd))
�1 is the pseudoinverse of

J(qd). Given _qd, qd can be acquired using time integral of _qd.
Since Wd(t) is supposed to be a function of t, qd is also a func-
tion of t and can be written as qd(t).

From the view of practical application, in this study, the
base position R is not supposed to be controlled during the

manipulator operation. To this end, the current R, _R and €R

are used for the desired variables Rd(t), _RdðtÞ and €RdðtÞ,
respectively, and the control force F1 is set to be zero. Such
method was also used by Senda and Nagaoka to address sim-

ilar problems.39 The control objective is to drive
ri ði ¼ 1; 2; . . . ; nÞ to track its desired trajectory rid(t). We pro-
pose to design the control system using decentralized

approach, in which the controller of ri is to be designed sepa-
rately from those of rj (j – i). Therefore, it is necessary to sep-
arately investigate the governing rotational dynamical
equation of Bi, which can be extracted from Eq. (24) and

arranged in the form of

Mi _xi þ FMi
ð�Þ þQiðq; vÞ ¼ Tgi þ Tdi ð31Þ
where Mi 2 R3�3 is the corresponding diagonal partition

matrix of M(q), which is a constant matrix (see Appendix
A); Qi(q, u) is the corresponding partition column matrix of
Q(q, v); FMi

ð�Þ is given by

FMi
ð�Þ ¼ Mi0ðqÞ€Rþ

Xi�1

j¼1

MijðqÞ _xj þ
Xn

j¼iþ1

MijðqÞ _xj ð32Þ

where Mij (q)(j= 0, 1, . . . , i � 1, i + 1, . . . , n) is the corre-
sponding non-diagonal partition matrix of M(q). Explicitly,

FMi
ð�Þ represents the direct disturbance torque of the other

bodies acting on Bi.
From Eq. (1), we know that

xi ¼ H�1
i ðriÞ _ri

_xi ¼ H�1
i ðriÞ€ri þ _H�1

i ðriÞ _ri

(
ð33Þ

Inserting Eq. (33) into Eq. (31) and left multiplying the

resulting equation by H�T
i ðriÞ yield

M�
i ðriÞ€ri ¼ H�T

i ðriÞTgi þH�T
i ðriÞTDiðri; _riÞ ð34Þ

where M�
i ðriÞ ¼ H�T

i ðriÞMiH
�1
i ðriÞ is the symmetric

‘‘modified” mass matrix, and

TDiðri; _riÞ ¼ Tdi �Mi
_HðriÞ�1

i _ri � FMi
ð�Þ �Qiðq; vÞ ð35Þ

Considering the uncertainty of the inertial parameters, the
mass matrix M�

i ðriÞ can be divided into two parts, that is,

M�
i ðriÞ ¼ M�

i0ðriÞ þ DM�
i ðriÞ, where the first part M�

i0ðriÞ is

evaluated using the nominal inertial parameters, and the sec-
ond part DM�

i ðriÞ is the uncertain part. Given this, Eq. (34)

can be rearranged in the form of Eq. (36).

€ri ¼ �ui þ �diðri; _riÞ ð36Þ
where

�ui ¼ M�
i0ðriÞ

� ��1
H�T

i ðriÞTgi ð37Þ
and

�diðri; _riÞ ¼ M�
i ðriÞ

� ��1
H�T

i ðriÞTDiðri; _riÞ
þ M�

i ðriÞ
� ��1

M�
i0ðriÞ � I

	 

�ui ð38Þ

Now we define

Dri ¼ ri � ridðtÞ ð39Þ
as the tracking error of ri and

xi ¼
Dri

D _ri

� �
ð40Þ

as system state, and then Eq. (36) can be written in the state
equation form of

_xi ¼ Aixi þ Biðui þ diðxi; tÞÞ ð41Þ

where Ai ¼ 03�3 I
03�3 03�3

� �
and Bi ¼ 03�3

I

� �
are constants.

ui ¼ �ui � €ridðtÞ ð42Þ
is taken as system control input, and

diðxi; tÞ ¼ �diðri; _riÞ ð43Þ
is the ‘‘lumped” uncertainty including the uncertainties of iner-
tial parameters, system nonlinearity and unknown distur-
bances. To be strict, part of di(xi, t) can be precisely
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evaluated using the measurements of ri and xi (for example,

part of the system nonlinear term) despite the initial parameter
uncertainty, and hence the part can be treated as known quan-
tity in controller design. However, in order to simplify the con-

troller algorithm, as well as to reduce the dependence of the
controller design on system dynamical model, the whole term
of di(xi, t) is still taken as uncertainty.

By now, the control problem becomes clear, that is, seeking

for proper control input ui for system Eq. (41) to drive xi ? 0

under the disturbance of the ‘‘lumped” uncertainty di(xi, t).
5. Control law design

To complete the description of system Eq. (41), we state the
following assumptions. For convenience, in this section, the

subscript ‘‘i” is omitted.

Assumption 3. The pair (A,B) is completely controllable.

Assumption 4. The uncertainty d(x, t) is continuous on its
arguments.

Remark 1. Assumption 3 is distinctly valid for system Eq. (41).
However, if the uncertainty d(x, t) contains joint friction tor-
ques, Assumption 4 may be called in question, because in some
rough models the friction is discontinuous. But in accurate

models which consider many aspects of friction such as stic-
tion, stick–slip, Stribeck, etc., friction is indeed continuous.40

Therefore, Assumption 4 is also valid for system Eq. (41) in

theory, although sometimes (especially when the friction direc-
tion is being changed) the friction behaves like discontinuous
force and hence worsens system performance.

Since we propose to design the controller using SMC
method, we begin with the first phase of a sliding surface con-

struction so that the system restricted to the sliding surface
produces desired behavior.41 The resulting sliding surface is
given by

H ¼ fx : SðxÞ ¼ Cx ¼ 0g ð44Þ
where C 2 R

3�6 is a constant matrix whose elements are cho-
sen on the basis of the desired behavior. Here we assume that
C is of full rank and the matrix CB is nonsingular.

After the sliding surface selection, the next phase is to

design the control law so that the condition ST _S < 0 is satis-
fied. This condition guarantees that the system trajectories
reach the sliding surface and remain there for all subsequent
time. The character of the ‘‘lumped” uncertainty d(x, t), as

the open literature has shown, has prominent effect on the
control law design. If we can find a continuous positive scalar
valued function q(x, t), such that kdðx; tÞk 6 qðx; tÞ for all

(x, t) 2 R6 � R, then an SMC law guaranteeing ST _S < 0 can

be developed using the results in Ref.41. However, for the sys-
tem studied in this paper, such a function q(x, t) is not easy to
be obtained, that is, the upper bound of the norm ||d(x, t)|| is

uncertain. To handle this problem, Yoo and Chung22 pro-
posed the adaptation laws which are capable of estimating
the upper bound of the norm ||d(x, t)||, and designed a SMC

law using the estimated upper bound. The control scheme in
Ref.22 is based on the assumption below.
Assumption 5. There are positive constants, c0 and c1, such

that kdðx; tÞk 6 c0 þ c1kxk ¼ qðx; tÞ for all (x, t) 2 R
6 � R.

The control law proposed by Yoo and Chung22 is given by

u ¼ �ðCBÞ�1
KDSþ ueqnom þ uN ð45Þ

where KD 2 R
3�3 is a positive definite matrix; ueqnom is the

equivalent control for the nominal system of Eq. (41) by

assuming that the uncertainty d(x, t) is zero, and determined
by

ueqnom ¼ �ðCBÞ�1
CAx ð46Þ

The term uN is the nonlinear feedback control for suppres-
sion of the effect of the uncertainty, and defined as

uN ¼ � BTCTS

BTCTS
�� �� �qðx; tÞ S – 0

0 S ¼ 0

8><
>: ð47Þ

where �qðx; tÞ is the adaptive upper bound of ||d(x, t)|| and eval-
uated by

�qðx; tÞ ¼ �c0 þ �c1kxk ð48Þ
Therein, �c0 and �c1 are the estimated values of c0 and c1,

respectively, and given by the adaptation laws of Eq. (49).

_�c0 ¼ q0 BTCTS
�� ��

_�c1 ¼ q1 BTCTS
�� ��kxk

(
ð49Þ

where q0 and q1 are adaptation gains with positive values. Yoo
and Chung have proved that for system Eq. (41), if Assump-

tions 3–5 are valid, S= 0 is asymptotically stable by employ-
ing the control law Eq. (45) with uN given in Eq. (47). By
analyzing the structure of uN, Yoo and Chung also pointed
out that the undesirable chattering phenomenon may occur

due to the discontinuity of uN at S= 0, and therefore they
took a further step to modify uN as22

uN ¼
� BTCTS

BTCTS
�� �� �qðx; tÞ BTCTS

�� �� > e

�BTCTS

e
�qðx; tÞ BTCTS

�� �� 6 e

8>>><
>>>: ð50Þ

where �qðx; tÞ and the adaptation laws are still given by Eqs.
(48) and (49); e is the boundary layer parameter, and usually
chosen as a small positive value. Though the control law with

uN given in Eq. (50) loses asymptotic stability, the performance
can be made arbitrarily close to that of the original control law
in which uN is given by Eq. (47).

Later, Wheeler et al.24 found that for the control law Eq.

(45) with uN given in Eq. (50), the estimated gains �c0 and �c1
determined by Eq. (49) may become unbounded in the bound-
ary layer since the restriction to the sliding surface cannot

always be achieved precisely. To eliminate the drawback, they
modified uN and the adaptation laws as

uN ¼
� BTCTS

BTCTS
�� �� �qðx; tÞ �qðx; tÞ BTCTS

�� �� > e

�BTCTS

e
�q2ðx; tÞ �qðx; tÞ BTCTS

�� �� 6 e

8>>><
>>>: ð51Þ

�qðx; tÞ ¼ �c0 þ �c1kxk ð52Þ
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_�c0 ¼ q0 �w0�c0 þ BTCTS
�� ��� �

_�c1 ¼ q1 �w1�c1 þ BTCTS
�� ��kxk� �

(
ð53Þ

where w0 and w1 are constants chosen by the designer. Wheeler
et al.24 have proved that if Assumptions 3–5 are valid, then the

control law Eq. (45) with uN in Eq. (51) is continuous and in
the closed loop system S(x) and all signals are uniformly ulti-
mately bounded. However, direct application of Wheeler’s
control law to the system studied in this paper may arouse

two problems. The first one is about the Assumption 5. Since
the ‘‘lumped” uncertainty d(x, t) contains complex nonlineari-
ties, maybe the Assumption 5 is no more valid. The second one

is about the control law itself. Though the system is proved to
be uniformly ultimately bounded, there is no sufficient evi-
dence showing �c0 P c0 and �c1 P c1 for all (x, t), which implies

there exists the possibility of �qðx; tÞ 6 qðx; tÞ. When
�qðx; tÞ 6 qðx; tÞ, the control error may increase. The possibility

of �qðx; tÞ 6 qðx; tÞ increases when ||S|| ? 0 because _�c0 and _�c1
may be negative, and hence �qðx; tÞ may decrease at this point.
Therefore, we hope to increase �qðx; tÞ when ||S|| enters a neigh-
borhood of zero to reduce the possibility of �qðx; tÞ 6 qðx; tÞ
and consequently reduce the control error. Motivated by the
above two problems, we first expand Assumption 5 to Assump-
tion 6 as shown below.

Assumption 6. There are positive constants, c0, c1, . . . ,cN,
where N is a given positive integer, such that

jdðx; tÞj jj 6 c0 þ c1kxk þ . . .þ cNkxkN ¼ qðx; tÞ for all (x, t) 2
R6 � R.

Based on Assumption 6, we then modify uN as

uN ¼
� BTCTS

BTCTSk k2P BTCTS
�� ��� �

�q �q BTCTS
�� ��2

> eP BTCTS
�� ��� �

�BTCTS
e

�q2 �q BTCTS
�� ��2 6 eP BTCTS

�� ��� �
8><
>:

ð54Þ
where P(�) is a scalar function. For any x P 0, the function

P(x) in Eq. (54) is defined as

PðxÞ ¼ gðxÞ x 6 d

x x > d

�
ð55Þ

Therein, d > 0 is a constant; g(x) is a scalar continuous func-
tion chosen by the designer which satisfies the following

conditions.
Condition 1

(1) g(0) = 0, g(d) = d. This condition guarantees the conti-
nuity of uN.

(2) g(x) > x, for x 2 (0, d). This condition ensures P ðxÞ P x
for all x P 0, and hence the control error is reduced.

(3) There is a positive constant j, such that

j ¼ max
gðxÞ
x


 �
. This condition guarantees the stability

of the closed loop system (see Appendix B).

In Eq. (54), �qðx; tÞ is given by

�qðx; tÞ ¼ �c0 þ �c1kxk þ . . .þ �cNkxkN ð56Þ
where �c0, �c1, . . . , �cN are the estimated values of c0, c1, . . . ,cN,
respectively, and evaluated by the adaptation laws of Eq. (57).
_�c0 ¼ q0 �w0�c0 þ P BTCTS
�� ��� �� �

_�c1 ¼ q1 �w1�c1 þ P BTCTS
�� ��� �kxk� �

..

.

_�cN ¼ qN �wN�cN þ P BTCTS
�� ��� �kxkN� �

8>>>>>>><
>>>>>>>:

ð57Þ

It can be proved that if Assumptions 3, 4 and 6 are valid, the
closed loop system constructed using control law Eq. (45) with

uN in Eq. (54) is uniformly ultimately bounded. The proof is
presented in Appendix B.

Remark 2. Since the nonlinear terms are all treated as system
uncertainty, the positive integer N maybe cannot be chosen

very precisely. To be conservative, N can be chosen as a larger
integer, because if the integer matching the real system
(denoted as Nr) is smaller than the selected integer

N, Assumption 6 is still valid by letting ck = 0 (k = Nr + 1,
Nr + 2, . . . , N). However, if Nr > N, the Assumption 6 is no
more valid.

Remark 3. The purpose of the introduction of P(x) is to

amplify the estimated �qðx; tÞ in a predesigned interval of
||BTCTS|| 2 (0, d) so as to reduce the control error. Generally,
d should be chosen as a small positive value, otherwise, the

controller may take the risk of producing overlarge control
input beyond the capacity of the actuators when ||BTCTS|| is
far from zero. In Wheeler’s control law and adaption law,

the control error can also be reduced by increasing q0 and q1
and decreasing w0 and w1, but with the same risk as mentioned
above. In a word, we expect control error reduction at the cost
of few increase of control input.
6. Steering law for CMGs

Once the control input ui is obtained by the control law, the
desired value of the CMG torque Tgi, denoted as Tdgi, can

be uniquely determined using Eqs. (37) and (42) as given
below.

Tdgi ¼ HTðriÞM�
i0ðriÞ ui þ €rdiðtÞð Þ ð58Þ

Based on Eq. (20), we know that to provide the desired
torque Tdgi, the gimbal angular velocity of the ith cluster of
CMGs, _ci, must satisfy

Tdgi ¼ �AtiIwsi½Xi�d _ci � x�
i AsiIwsiXi ð59Þ

Here we assume ni P 4 ði ¼ 1; 2; . . . ; nÞ. Because of the
redundancy of the CMGs, there are infinite solutions of _ci
satisfying Eq. (59). To avoid the configuration singularity,
we use the well-developed steering law with null motion, that
is,

_ci ¼ _cTi þ _cNi ð60Þ
where

_cTi ¼ � 1

hi
AT

tiðAtiA
T
tiÞ

�1ðTdgi þ x�
i AsiIwsiXiÞ ð61Þ

is used to provide the desired control torque, and

_cNi ¼ ai I� AT
tiðAtiA

T
tiÞ

�1
Ati

h i @gi
@ci

ð62Þ
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is the null motion used to avoid the configuration singularity.

Therein, ai is a positive scalar parameter chosen by the

designer, and gi ¼ detðAtiA
T
tiÞ is the measurement of configura-

tion singularity.

7. Numerical example

7.1. System configuration and parameters

The numerical example is concerned with a system containing
a cubic base and three links. The length of side of the base is

1.5 m, the length of the link B2 and B3 is 1.5 m, and that of
the link B4 (the end effector/payload) is 0.6 m. The origin of
F1 is located at the geometrical center of the base, and the axes

of F1 are parallel to the edge lines of the cube. When the axes
of F1 are parallel to the corresponding axes of the body-
fixed coordinates of the links, the system configuration is
shown in Fig. 3(a). Different CMG configurations can be

adopted to provide the control torques provided that
ni P 4 ði ¼ 1; 2; . . . ; nÞ; nevertheless, we select the pyramid
configuration due to its close-to-spherical angular momentum

envelop, i.e., a cluster of CMGs arranged in pyramid configu-
ration is installed on the base as well as each link. The center-
ing axis of the pyramid is along the direction of the zi axis of Fi,

and the gimbal axis of each CMG has the same included angle
of b= 53.1� with the centering axis (see Fig. 3(b), where
_cvij ðj ¼ 1; 2; 3; 4Þ and hvij ðj ¼ 1; 2; 3; 4Þ represent the gimbal

angular velocity and rotor angular momentum of the jth

CMG in ith cluster, respectively). Table 1 lists system inertial
Fig. 3 Configuration of system in numerical example.

Table 1 System inertial parameters.

Body number Mass (kg) First moment (true) (kg �
True Nominal

B1 3000 2400 [0,15,0]T

B2 60 90 [0,0,45]T

B3 60 42 [0,0,45]T

B4 300 150 [0,0,90]T
parameters. The moments of inertia and the first moments
are evaluated based on the corresponding body-fixed coordi-
nates. As the values of the first moments are unused in con-

troller design, we merely need to present the true values.
The geometric parameters are

r1;2 ¼ ½0; 0:75; 0:75�T m

r2;3 ¼ r3;4 ¼ ½0; 0; 1:5�T m

(

The magnitudes of the angular momentums of the CMGs,

hi ði ¼ 1; 2; 3; 4Þ, are chosen as

h1 ¼ 100 N �m � s ; h2 ¼ 50 N �m � s
h3 ¼ 40 N �m � s; h4 ¼ 30 N �m � s

�
The initial gimbal angles of the CMGs are chosen to be

ci0 ¼ 0; 0; 0; 0½ �T ð�Þ ði ¼ 1; 2; 3; 4Þ
When ci0 ¼ 0; 0; 0; 0½ �T ð�Þ, the angular momentum

vector of each CMG in the ith cluster will be parallel to the

basal plane of the pyramid (see Fig. 3(b)). The initial system
velocity v0 = 0, and the initial system displacements in

q0 ¼ RT
0 ; r

T
10; r

T
20; r

T
30; r

T
40

� �T
are set to be

R0 ¼ 0:2; �0:3; 0:3½ �T m

r10 ¼ 0:0109; �0:0189; 0:0378½ �T
r20 ¼ 0:2679; 0; 0½ �T
r30 ¼ �0:2679; 0; 0½ �T
r40 ¼ 0:2588; 0:0694; 0½ �T

8>>>>>><
>>>>>>:

7.2. Control objective

The control objective is to drive the manipulator variable

W ¼ RT; rT
1 ;R

T
4 ; r

T
4

� �T
to track its desired trajectory

WdðtÞ ¼ RT
d ðtÞ; rT

1dðtÞ;RT
4dðtÞ; rT

4dðtÞ
� �T

. Here the endpoint of

the link B4 is taken as the reference point of the end effector/
payload position R4, and then R4 can be expressed as

R4 ¼ Rþ A0;1r1;2 þ A0;2r2;3 þ A0;3r3;4 þ A0;4r4t ð63Þ
where r4t ¼ ½0; 0; 0:6�Tm is the endpoint position of the link B4

in F4. Because R is not controlled, we then use the current R, _R

and €R as the desired values of Rd(t), _RdðtÞ and €RdðtÞ, respec-
tively. The initial values of r1d(t), R4d(t) and r4d(t) are deter-

mined by the initial values of the desired system

displacements in qd0 ¼ RT
d0; r

T
1d0; r

T
2d0; r

T
3d0; r

T
4d0

� �T
which are

set to be
m) Moment of inertia (kg � m2)

True Nominal

1500 �37 �26:5
�37 1800 �15
�26:5 �15 2000

2
4

3
5 1200 �29:6 �21:2

�29:6 1440 �12
�21:2 �12 1600

2
4

3
5

diag (45,45,5.5) diag (67.5,67.5,8.25)

diag (45,45,5.5) diag (31.5,31.5,3.85)

diag (36,36,7.5) diag (18,18,3.75)



Fig. 4 System initial configuration and desired position

trajectory of end effector/payload.
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Rd0 ¼ 0:2;�0:3; 0:3½ �T m

r1d0 ¼ 0:0164; �0:0284; 0:0568½ �T
r2d0 ¼ 0:1989; 0; 0½ �T
r3d0 ¼ �0:3395; 0; 0½ �T
r4d0 ¼ 0:1921; 0:0515; 0½ �T

8>>>>>><
>>>>>>:

By Eq. (63), the corresponding initial values of r1d(t), R4d(t)
and r4d(t) are then computed as

r1d0 ¼ 0:0164; �0:0284; 0:0568½ �T
R4d0 ¼ 0:0604; 0:3495; 2:9557½ �T m

r4d0 ¼ 0:1921; 0:0515; 0½ �T

8><
>:
r1d(t) and r4d(t) are determined by quintic polynomials with

the desired initial values of r1d0 and r4d0 and the desired final

values of r1df ¼ 0; 0; 0½ �T and r4df ¼ 0; 0; 0½ �T, and
given as

ridðtÞ ¼
UriTþ rid0 t0 6 t 6 tf

ridf t > tf

�
; i ¼ 1; 4

where t0 ¼ 0 s, tf ¼ 30 s, T ¼ t5; t4; t3
� �T

, and

Ur1 ¼
�4:0459� 10�9 3:0344� 10�7 6:0688� 10�6

7:0077� 10�9 �5:2558� 10�7 1:0512� 10�5

�1:4015� 10�8 1:0512� 10�6 �2:1023� 10�5

2
64

3
75

Ur4 ¼
�4:7441� 10�8 3:5580� 10�6 �7:1161� 10�5

�1:2712� 10�8 9:5338� 10�7 �1:9068� 10�5

0 0 0

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

It is easy to verify that ridðtÞ ði ¼ 1; 4Þ satisfies the following
constraints:

ridðt0Þ ¼ rid0; ridðtfÞ ¼ ridf

_ridðt0Þ ¼ €ridðt0Þ ¼ 0

_ridðtfÞ ¼ €ridðtfÞ ¼ 0

8><
>:

Because r1df and r4df are constant values of zero, the
attitudes of both the base and the end effector/payload are
supposed to maintain stable control along desired approaching

trajectories.
When t0 6 t 6 tf, R4d(t) is also determined by quintic

polynomials with the desired initial values of R4d0

and the desired value of R4d(t) at t= tf, R4dðtfÞ ¼
JðqÞ ¼

I 03�3 03�3 03�3 03�3

03�3 I 03�3 03�3 03�3

I �A0;1r
�
1;2H

�1
1 ðr1Þ �A0;2r

�
2;3H

�1
2 ðr2Þ �A0;3r

�
3;4H

�1
3 ðr3Þ �A0;4r

�
4tH

�1
4 ðr4Þ

03�3 03�3 03�3 03�3 I

2
6664

3
7775
�0:4330; �0:1250; 3:3835½ �T m. When t> tf, R4d(t) is a
predesigned continuous trajectory instead of a constant. The

expression of R4d(t) is given as

R4dðtÞ ¼
URTþ R4dðtfÞ t0 6 t 6 tf

R4dfðtÞ t > tf

�

where

UR ¼
�6:9423� 10�8 7:4473� 10�6 �1:7921� 10�4

6:5902� 10�8 �3:4562� 10�6 2:6797� 10�5

4:2272� 10�7 �2:9129� 10�5 5:0927� 10�4

2
64

3
75

R4dfðtÞ ¼
r cosðxctþ h1Þ þX0

r sinðxctþ h1Þ cosh2 þY0

r sinðxctþ h1Þ sinh2 þZ0

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

Therein, r ¼ 0:5 m, xc = p/20, h1 = �p/3, h2 = p/3,
X0 ¼ Y0 ¼ 0 m and Z0 ¼ 3:6 m. R4df(t) is actually a periodic
circle trajectory in inertial space, and URT + R4d(tf) is a

smooth trajectory from R4d0 to R4df(t) which intersects
R4df(t) at the point of R4d(tf). The parameters ensure that
R4d(t) is doubly differentiable. Fig. 4 shows the system initial

configuration and the desired position trajectory of the end
effector/payload.

The Jacobian matrix J(q) which associates the manipulator

variable W with system displacement q is
Based on Wd(t) given above, the desired displacement qd, as
well as its first and second time derivatives _qd and €qd, can be

obtained using the trajectory planning algorithm presented in
Section 4 and the Jacobian matrix J(q) given above, and then
the control objective is to drive ri ði ¼ 1; 2; 3; 4Þ to track the

desired trajectory rid in qd.



Table 2 System control parameters.

Controller N q0 q1 q2 q3 w0 w1 w2 w3 a b d e C KD

B1 3 5 5 5 5 0.010 0.010 0.010 0.010 0.004 3750 0.004 0.02 [0.3I,I] 0.3I

B2 3 5 5 5 5 0.005 0.005 0.005 0.005 0.010 1500 0.010 0.01 [0.5I,I] 0.5I

B3 3 5 5 5 5 0.005 0.005 0.005 0.005 0.010 1500 0.010 0.01 [0.5I,I] 0.5I

B4 3 5 5 5 5 0.005 0.005 0.005 0.005 0.010 1500 0.010 0.01 [0.5I,I] 0.5I

Fig. 5 Desired trajectories of ri ði ¼ 1; 2; 3; 4Þ.
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7.3. Disturbance torques

The disturbance torques taken into consideration mainly
include two parts: the joint friction torques and other possible

disturbance torques. Precise modeling of the friction torque of
a ball joint is quite complex, and in the simulation, the follow-
ing model is used to roughly simulate the friction torque of

joint i acting on Bi (i = 2,3,4).

Thi ¼ �kcisatðxi � Ai;i�1xi�1; fiÞ � ktiðxi � Ai;i�1xi�1Þ;
i ¼ 2; 3; 4

where, for any x ¼ x1; x2; x3½ �T 2 R3 and 1 ¼
11; 12; 13½ �T 2 R3, sat(x,1) = [sat(x1,11), sat(x2,12), sat
(x3,13)]

T, and therein, satðxj; 1jÞ ðj ¼ 1; 2; 3Þ is a saturation

function defined as

satðxj; 1jÞ ¼
signðxjÞ jxjj P 1j
xj=1j jxjj < 1j

�
; j ¼ 1; 2; 3
Other possible disturbance torques acting on Bi

(i= 1,2,3,4) are considered to be the sum of a constant torque
and a periodic torque with the argument of time t, and given as

Tpi ¼ Tpi0 þ Tpip sinðxpitÞ i ¼ 1; 2; 3; 4

Note that when the friction torque of joint i acts on Bi, its
reaction torque will also act on Bi�1, and then the disturbance
torques in Fd (see Eq. (26)) in the simulation are given as

Td1 ¼ Tp1 � A1;2Th2

Td2 ¼ Tp2 þ Th2 � A2;3Th3

Td3 ¼ Tp3 þ Th3 � A3;4Th4

Td4 ¼ Tp4 þ Th4

8>>><
>>>:

The related constant parameters are chosen to be

kc2 ¼ 0:15 N �m ; kc3 ¼ kc4 ¼ 0:1N �m
kt2 ¼ 0:07 N �m � s=rad
kt3 ¼ kt4 ¼ 0:05 N �m � s=rad
f2 ¼ f3 ¼ f4 ¼ 2; 2; 2½ �T � 10�3 rad=s

8>>><
>>>: ;



Fig. 6 Control errors of ri ði ¼ 1; 2; 3; 4Þ.

Fig. 7 Position errors of the end effector/payload.
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Tp10 ¼ 0:15; 0:15; 0:15½ �T N � m
Tp20 ¼ 0:1; 0:1; 0:1½ �T N �m
Tp30 ¼ Tp40 ¼ 0:08; 0:08; 0:08½ �T N �m
Tp1p ¼ 0:15; �0:2; �0:15½ �T N �m
Tp2p ¼ 0:1; �0:15; �0:1½ �T N �m
Tp3p ¼ Tp4p ¼ ½ 0:08; �0:12; �0:08 �T N �m

8>>>>>>>>>><
>>>>>>>>>>:

;

xp1 ¼ 0:3 rad=s; xp2 ¼ xp3 ¼ xp4 ¼ 0:5 rad=s
7.4. Control parameters

For the controller of Bi (i= 1,2,3,4), the function P(x) in
Eq. (55) is denoted as Pi(x) and designed as

PiðxÞ ¼
ai tanhðbixÞ x 6 di
x x > di

�
; i ¼ 1; 2; 3; 4

where the parameters of ai, bi and di which guarantee Condi-
tion 1, as well as other control parameters, are listed together
in Table 2.

For each cluster of CMGs, the null motion coefficient is
chosen to be the same value of ai ¼ 0:5 ði ¼ 1; 2; 3; 4Þ.

7.5. Simulation results and analysis

Fig. 5 shows the desired trajectories of ri ði ¼ 1; 2; 3; 4Þ,
rid ¼ rid1; rid2; rid3½ �T, solved using the trajectory planning
algorithm presented in Section 4 based on the given desired
manipulator variable Wd(t). Fig. 6 shows the control errors

of ri (i= 1, 2, 3, 4) defined as Dri = ||ri � rid||, and Fig. 7
shows the position errors of the end effector/payload defined
as DR4 = ||R4 � R4d(t)|| under the direct control of ri. For

comparison, the results using the control law Eq. (45) with
uN given in Eq. (54) (the proposed control law in this paper)
and those using the control law Eq. (45) with uN given in

Eq. (51) are both presented in Figs. 6 and 7. The two control
laws use the same control parameters (if they have) as given in



Fig. 8 Magnitudes of Tgi ði ¼ 1; 2; 3; 4Þ.
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Section 7.4 to obtain comparable results. As can be seen, the

control errors of the control law with uN given in Eq. (54)
are conspicuously smaller than those of the control law with
uN given in Eq. (51), which verifies the effectiveness of the pro-

posed improvements in the control law and adaptation laws.
Fig. 8 gives the magnitudes of Tgi, i.e., Tgi = ||Tgi||

(i= 1, 2, 3, 4). By comparing Tgi produced by uN given in
Eq. (54) with those produced by uN given in Eq. (51), we can

see that, as expected, the control law with uN given in
Eq. (54) does not produce noticeably larger control torque
than that with uN given in Eq. (51) although it does achieve

better control accuracy. Moreover, no chattering phenomenon
occurs in the simulations of both two controllers due to their
continuity in control inputs. Further simulation results show

that if the amplification range in the adaptation laws is
extended, better control accuracy may be achieved but at the
possible cost of increasing the magnitude of the control
torques.

The steering law with null motion for the CMGs works well
during the simulation. Fig. 9 shows the configuration singular-
ity measurements of the CMGs (the results in Fig. 9 are

achieved by the control law with uN given in Eq. (54)), includ-
ing those with null motion and without null motion. Though
the CMG clusters do not run into singularity even when the

null motion is not added, in most of the time, the measure-
ments with null motion are much larger than those without
null motion, which indicates effective singularity avoidance

of the null motion.
Fig. 10 shows system configurations at different moments

during the control. The coordinate with solid line axes repre-
sents F4, and that with dotted line axes represents the desired
orientation of F4. The same color represents the same axis.

The origin of F4 is located at the position reference point of
the end effector/payload, and that of the desired coordinate
is located at the desired position of the end effector/payload.

At the initial moment, both the position and the orientation
of the end effector/payload have conspicuous deviations from
the desired ones, and the base attitude also has visible devia-
tion from the desired attitude of [0,0,0]T. Under the control

of the proposed control law, the deviations decrease gradually
and enter into a small boundary ultimately.
8. Conclusions

(1) Decentralized controller design for trajectory tracking of
the space robot system faces the challenge of large sys-
tem uncertainty with unknown upper bound. The sliding

mode controller with the improved adaptation laws pro-
posed in this paper can achieve uniformly ultimate
boundedness of the closed loop system. The amplifica-

tion function introduced in the adaptation laws effec-
tively reduces the control error without notably
increasing the control input magnitude provided that

the amplification range is properly selected, and the con-
trol law is free from the chattering problem due to its
continuity. The proposed controller is expected to be

applicable to systems with different configurations
because the controller for each link is designed sepa-
rately as a sole system.

(2) It should also be noticed that as angular momentum

devices, the CMGs always face the risk of angular



Fig. 9 Singularity measurements of CMGs.

Fig. 10 System configuration at different moments during control.
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momentum saturation. Therefore, the CMG-actuating

design cannot be applied to terrestrial robotic systems
due to continuous gravitational torques. Even in space
environment, reducing the possibility of saturation is

still of great significance; therefore the approach to real-
ize this objective is regarded as important future work.
The approach may be implemented along two different
routes. From the angle of hardware, we can increase

the CMG angular momentum by increasing either the
moment of inertia or the spin rate of the CMG rotor

to reduce the possibility of saturation; however, such
methods will definitely increase the mass of the CMGs,
which, to some extent, equates to increasing the payload

mass of the robotic manipulator. Therefore, we need an
appropriate optimization method to balance the angular
moment of the CMGs and the load capacity of the
robotic manipulator. From the angle of algorithm, we

may utilize the redundancy of DOC of the joints to
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redistribute the three-axis angular momentum of each

link so as to avoid saturation. In other words, with the
redundancy of DOC of the joints, we may seek a trajec-
tory helping saturation avoidance in joint space from

infinite trajectories which satisfy the end effector/
payload trajectory constraints.
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Appendix A
MðqÞ ¼

mI �A0;1ðs�1Þ� �A0;2ðs�2Þ� �A0;3ðs�3Þ� �A0;4ðs�4Þ� � � � �A0;nðs�nÞ�
� I�1 �r�1;2A1;2ðs�2Þ� �r�1;2A1;3ðs�3Þ� �r�1;2A1;4ðs�4Þ� � � � �r�1;2A1;nðs�nÞ�
� � I�2 �r�2;3A2;3ðs�3Þ� �r�2;3A2;4ðs�4Þ� � � � �r�2;3A2;nðs�nÞ�
� � � I�3 �r�3;4A3;4ðs�4Þ� � � � �r�3;4A3;nðs�nÞ�
� � � � I�4 � � � �r�4;5A4;nðs�nÞ�
� � � � � �
� � � � � � I�n

2
666666666664

3
777777777775

ðA1Þ
where m is the total mass of the system, and

s�i ¼ si þ
Xn

j¼iþ1

mjri;iþ1

I�i ¼ I0i þ
Xn

j¼iþ1

mjðr�i;iþ1ÞTr�i;iþ1

8>>>><
>>>>:
Therein, mj is the mass of Bj, si ¼

R
Bi
ri dm is the first moment

of Bi in Fi, and I0i ¼
R
Bi
ðr�i ÞTr�i dm is the moment of inertia of

Bi in Fi.

Qðq; vÞ ¼ QT
0 ðq; vÞ; QT

1 ðq; vÞ; . . . ; QT
n ðq; vÞ

� �T ðA2Þ

where

Q0ðq; vÞ ¼ �
Xn

j¼1

A0;jx
�
j ðs�j Þ�xj

Q1ðq; vÞ ¼ x�
1 I

�
1x1 � r�1;2

Xn

j¼2

A1;jx
�
j ðs�j Þ�xj

Qiðq; vÞ ¼ �
Xi�1

j¼1

ðs�i Þ�Ai;jx
�
j r

�
j;jþ1xj þ x�

i I
�
i xi

�r�i;iþ1

Xn

j¼iþ1

Ai;jx
�
j ðs�j Þ�xj

i ¼ 2; 3; . . . ; n

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:
Appendix B

Define a Lyapunov function as

V ¼ 1

2
STSþ 1

2
q�1
0 c~20 þ 1

2
q�1
1 c~21 þ . . .þ 1

2
q�1
N c~2N ðB1Þ

where

~c0 ¼ �c0 � c0; ~c1 ¼ �c1 � c1; . . . ; ~cN ¼ �cN � cN

Differentiating V with respect to time yields

_V ¼ ST _Sþ
XN
k¼0

q�1
k ~ck _~ck ðB2Þ

If �q BTCTS
�� ��2

> eP BTCTS
�� ��� �

, Eq. (B2) becomes
_V ¼ ST �KDSþ CBuN þ CBdð Þ þ
XN
k¼0

q�1
k ck _ck

¼ �STKDS� P jBTCTS
�� ��j� �

�c0 þ �c1kxk þ . . .þ �cnkxkN
� �

þ STCBdþ
XN
k¼0

q�1
k ck _ck 6 �STKDS

� P jBTCTS
�� ��j� �

�c0 þ �c1kxk þ . . .þ �cNkxkN
� �

þ P jBTCTS
�� ��j� �

c0 þ c1kxk þ . . .þ cNkxkN
� �þXN

k¼0

q�1
k ck _ck

¼ �STKDS� c0P jBTCTS
�� ��j� �� c1P jBTCTS

�� ��j� �kxk � . . .

� c~NP jBTCTS
�� ��j� �kxkN þ

XN
k¼0

q�1
k ck _ck

¼ �STKDS� c0P jBTCTS
�� ��j� �� c~1P jBTCTS

�� ��j� �kxk � . . .

� c~NP jBTCTS
�� ��j� �kxkN þ c~0 �w0�c0 þ P jBTCTS

�� ��j� �� �
þ c~1 �w1�c1 þ P jBTCTS

�� ��j� �kxk� �þ . . .

þ c~N �wN�cN þ P jBTCTS
�� ��j� �kxkN� �

¼ �STKDS� w0c0�c0 � w1c1�c1 � . . .� wNcN�cN

¼ �STKDS� w0

1

2
c0 � �c0


 �2

� w1

1

2
c1 � �c1


 �2

� . . .

� wN

1

2
cN � �cN


 �2

þ 1

4
w0c

2
0 þ

1

4
w1c

2
1 þ . . .þ 1

4
wNc

2
N

¼ �STKDS� w0

1

2
c0 � �c0


 �2

� w1

1

2
c1 � �c1


 �2

� . . .

� wN

1

2
cN � �cN


 �2

þ j1 ðB3Þ

where j1 ¼
PN

k¼0
1
4
wic

2
i is a constant.
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If �q BTCTS
�� ��2 6 eP BTCTS

�� ��� �
, Eq. (B2) can be written as

_V¼ ST �KDSþCBuN þCBdð Þ þ
XN
k¼0

q�1
k ck _ck

¼�STKDS� jBTCTS
�� ��j2

e
q
�2 þSTCBdþ

XN
k¼0

q�1
k ck _ck

6�STKDS� jBTCTS
�� ��j2

e
q
�2 þP jBTCTS

�� ��j� �
qþ

XN
k¼0

q�1
k ck _ck

¼�STKDS� jBTCTS
�� ��j2

e
q
�2 þP jBTCTS

�� ��j� �
q

þ c0 �w0�c0 þP jBTCTS
�� ��j� �� �

þ c1 �w1�c1 þP jBTCTS
�� ��j� �kxk� �þ . . .

þ cN �wN�cN þP jBTCTS
�� ��j� �kxkN� �

¼�STKDS� jBTCTS
�� ��j2

e
q
�2

þP jBTCTS
�� ��j� �

q
��w0c0�c0 �w1c1�c1 � . . .�wNcN�cN ðB4Þ

The term � BTCTS
�� ��2

e
�q2 þ P BTCTS

�� ��� �
�q in Eq. (B4) is a

quadratic function of �q, and when �q ¼ P BTCTS
�� ��� �

e

2 BTCTS
�� ��2

, the term

reaches the maximum value of
ej2

4
, where j ¼ max

gðxÞ
x


 �
is

defined in Condition 1. Thus we may write the inequality as

_V 6 �STKDSþ ej2

4
� w0c0�c0 � w1c1�c1 � . . .� wNcN�cN

¼ �STKDSþ ej2

4
� w0

1

2
c0 � �c0


 �2

� w1

1

2
c1 � �c1


 �2

� . . .� wN

1

2
cN � �cN


 �2

þ j1

¼ �STKDS� w0

1

2
c0 � �c0


 �2

� w1

1

2
c1 � �c1


 �2

� . . .

� wN

1

2
cN � �cN


 �2

þ j2 ðB5Þ

where j2 ¼ j1 þ ej2

4
is a constant.

With Eqs. (B3) and (B5), we may conclude that the closed
loop system is of uniformly ultimate boundedness using the
results in Ref.42.
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