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SUMMARY

Hair cells are the mechanosensory cells of the inner
ear. Mechanotransduction channels in hair cells are
gated by tip links. The molecules that connect tip
links to transduction channels are not known. Here
we show that the transmembrane protein TMIE forms
a ternary complex with the tip-link component
PCDH15 and its binding partner TMHS/LHFPL5.
Alternative splicing of the PCDH15 cytoplasmic
domain regulates formation of this ternary complex.
Transducer currents are abolished by a homozygous
Tmie-null mutation, and subtle Tmie mutations that
disrupt interactions between TMIE and tip links affect
transduction, suggesting that TMIE is an essential
component of the hair cell’s mechanotransduction
machinery that functionally couples the tip link to
the transduction channel. Themultisubunit composi-
tion of the transduction complex and the regulation
of complex assembly by alternative splicing is likely
critical for regulating channel properties in different
hair cells and along the cochlea’s tonotopic axis.

INTRODUCTION

Mechanoelectrical transduction, the conversion of mechanical

force into electrical signals, is critical for our senses of hearing,

balance, proprioception, and touch. In the inner ear, mechano-

transduction channels are localized in hair bundles that crown

the apical surface of each hair cell. Hair bundles consist of ster-

eocilia that are organized in rows of decreasing heights like the

pipes of an organ (Richardson et al., 2011; Schwander et al.,

2010). Fine extracellular filaments, the tip links, connect the ster-

eocilia in the direction of the mechanical sensitivity of the hair

bundles and are thought to transmit force onto transduction

channels (Figure 1A) (Assad et al., 1991; Pickles et al., 1991). De-

flections of the hair bundle in the direction of the longest stereo-

cilia lead to increases in the open probability of transduction

channels, while deflections in the opposite direction decrease

channel open probability (Gillespie and Müller, 2009).
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Several components of the mechanotransduction machinery

of hair cells have been identified. Genes that are linked to Usher

syndrome type 1 (USH1; deaf-blindness) encode many of these

components. Tip links are formed by the USH1 proteins CDH23

and PCDH15, which interact to form the upper and lower parts of

tip links, respectively (Ahmed et al., 2006; Kazmierczak et al.,

2007; Siemens et al., 2004; Söllner et al., 2004). The USH1 pro-

teins harmonin, SANS, and myosin 7a bind to the CDH23 cyto-

plasmic domain (Adato et al., 2005; Bahloul et al., 2010; Boëda

et al., 2002; Siemens et al., 2002), and they colocalize at the up-

per tip-link density (UTLD) (Grati and Kachar, 2011; Grillet et al.,

2009). Harmonin regulates transducer channel activation and

adaptation (Grillet et al., 2009; Michalski et al., 2009), and

SANS has been proposed to regulate tip-link assembly and me-

chanotransduction (Caberlotto et al., 2011), indicating that these

USH1 proteins form a protein complex at the UTLD that is impor-

tant to regulate transduction. Myosin 7a might also be important

for transduction, although this requires further study (Kros et al.,

2002; Marcotti et al., 2014).

The genes that encode the pore-forming subunits of the

mechanotransduction channels are currently not well defined.

Ca2+ enters stereocilia upon mechanical stimulation near the

lower tip-link insertion site, indicating that transduction chan-

nels are present in proximity to PCDH15 (Beurg et al., 2009).

TMC1, a gene that is linked to inherited forms of deafness (Kur-

ima et al., 2002), and TMC2, a close homolog of TMC1, have

been proposed to encode subunits of the mechanotransduc-

tion channel (Kawashima et al., 2011; Kim and Fettiplace,

2013), possibly forming its pore (Pan et al., 2013). However,

endogenous TMC1 or TMC2 proteins have so far not been de-

tected in stereocilia (Kawashima et al., 2011; Pan et al., 2013),

and transducer currents can still be evoked in TMC1/2 mutant

mice by deflection of hair bundles in the opposite from normal

direction (Kim et al., 2013). Reverse-polarity transducer cur-

rents are also observed when tip links are broken (Alagramam

et al., 2011; Kim et al., 2013; Marcotti et al., 2014). It has there-

fore been proposed that TMC1/2 might be accessory subunits

of the transduction channel that regulate channel localization to

tip links and/or form an extracellular vestibule that controls ion

flow toward the channel pore (Marzban et al., 2003; Smalla

et al., 2000).

TMHS/LHFPL5 (referred to as LHFPL5 in the following) is

an additional protein that is implicated in the regulation of
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Figure 1. Interactions of TMIE with PCDH15

and LHFPL5

(A) Hair cell diagram showing on the right a

higher-magnification view of the tip-link region.

The upper tip-link density (UTLD), the tip link,

and the transduction channel complex are indi-

cated.

(B) Diagram of the constructs used for biochem-

ical experiments. The PCDH15-CD2 domain that

was used as bait for yeast two-hybrid screens is

indicated.

(C–G) HEK293 cells were transfected with the

constructs indicated on top of each panel. Im-

munoprecipitations were carried out with HA

antibodies that recognize TMIE-HA, followed by

western blotting to detect coexpressed proteins.

The upper rows show the results of coimmuno-

precipitation (CoIP) experiments; following im-

munoprecipitation, the proteins were resolved on

gels and subsequently detected by western blot-

ting with the antibodies indicated on the right. The

lower rows (Input) are controls and show protein

concentration in the extracts prior to immu-

noprecipitation; protein extracts were loaded

directly onto gels and then analyzed with the an-

tibodies indicated on the right to ensure that the

extracts in different experiments contained similar

amounts of input protein.

(H) Model for interactions of TMIE with LHFPL5

and different PCDH15 isoforms.
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mechanotransduction channels in hair cells. LHFPL5, a tetra-

span protein that is linked to inherited forms of deafness

(Longo-Guess et al., 2005; Shabbir et al., 2006), binds to

PCDH15 and is localized to the tip-link region (Xiong et al.,

2012). Lhfpl5mutations affect tip-link assembly and the conduc-

tance and adaptation properties of the transducer channel, sug-

gesting that LHFPL5 is closely associated with the channel.

Structurally and functionally, LHFPL5 resembles auxiliary sub-

units of other ion channels such as the TARP subunits of

AMPA receptors (Jackson and Nicoll, 2011; Straub and Tomita,

2012), suggesting that LHFPL5 like TARPs is an allosteric regu-

lator of transducer channel function (Xiong et al., 2012).
Neuron 84, 954–967,
To identify additional critical compo-

nents of the mechanotransduction com-

plex of hair cells, we have carried out

yeast two-hybrid screens with newly

generated cochlear libraries. Here we

report that PCDH15 and LHFPL5 bind

to TMIE, a protein with two transmem-

brane domains that has previously

been linked to inherited forms of deaf-

ness (Mitchem et al., 2002; Naz et al.,

2002). We demonstrate that TMIE is an

evolutionary conserved protein that is

essential for mechanotransduction by

hair cells. We also show that TMIE

establishes a critical link between the

PCDH15/LHFPL5 complex and the

pore-forming subunits of the transduc-
tion channel. Significantly, mutations in TMIE that have been

linked to inherited forms of deafness in humans perturb its

interaction with tip links and affect transduction, suggesting

that the disease is caused by defects in the mechanotrans-

duction machinery of hair cells. Our findings identify TMIE as

an essential component of the mechanotransduction machin-

ery of hair cells, provide insights into its mechanisms of action,

and reveal an unanticipated complexity in the composition of

the mechanotransduction machinery of hair cells that has

important implications for the regulation of channel activity

in different hair cells and along the tonotopic axis of the

cochlea.
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RESULTS

TMIE Binds to PCDH15 and LHFPL5
In order to identify proteins that are constituents of themechano-

transduction machinery of hair cells, we thought to identify

proteins that interact with PCDH15 and/or LHFPL5 at the lower

end of tip links. We purified RNA from the organ of Corti and

generated three yeast two-hybrid libraries, one for soluble pro-

teins, one for type I transmembrane proteins, and one for type

II transmembrane proteins. We then carried out yeast two-hybrid

screens with a fragment of PCDH15 encompassing the two

membrane-proximal cadherin repeats, the transmembrane

domain and the cytoplasmic domain (Figure 1B). Alternative

splicing generates different PCDH15 isoforms named CD1,

CD2, and CD3 that differ in their cytoplasmic domains (Fig-

ure 1B). We used for our experiments the PCDH15-CD2 isoform,

since we had determined that this isoform is sufficient to rescue

mechanotransduction in hair cells lacking other PCDH15 iso-

forms (data not shown). We also screened our yeast two-hybrid

libraries with full-length LHFPL5 (Figure 1B). Remarkably, we

identified TMIE, a protein with two transmembrane domains (Fig-

ure 1B) that has previously been linked to deafness (Mitchem

et al., 2002; Naz et al., 2002), as a putative interaction partner

for both LHFPL5 and PCDH15 (data not shown).

To verify that TMIE interacts with PCDH15 and LHFPL5, we

carried out pull-down experiments with extracts from HEK293

cells that were transfected to express an HA-tagged version

of TMIE together with PCDH15 or LHFPL5. TMIE interacted

with PCDH15-CD2, but only weakly, with its close homologs

PCDH15-CD1 and PCDH15-CD3 or with control CDH2-GFP

(Figures 1C and 1D). Occasionally, TMIE protein was resolved

on gels into two bands (Figure 1C), which could represent differ-

entially glycosylated forms. Alternatively, a fraction of TMIE may

be cleaved into two fragments (Gleason et al., 2009). Interac-

tions between PCDH15-CD2 and TMIE were disrupted when

the cytoplasmic domain encoded by the CD2-specific exon

was deleted from the PCDH15-CD2 full-length construct (Fig-

ure 1E). TMIE also interacted with LHFPL5 in pull-down assays

(Figure 1F).

We have previously shown that interactions between LHFPL5

and PCDH15 are mediated by the transmembrane domain of

PCDH15 as well as by a short membrane-proximal fragment of

PCDH15 on the cytoplasmic site that is common between

PCDH15-CD1, -CD2, and -CD3 isoforms (Figure 1B) (Xiong

et al., 2012). We therefore wondered whether LHFPL5 might

facilitate interactions of TMIE even with PCDH15-CD1 and

PCDH15-CD3 isoforms by formation of a ternary complex. We

coexpressed TMIE together with LHFPL5 and each of the three

PCDH15 isoforms in HEK293 cells. Remarkably, in the presence

of LHFPL5, antibodies against TMIE-HA coprecipitated

PCDH15-CD1, -CD2, and -CD3; LHFPL5 was present in all three

protein complexes (Figure 1G; data not shown). We conclude

that TMIE and LHFPL5 form a ternary complex with each of

the three PCDH15 isoforms. TMIE binds to PCDH15-CD2

directly and via LHFPL5, but interactions between TMIE and

PCDH15-CD1 and -CD3 depend on LHFPL5. Thus, the geome-

try of the PCDH15/LHFPL5/TMIE complex differs in the pres-

ence of distinct PCHD15 isoforms (Figure 1H).
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TMIE Function and Expression in Hair Cells
Previous studies have shown that mice with a point mutation in

Tmie that leads to a truncation of its C terminus are deaf

(Mitchem et al., 2002). To confirm and extend these findings,

we generated mice with a predicted Tmie-null mutation caused

by an in-frame insertion of a LacZ transgene into the Tmie

gene (TmieLacZ mice) (Figure 2A). A second mouse line was

generated that carries a floxed Tmie allele (Tmieflox) (Figure 2A).

TmieLacZ/LacZ mice were deaf as determined by measuring the

auditory brainstem response (ABR) to broadband click stimuli

in 4-week-old animals (Figure 2C). Similarly, mice were deaf

when we inactivated TMIE expression throughout inner ear

development using Pax2-Cre mice (Ohyama and Groves, 2004)

(Figures 2B and 2C). Next we crossed Tmieflox/flox mice with

prestin-CreERT2 mice, which carry a tamoxifen-inducible Cre

transgene that is specifically expressed in outer hair cells

(OHCs) (Fang et al., 2012). We then induced recombination at

P8 and P10 by injection of 4-hydroxytamoxifen and analyzed

hearing function 3 weeks later. The mutant mice were deaf, indi-

cating that the function of OHCs was affected (Figures 2B and

2C). We then studied the phenotype of mice obtained by cross-

ings of Tmieflox/flox micewithPax2-Cre and prestin-CreERT2mice

in more detail. Measurements of responses to pure tones re-

vealed that the mutant offspring obtained with both Cre mouse

lines were deaf across the entire analyzed frequency spectrum

(Figure 2D). Distortion product otoacoustic emissions (DPOAEs)

were nearly eliminated (Figures 2E and 2F). It was somewhat sur-

prising that ABRs and pure tone ABRs were so severely affected

following inactivation of Tmie in OHCs only using prestin-Cre

since inner hair cell (IHC) function should be preserved. How-

ever, it has previously been reported that the organ of Corti de-

generates in Tmie-deficient mice by 3 weeks of age (Chung

et al., 2007). Thus, inactivation of Tmie in OHCs might lead to

degenerative changes that affect not only OHCs, but also the

overall structure of the organ of Corti including IHCs.

To further define the cell types in the inner ear that express

Tmie, we took advantage of the LacZ transgene in TmieLacZ

mice. We stained histological sections of TmieLacZ/+ mice with

X-Gal and observed that LacZ expression was confined to

IHCs andOHCs (Figure 3A). To define the subcellular localization

of TMIE in hair cells, we stained cochlear whole mounts at P4

with an antibody to TMIE. The antibody detected TMIE expres-

sion in the stereocilia of IHCs and OHCs (Figure 3B). Imaging

of IHCs at higher resolution revealed expression near the tips

of the shorter rows of stereocilia, but not or only weakly near

the tips of the longest stereocilia (Figure 3B, upper right), which

is consistent with a localization in the region of the lower insertion

site of tip links. No signal was observed in TmieLacZ/LacZ mice

(Figure 3B, lower right), confirming the specificity of the signal.

Unfortunately, our antibodies were not of sufficient quality for

immunogold localization studies. However, to independently

confirm the immunolocalization data, we took advantage of our

recently described gene-transfer method for hair cells that we

now term injectoporation because it combines plasmid microin-

jection with electroporation (Figure 3C) (Xiong et al., 2012, 2014).

Using injectoporation, we express a cDNA encoding a TMIE-HA

fusion protein in hair cells at P4 and analyze expression of the

transgene 2 days later. TMIE-HA accumulated at the tips of the



Figure 2. Analysis of Hearing Function in

Tmie-Deficient Mice

(A) Diagram of the various Tmie alleles used in the

current study.

(B) Representative ABR traces to click stimuli in

the indicated control and mutant mice at 4 weeks

of age.

(C) Statistic results of ABR thresholds to click

stimuli at 4 weeks of age.

(D) ABR thresholds to pure tones at 4 weeks

of age.

(E) Representative DPOAE response spectra from

wild-type and mutant mice at a single stimulus

condition (median primary frequency, 16 kHz; f1,

14.5 kHz; f2, 17.4 kHz; 2f1–f2, 11.6 kHz). Note the

2f1–f2 peak (black arrow), which is absent in

mutant mice.

(F) DPOAE thresholds at different frequencies in

animals at 4 weeks of age. In (C), (D), and (F) the

number of analyzed mice is indicated in brackets.

All values are mean ± SEM. ***p < 0.001, by

Student’s t test in (C) and two-way ANOVA in (D)

and (F).
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shorter rows of stereocila (Figure 3C), providing additional evi-

dence that TMIE is localized near the lower end of tip links.

This localization pattern is consistent with the finding that

PCDH15 and LHFPL5, which bind to TMIE, are also localized

in this domain of stereocilia (Ahmed et al., 2006; Kazmierczak

et al., 2007; Xiong et al., 2012). Thus, we conclude that TMIE is

localized in stereocilia at least in part near the lower tip-link inser-

tion site. So far, we have not observed any differences in expres-

sion levels of TMIE along the length of the cochlear duct, but

additional studies will be necessary to address this point more

conclusively.

Analysis of Mechanotransduction Currents in
Tmie-Deficient Hair Cells
The localization of TMIE in hair cells and its interaction with

PCDH15 and LHFPL5 prompted us to determine the extent to
Neuron 84, 954–967,
which TMIE is necessary for mechano-

transduction by hair cells. Transducer

currents were measured at a holding po-

tential of�70mV. Hair bundles fromP5 to

P8 OHCs in TmieLacZ/LacZ mice, which

were well preserved (Figure 5), were stim-

ulated with a stiff glass probe that was

controlled by a piezoelectric actuator. In

control wild-type mice, excitatory stimuli

elicited transducer currents that reached

at maximal deflection peak currents of

420.8 ± 26.9 pA (Figures 4A and 4B). In

control Lhfpl5 mutant mice, transducer

currents were reduced to approximately

10% of normal as previously reported

(Figures 4G–4I) (Xiong et al., 2012). Strik-

ingly, no transducer currents could be

evoked in OHCs from TmieLacZ/LacZ mice

(Figures 4A and 4B). Similar observations
were also made in IHCs (Figures 4C and 4D). Initial recordings

were conducted in a solution containing 1.5 mM Ca2+. It has

been reported that a reduction in the extracellular Ca2+ concen-

tration leads to an increase in channel conductance at rest

(Crawford et al., 1991; Kimitsuki and Ohmori, 1992). We there-

fore recorded transducer currents in OHCs in 0.02 mM Ca2+,

but still could not elicit transducer currents in Tmie-deficient

hair cells (Figures 4E and 4F). We conclude that TMIE is essential

for normal mechanotransduction by IHCs and OHCs.

Hair Bundle Morphology and Tip Links in TmieLacZ/LacZ

Mice
Defects in the morphology of hair bundles or in tip-link integrity

could cause the mechanotransduction defects in Tmie-deficient

mice. We therefore analyzed hair bundles from TmieLacZ/LacZ

mice by scanning electron microscopy at P7 (Figure 5A), an age
December 3, 2014 ª2014 Elsevier Inc. 957



Figure 3. Expression of TMIE in Hair Cells

(A) Sections of the inner ear of TmieLacZ/+ mice at

the indicated ages were stained for LacZ. Note

expression of Tmie in hair cells in the cochlea

(upper left panel, arrows; panels in the middle and

on the right) and vestibule (lower left panel, ar-

rows).

(B) Cochlear whole mounts from C57BL/6 mice at

P4 were stained for TMIE (green) and phalloidin

(red). Left: note the localization of TMIE in stereo-

cilia of IHCs and OHCs. Right: higher-magnifica-

tion view of IHCs showing TMIE immunoreactivity

near the tip link region; no staining was observed

in TmieLacZ/LacZ mice.

(C) Cochlear explants were prepared at P4 and

injectoporated to express TMIE-HA. After 2 days,

the cells were stained with HA antibodies. Note the

expression of TMIE-HA in the tip-link region (ar-

rows). Scale bars, (A) 50 mm; (B and C) 3 mm.
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that we used for most of our transducer current recordings. Hair

bundle morphology was minimally affected in TmieLacZ/LacZ

mice. No obvious defects were observed in IHCs, but bundles

of OHCs were somewhat abnormal and seemed to assume

more of a U shape than the typical V shape. However, rows of

stereocilia of graded heights were observed in IHCs and OHCs,

and they were linked into a tight bundle without obvious splaying

or length variations in stereocilia (Figure 5A). The defects in

morphology are unlikely to cause the complete loss of transduc-

tion, which is consistent with our previous findings that revealed

that transducer currents can be evoked in hair bundles showing

substantially greater disruptions in morphology than observed in

Tmie-deficient mice (Xiong et al., 2012).

Next, we quantified tip-link numbers following our previously

described procedures (Xiong et al., 2012). There was no statisti-

cally significant difference in the number of tip links in IHCs and

OHCs between wild-type and TmieLacZ/LacZ mice (Figures 5B

and 5C). We therefore conclude that the mechanotransduction

defects in TmieLacZ/LacZ mice are not primarily caused by ab-

normal hair bundle development or defects in tip-link assembly.

Analysis of Interactions between TMIE and TMC1/2
Previous studies have shownmechanotransduction currents can

no longer be evokedwhen hair bundles of hair cells lacking TMC1
958 Neuron 84, 954–967, December 3, 2014 ª2014 Elsevier Inc.
and TMC2 are deflected in the direction of

their longest stereocilia (Kim et al., 2013).

We therefore wondered whether TMIE

might cooperate with TMC proteins in

the regulation of mechanotransduction.

We coexpressed TMIE-HA (Figure 3D)

together with either TMC1 or TMC2 in

HEK293 cells and analyzed interaction

by coimmunoprecipitation experiments.

For immunoprecipitation and detection

we introduced a Myc tag at the N termi-

nus of TMC1 and TMC2, since previous

studies have shown that available anti-

bodies to TMC1/2 are of limited quality.
An epitope tag at the N terminus of these proteins does not

appear to interfere with protein function (Kawashima et al.,

2011). We consistently observed that it was significantly more

difficult to express TMC2 in HEK293 cells when compared to

TMC1 (Figure 5D). However, neither TMC1 nor TMC2 interacted

detectably with TMIE, at least when expressed in HEK293 cells

(Figure 5D). Similarly, when we carried immunolocalization ex-

periments in transfected HEK293 cells, we observed that TMIE

was not colocalized with either TMC1 or TMC2. While TMIE

was localized to the cell membrane, TMC1 and TMC2 remained

within vesicles inside the cell (Figure 5E).

Finally, we wanted to determine whether TMIE might regulate

the distribution of TMC proteins in hair cells. Previous studies

have shown that TMC1/2 cannot be detected in hair cells with

available antibodies. However, an epitope-tagged TMC2

construct was localized to stereocilia (Kawashima et al., 2011).

We therefore expressed Myc-TMC2 by injectoporation in hair

cells. Myc-TMC2 was targeted to stereocilia of OHCs in both

wild-type and TmieLacZ/LacZ mice (Figure 5F). We conclude that

effects in the transport of TMC2 (and probably TMC1) into ster-

eocilia probably do not explain the mechanotransduction defect

in OHCs from Tmie-deficient mice. However, further studies will

be necessary to analyze the functional relationship between

TMIE and TMC1/2.



Figure 4. Mechanotransduction Currents in Tmie-Deficient Hair

Cells

(A and C) Examples of transduction currents in OHCs (A) and IHCs (C) from

wild-type and TmieLacZ/LacZmice at P7 in response to a set of 10ms hair bundle

deflections ranging from �400 nm to 1,000 nm (100 nm steps) at a holding

potential of �70 mV.

(B and D) Current displacement plots obtained from similar data as shown in

(A) and (C). Data in (B) are for OHCs and in (D) for IHCs.

(E) Peak transduction currents in OHCs from control and TmieLacZ/LacZ mice at

P5–P8.

(F) Number of OHCs with current.

(G) Examples of transduction currents in OHCs from Lhfpl5�/� mice at P7 in

response to a set of 10 ms hair bundle deflections ranging from �400 nm to

1,000 nm (100 nm steps).

(H) Peak mechanotransduction currents in OHCs from control and Lhfpl5�/�

mice at P7.

(I) Number of OHCs with current. In (B), (D), (E), (F), (H), and (I) the number of

analyzed hair cells is indicated in brackets. All values are mean ± SEM. ***p <

0.001, by Student’s t test.
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Reverse-Polarity Currents in OHCs from TmieLacZ/LacZ

Mice
We wondered whether TMIE might be a pore-forming subunit of

the mechanotransduction channel. We therefore expressed in

HEK293 cells TMIE protein either alone or together in various

combinations with LHFPL5, TMC1, TMC2, and/or PCDH15.

We were not able to elicit mechanically activated currents with

any combination of proteins (data not shown). As a control, we

expressed the Piezo1 channel in HEK293 cells and observed

robust Piezo1-dependent mechanically evoked currents as pre-

viously reported (data not shown) (Coste et al., 2010).

Reverse-polarity stimulation of Tmc1/Tmc2 double-deficient

hair bundles leads to the robust activation of a mechanotrans-

duction current, raising the possibility that pore-forming subunits

of the transduction channel are still present in Tmc1/Tmc2-defi-

cient hair cells, but that their location might be changed (Kim and

Fettiplace, 2013; Smalla et al., 2000). Consistent with this model,

similar reverse-polarity currents are also observed after disrup-

tion of tip links (Alagramam et al., 2011; Kim et al., 2013; Marcotti

et al., 2014). We wondered if a similar reverse-polarity current is

detectable in Tmie-deficient hair cells. We therefore established

the fluid-jet stimulation system in our laboratory that has previ-

ously been used to deflect hair bundles both in the normal and

reverse-polarity direction (Kim et al., 2013). We could evoke reg-

ular normal-polarity currents in wild-type hair cells (Figure 6A).

Robust reverse-polarity currents were observed in hair cells

following the disruption of tip links and in hair cells from Tmc1/

Tmc2 double-mutant mice (Figures 6A and 6B). In addition, we

observed similar reverse-polarity currents in Tmie-deficient hair

cells (Figures 6A and 6B), raising the possibility that pore-forming

subunits of the mechanotransduction are still present in Tmie-

deficient hair cells.

Rescue of Mechanotransduction in TmieLacZ/LacZ Mice
To further define the mechanisms by which TMIE affects mecha-

notransduction in hair cells, we analyze possible functional inter-

actions with TMC1/2 and LHFPL5. We have recently shown that

injectoporation is useful to express the genetically encoded Ca2+

sensor G-CaMP3 (Tian et al., 2009) in hair cells and to then

analyze mechanotransduction by changes in the fluorescence

intensity of G-CaMP3 (Xiong et al., 2012, 2014). Following stim-

ulation, fluorescence intensity increased robustly in OHCs of

wild-type mice expressing G-CaMP3 (Figures 6C and 6D). Little

increase was observed upon stimulation of OHCs from Tmie-

deficient mice (Figures 6C and 6D). However, mechanotrans-

duction was restored to similar levels as in wild-type mice by

expression of TMIE (Figures 6C and 6D), providing further evi-

dence that defects in mechanotransduction in Tmie-deficient

hair cells are an acute phenomenon, and are not caused by

developmental hair cell defects.

Next, we analyzed the extent to which mechanotransduction

in Tmie-deficient hair cells can be rescued by overexpression

of its interaction partner LHFPL5 or by coexpression of both

TMC1 and TMC2. We coinjectoporated G-CaMP3 with expres-

sion vectors encoding full-length cDNAs for LHFPL5 or TMC1

together with TMC2 in Tmie-deficient hair cells. No rescue of

transduction was observed (Figure 6E). Similarly, when we ex-

pressed G-CaMP3 and TMIE in hair cells from Lhfpl5�/� mice
Neuron 84, 954–967, December 3, 2014 ª2014 Elsevier Inc. 959



Figure 5. Hair Bundle Morphology, Tip

Links, and Lack of Interactionswith TMC1/2

(A) Scanning electron microscopy analysis of hair

bundles from wild-type and TmieLacZ/LacZ mice in

the midapical cochlea at P7.

(B) High-resolution images showing tip links

(arrows) in OHCs and IHCs.

(C) Quantification of tip-link numbers at P7.

(D) HEK293 cells were transfected with the

constructs indicated on top of each panel. Im-

munoprecipitations were carried out with Myc

antibodies that recognize Myc-TMC1 or Myc-

TMC2, followed by western blotting to detect

TMIE-HA. The lowest row shows input protein; the

upper rows show CoIP and IP results.

(E) HEK293 cells were transfected to expressMyc-

TMC1, Myc-TMC2, and TMIE-HA. Cells were

stained 2 days later to detect TMC2 and TMIE.

Note that TMIE is at the cell surface and TMC1/2 in

vesicles within the cell with little overlap between

the two proteins.

(F) OHCs from wild-type C57BL/6 mice and

TmieLacZ/LacZ mice were injectoporated at P4 to

express Myc-TMC2. Cells were stained 2 days

later for Myc-TMC2 (green) and with phalloidin

(red). Note that Myc-TMC2 is localized to stereo-

cilia in wild-type and mutant animals. Scale bars,

(A) left panels 5 mm; middle and right panels 1 mm;

(B) left panel 1 mm; right panels 0.25 mm; (E and F)

4 mm.
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(Xiong et al., 2012), we could not rescue their transduction de-

fects (Figure 6F). We thus conclude that neither LHFPL5 nor

TMC1 or TMC2 can substitute for the essential function of

TMIE in mechanotransduction.

Functional Analysis of TmieMutations Linked to Hearing
Loss in Humans
We reasoned that we might obtain insights into the function of

TMIE by studying more subtle Tmie mutations. Three recessive

mutations in Tmie have been described that cause hearing loss

in humans (Naz et al., 2002). The three mutations lead to changes

of single amino acids in the C-terminal cytoplasmic domain of

TMIE (Figure 7A). The murine and human TMIE proteins are

highly homologous, and the amino acids that are affected by
960 Neuron 84, 954–967, December 3, 2014 ª2014 Elsevier Inc.
the mutations in the human gene are

conserved throughout evolution (Fig-

ure 7B).We therefore introduced the deaf-

ness-causing mutations into the cDNA

encoding murine TMIE and expressed

the proteins by transfection in HEK293

cells. Two of the mutant proteins, TMIE-

R82C and TMIE-R85W, showed a similar

membrane localization pattern as the

wild-type protein, but the TMIE-R93W

protein was no longer transported to the

cell surface of HEK293 cells (Figure 7C).

We then expressed the three proteins by

injectoporation in mechanosensory hair

cells. TMIE-R82C and TMIE-R85W were
still targeted to stereocilia, but no such targeting was observed

for TMIE-R93W (Figure 7D). Next we analyzed the effect of

TMIE mutations on interactions with PCDH15-CD2 using pull-

down assays. Strikingly, all three mutations drastically affected

interactions of TMIEwith PCDH15-CD2, while a randommutation

that has not been associated with disease (K138R) had no effect

on interactions between TMIE and PCDH15-CD2 (Figure 7E).

We next determined the extent towhichmutations in TMIE that

are linked to deafness can rescue transduction defects in Tmie-

deficient hair cells. We therefore expressed by injectoporation

wild-type TMIE and TMIE proteins carrying either the R85W or

R93W mutations in hair cells from TmieLacZ/LacZ mice. Trans-

ducer currents were measured at a holding potential of

�70 mV. Wild-type TMIE effectively rescued transduction. The



Figure 6. Reverse-Polarity Currents and Evaluation of Functional

Interactions of TMIE with TMC1/2 and LHFPL5

(A) Examples of mechanotransduction currents in response to sinusoidal

deflection of hair bundles at P5 for wild-type C57BL/6 mouse with and without

BAPTA treatment, for Tmc1/Tmc2 double-knockouts (Kim et al., 2013), and for

TmieLacZ/LacZ mutant mice. All recordings were from apical OHCs at a holding

potential of �70 mV; stimulus monitor, the driving voltage to the fluid jet, is

shown at the top. A positive driving voltage denotes displacement toward the

tallest edge of the hair bundle. Note that the response after BAPTA treatment,

in Tmc1/Tmc2 double-knockout and in TmieLacZ/LacZ-mutant mice, occurs on

the opposite phase of the stimulus to those in the controls.

(B) Quantitative analysis of similar data as shown in (A).

(C) Representative example demonstrating fluid-jet induced Ca2+ response in

G-CaMP3-expressing OHCs from controls, TmieLacZ/LacZ mutants, and

TmieLacZ/LacZ mutants following re-expression of TMIE. OHCs were trans-

fected at P4 and cultured for 2 days in vitro. Sequential fluid-jet pulse durations

were 0.1 s, 0.3 s, and 0.5 s. For quantitative analysis (D–F), the amplitude of the

second Ca2+ response peak was measured.

(D) Quantification of similar Ca2+ responses as shown in (C).

(E) OHCs from TmieLacZ/LacZ mutants were injectoporated to express G-

CaMP3 and LHFPL5, or G-CaMP3 and both TMC1 and TMC2. Changes in

fluorescence intensity following fluid-jet stimulation of hair bundles were re-

corded 2 days later.

(F) OHCs from Lhfpl5�/� mutants were injectoporated to express TMIE.

Changes in fluorescence intensity following fluid-jet stimulation of hair bundles

were recorded two days later. In (B), (D), (E), and (F) the number of analyzed

hair cells is indicated. All values are mean ± SEM. ***p < 0.001, by Student’s t

test. n.s., not significant.
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R93Wmutation was completely ineffective in rescuing transduc-

tion, while small currents could be observed following the

expression of R85W (Figure 7F). Taken together, these data sug-

gest that the three mutations in the cytoplasmic domain of TMIE

are part of a protein domain that mediates interactions of TMIE

with the tip link. The TMIE-R93W mutation affects in addition

cell surface transport of TMIE, suggesting that defects in protein

transport and in interactions with tip links are causally linked to

the mechanotransduction defects caused by mutations in Tmie.

Perturbation of Interactions between TMIE and
PCDH15-CD2 Affect Transduction
To provide further evidence that TMIE mediates interactions with

the tip link that are important for transduction, we wanted to

devise a strategy that perturbs the binding of TMIE to PCDH15.

Previous studies have shown that overexpression of protein do-

mains that mediate specific interactions between molecules can

disrupt functional interactions, thus acting as dominant-negative

(dn) proteins. For example, overexpression of the cytoplasmic

domain of cadherin proteins without their extracellular domain

can disrupt cadherin signaling (Kintner, 1992). We reasoned that

overexpression of theC-terminal protein domains thatmediate in-

teractions between PCDH15-CD2 and TMIE might also disrupt

the protein complex and therefore affect transduction (Figures

8A and 8B).We therefore generated several C-terminal fragments

to identify one that is still properly targeted to stereocilia. This was

achievedby expressing a construct consisting of part of the extra-

cellular domain, the second transmembrane domain, and the

C-terminal cytoplasmic domain (Figures 8A and 8C). We will refer

to this construct as dnTMIE. In HEK293 cells, overexpression of

dnTMIE affected interactions between TMIE and PCDH15-CD2

(Figures 8D and 8F). Significantly, dnTMIE also perturbed interac-

tionswith LHFPL5 (Figures 8E and 8F), thus providing a useful tool

to investigate the extent to which the ternary complex between

TMIE, LHFPL5, and PCDH15 is critical for transduction. Notably,

when we expressed dnTMIE together with G-CaMP3 in mecha-

nosensory hair cells, the mechanosensory response caused by

hair bundle deflection was dramatically reduced (Figure 8G). No

such inhibition was observed when we expressed control full-

length TMIE in hair cells (Figure 8G), or dnTMIE carrying the three

point mutations that have been linked to hearing loss in humans

(Figures 8A and 8H). Furthermore, overexpression of a protein

fragment encompassing the cytoplasmic domain of PCDH15

that is specific to the PCDH15-CD2 isoform drastically reduced

interactions of TMIEwith PCDH15-CD2 and transduction (Figures

8A and 8I–8K). We conclude that the C-terminal domain of TMIE

mediates interactions with PCDH15 and LHFPL5 that are likely

critical for force coupling between the tip link and the transduction

channel (Figure 8L). The functional importance of the C-terminal

region of TMIE is reinforced by genetic evidence in mice and hu-

mans; deletion of the C terminus in spinner mice (Mitchem et al.,

2002) and point mutations in the C terminus in humans (Naz et al.,

2002) cause deafness.

DISCUSSION

We reveal here an unanticipated complexity in the mechano-

transduction machine of cochlear hair cells and demonstrate
Neuron 84, 954–967, December 3, 2014 ª2014 Elsevier Inc. 961



Figure 7. Analysis of TMIE Proteins with

Mutations Linked to Deafness

(A) Diagram of TMIE indicating three point muta-

tions in the cytoplasmic domain.

(B) Sequence alignment of the part of the cyto-

plasmic domain of TMIE that contains the muta-

tions linked to deafness. Conserved amino acids

are highlighted in yellow; the amino acids that are

mutated are in red.

(C) HEK293 cells were transfected to expresswild-

type TMIE or the indicatedmutant forms. Note that

TMIE, TMIE-R82C, and TMIE-R85W localized to

the cell membrane, whereas TMIE-R93W re-

mained within the cytoplasm.

(D) OHCs were injectoporated at P4 to express the

indicated HA-tagged TMIE constructs. Cells were

stained 2 days later for the expression of HA-TMIE

(green) and phalloidin (red). Note that PCDH15-

R93W was no longer localized to stereocilia.

(E) HEK293 cells were transfected with the con-

structs indicated on top of each panel. Immuno-

precipitations were carried out with HA antibodies

that recognize wild-type and mutant TMIE, fol-

lowed by western blotting to detect coexpressed

PCDH15-CD2. The lower rows show input protein;

the upper rows show CoIP results.

(F and G) OHCs from TmieLacZ/LacZ mice were in-

jectoporated to express wild-type TMIE-HA or the

indicated mutant TMIE proteins. Mechano-

transduction was measured 2 days later at a

holding potential of �70 mV. In (F) representative

recordings from single cells are shown. (G) shows

current displacement plots. Values in (G) are

mean ± SEM. Scale bar, (C) 10 mm; (D) 4 mm.
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that TMIE is one essential component of this molecular machine.

In the simplest model of mechanotransduction, one might antic-

ipate that the tip-link protein PCDH15 directly binds to the pore-

forming subunits of the transduction channel. In contrast, our

data suggest that TMIE forms a critical link between PCDH15

and the transduction channel. Mutations in TMIE that have

been linked to inherited forms of deafness in humans disrupt

these interactions, suggesting that deafness in the affected pa-

tients is a direct consequence of a failure of the transduction ma-

chinery of their hair cells. Intriguingly, alternative splicing of the

cytoplasmic domain of PCDH15 regulates the mechanisms by

which TMIE interacts with PCDH15 (Figures 1H and 8L). This

suggests that variations in the specific composition of the tip

link might affect channel gating in yet-to-be-defined ways, for

example, along the tonotopic axis of the cochlea or between
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hair cells of the cochlea and vestibule

that are activated by mechanical signals

of distinct frequencies.

Previous studies have shown that

microphonic potentials are abolished

in Tmie-deficient zebrafish. The mutant

fish also show defects in hair bundle

morphology and in the integrity of tip links

(Gleason et al., 2009), but it has remained

unclear whether the phenotype is caused

by direct effects on transduction or by in-
direct effects due to developmental or degenerative defects

(Shen et al., 2008). Others have shown that hair cells in mice

lacking Tmie are no longer permeated by FM1-43 and dihydros-

treptomycin, two compounds that are thought to enter hair cells

through transduction channels (Park et al., 2013). However, the

cause of the phenotype had remained unclear since transduc-

tion or tip-link integrity had not been evaluated in the mutant

mice. We now demonstrated directly that TMIE is an essential

component of the mechanotransduction machinery of hair cells,

but that it is not essential for tip-link formation. Instead, TMIE

functionally couples PCDH15 and LHFPL5 at tip links to the

transduction channel. Loss of tip links in Tmie-deficient zebrafish

is therefore likely a degenerative phenotype. Consistent with this

model, hair bundles in Tmie-deficient mice show degenerative

changes by P15 (Mitchem et al., 2002).



Figure 8. Perturbations of Interactions

between PCDH15-CD2 and TMIE

(A) Diagram of the constructs used for the exper-

iments.

(B) Rationale for the experiments. Expression of

dnTMIE-FLAG is predicted to disrupt interactions

of TMIE-Myc with PCDH15-CD2 and HA-LHFPL5,

while dnTMIEmt is predicted to have no effect on

interactions.

(C) OHCs were injectoporated at P4 to express

dnTMIE-HA. Expression of dnTMIE-HA was eval-

uated 2 days later by immunhistochemistry. Note

expression of dnTMIE-HA in hair bundles.

(D and E) HEK293 cells were transfected with the

constructs indicated on top of each panel. Im-

munoprecipitations were carried out with Myc

antibodies that recognize TMIE-Myc, followed by

western blotting to detect coexpressed proteins.

The lower rows show input protein; the upper rows

show coimmunoprecipitation (CoIP) results.

Note that coexpression of dnTMIE-Myc reduced

interactions with PCDH15-CD2 (D) and HA-

LHFPL5 (E).

(F) Quantification of dominant-negative effects on

protein interaction by scanning of similar gels as

shown in (D) and (E). The values are derived by

quantifying three independent experiments.

(G and H) Expression of G-CaMP3 alone or

together with full-length control TMIE, dnTMIE, or

dnTMIEmt in OHCs at P4 and analysis of mecha-

notransduction 2 days later. dnTMIE, but not

dnTMIEmt or TMIE, affected transduction.

(I) HEK293 cells were transfected with the con-

structs indicated on top of each panel. Immuno-

precipitations were carried out with HA antibodies

that recognize TMIE-HA, followed by western

blotting to detect coexpressed proteins. Note that

coexpression of dnCD2 reduced interactions of

TMIE with PCDH15-CD2.

(J) Quantification of dominant-negative effects on

protein interaction by scanning of similar gels as

shown in (I). The values are derived by quantifying

three independent experiments.

(K) Expression of G-CaMP3 alone or together with

dnCD2 in OHCs at P4 and analysis of mechano-

transduction 2 days later. In (G), (H), and (K) the

number of analyzed OHCs is indicated. Values are

mean ± SEM. ***p < 0.001, by Student’s t test.

(L) Model of TMIE function in hair cells. In our

model, TMIE is critical for force coupling between

tip link and channel. TMIE interacts with PCDH15-

CD1, -CD2, and -CD3 via LHFPL5, and it also

binds directly to PCDH15-CD2. TMC1/2 were

omitted from the model, since their relation to the

indicated proteins is unclear. Scale bar, (C) 4 mm.
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Mechanotransduction currents that are evoked by deflection

of the hair bundles in the normal, excitatory direction are abol-

ished in the absence of TMIE, a phenotype that has also been

observed for hair cells lacking both TMC1 and TMC2 (Kim and

Fettiplace, 2013; Smalla et al., 2000). Ca2+ permeability

and channel conductance are differentially affected by TMC1

and TMC2 (Kim et al., 2013; Kim and Fettiplace, 2013; Pan

et al., 2013). It has therefore been proposed that TMC1 and

TMC2 are pore-forming subunits of the transduction channel
(Pan et al., 2013). However, when hair bundles of Tmc1/Tmc2

double-mutant mice are deflected toward the shortest stereoci-

lia, robust transduction currents are observed (Kim and

Fettiplace, 2013; Smalla et al., 2000). The reverse- and normal-

polarity currents have similar properties suggesting that TMC1

and TMC2 may not be the pore-forming subunits of the trans-

duction channel, but accessory molecules (Kim and Fettiplace,

2013; Smalla et al., 2000). Reverse-polarity transducer currents

are also observed when tip links are disrupted (Alagramam
Neuron 84, 954–967, December 3, 2014 ª2014 Elsevier Inc. 963
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et al., 2011; Kim et al., 2013; Marcotti et al., 2014), suggesting

that tip links are essential to localize the channel within stereoci-

lia and to impinge directional sensitivity on channel gating. While

it cannot be excluded that the reverse-polarity current requires a

channel that is distinct from the tip link-coupled channel, it

seems plausible that in the absence of TMC1 and TMC2 the

localization of the pore-forming subunits of the normally tip

link-coupled transduction channel is altered, thus leading to

similar reverse-polarity currents as observed in the absence of

tip links (Kim et al., 2013). Since tip links are preserved in

Tmie-deficient mice, reverse-polarity currents in their hair cells

might be explained best by a disruption of the connection be-

tween the tip link and the transduction channel. We could not

demonstrate either physical or functional interactions between

TMIE and TMC1/2, but a recent study suggests that TMC1/2

proteins can interact with PCDH15 (Maeda et al., 2014). Thus,

several proteins of the transduction machinery including

TMC1/2, LHFPL5, and TMIE can interact with PCDH15, suggest-

ing that the tip link interacts directly with a supramolecular trans-

duction complex. Further biochemical and structural studies will

be critical to define the spatial arrangement of the different pro-

teins in the complex. It will also be important to determine the

extent to which all these proteins are stably associated at tip

links or if some are only transiently present during development

or as transport components.

TMIE binds directly to PCDH15-CD2, but only indirectly via

LHFPL5 to PCDH15-CD1 and PCDH15-CD3 (Figures 1H and

8L). It therefore appears that alternative splicing of the

PCDH15 cytoplasmic domain regulates the specific geometry

of the ternary PCDH15, LHFPL5/TMIE protein complexes (Fig-

ures 1H and 8L). What could the functional consequences of

these differences be, and what is the specific role of LHFPL5,

which has previously been shown to regulate the conductance

properties of mechanotransduction channels (Xiong et al.,

2012)? As one possibility, the distribution of PCDH15 isoforms

might vary between cochlear and vestibular hair cells, between

OHCs and IHCs, or along the tonotopic axis of the cochlea. In

fact, analysis of PCDH15 isoform expression suggests variations

in the expression of specific isoforms at least within the devel-

oping cochlea (Ahmed et al., 2006). Similarly, LHFPL5 expres-

sion levels might vary between different hair cell types and along

the cochlea’s tonotopic axis. Since mechanotransduction is not

grossly altered in mice lacking either PCDH15-CD1, -CD2, or

-CD3 (Webb et al., 2011), it appears that several PCDH15 iso-

forms can function at tip links at least at early postnatal ages.

In hair cells of adult mice, the PCDH15-CD2 isoform appears

to be essential for transduction (Pepermans et al., 2014), sug-

gesting complex temporal regulatory mechanisms. Notably,

the electrophysiological properties of hair cells in mice lacking

individual PCDH15 isoforms or LHFPL5 have only been studied

in OHCs in the apical cochlea. Based on the findings reported

here, it will be interesting to analyze in detail transduction in

OHCs and IHCs of PCDH15/LHFPL5-mutantmice at different to-

notopic positions, as well as differences in hair cell function be-

tween the cochlea and vestibule.

Deafness in the spinner mouse line is caused by a mutation

that truncates TMIE within the C-terminal cytoplasmic domain

(Mitchem et al., 2002). Three point mutations in TMIE that have
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been linked to recessive forms of deafness in humans (Naz

et al., 2002) are also located in the C-terminal cytoplasmic

domain of TMIE. These findings suggest that the C-terminal

cytoplasmic domain of TMIE that mediates interactions with

PCDH15 and LHFPL5 is critical for transduction, indicating that

the molecular pathogenesis by which mutation in Tmie causes

disease can be explained by defects in the transmission of force

from tip links onto transduction channels. Notably, hair cell

morphology appears normal in Tmie-deficient mice at early post-

natal ages, which might provide a therapeutic window for the

treatment of Tmie-related sensorineuronal deafness.

EXPERIMENTAL PROCEDURES

Mouse Strains, ABR, and DPOAE Measurement

Strategies for generating knockout mice followed published procedures. In

brief, homology arms were amplified from genomic DNA by PCR. To generate

Tmieflox mice, a gene-targeting vector was generated that replaced exon 5

with a DNA fragment containing a pGK-neomycin cassette, which was flanked

by Flpe sites, and exon 5, which was flanked by LoxP sites. The targeting vec-

tor was electroporated into 129P2/OlaHsd embryonic stem cells. Correctly tar-

geted clones were used to generate chimera and crossed to FLP deleter mice

to remove the pGK-neomycin selection cassette. To genotype the Tmieflox

allele, the following primers were used: 50-CAGTCCAACTGCAGCCTGC

CCTGG-30 and 50-CTTTCTAGAGAATAGGAAC TTCGCGGCCGCATAACT-30.
To generate TmieLacZ mice, constructs were purchased (KOMP) and electro-

porated into 129P2/OlaHsd embryonic stem cells. For genotyping of the

TmieLacZ mice, the following primers were used: 50-ACCCCTCCTCTCCTGC

CCTTGCTCC-30 and 50-GGGGGTACCGCGTCGAGAAGTTCC-30. The wild-

type Tmie allele in Tmieflox and TmieLacZ mice was genotyped using the

following primers: 50-GGCT CGGTATCTACAGCGAAAGGCGGCC-30 and 50-
TGCCTGGCTCTGACTAGTTTCTGC AC-30. To induce Cre activity in crosses

with prestin-creERT2 mice, 30 ml 4-hydroxytamoxifen (10 mg/ml in sunflower

oil) was intraperitoneally injected into pups at P8 and P10. ABR and DPOAE

measurements were carried out as described (Schwander et al., 2007).

Tmc1/Tmc2 knockout mice (CBA.Cg-Tmc1dn/AjgJ; B6;129S5-Tmc2tm1Lex/

Mmucd (Kim et al., 2013) were a kind gift from Dr. Fettiplace (University of

Wisconsin).

LacZ Staining

Tissue was fixed for 1 hr in PFA and incubated for 2 days at 4�C in 20%

sucrose/PBS. Cryosections were prepared, postfixed for 15 min at room tem-

perature (RT) in 1% PFA, 0.2% glutaraldehyde, 0.02% NP40, and 0.01% so-

dium deoxycholate, and washed three times in PBS containing 0.02% NP40

and 0.01% sodium deoxycholate. Sections were stained overnight in the

1 mg/ml X-Gal staining solution (25 mM potassium ferricyanide, 25 mM potas-

sium ferrocyanide, 2 mM MgCl2, 1 mg/ml X-Gal diluted in PBS) at 37�C. Sec-
tions were washed three times for 20 min in PBS and postfixed overnight at

4�C in 4% PFA. Sections were washed in distilled water, dehydrated, and

mounted.

Whole-Mount Staining and Immunocytochemistry

Cochlear whole-mount staining and immunocytochemistry of HEK293 cells

were carried out as described (Xiong et al., 2012). Primary antibodies were

as follows: a-TMIE (rabbit; Sigma), a-HA (mouse; Cell Signaling Technology),

a-Myc (rabbit; Cell Signaling Technology). Additional reagentswere as follows:

Alexa Fluor 488-phalloidin, Alexa Fluor 594 goat anti-rabbit, Alexa Fluor 488

goat anti-mouse, and Alexa Fluor 647-phalloidin (Invitrogen).

Scanning Electron Microscopy

Inner ears were dissected in fixative (2.5% glutaraldehyde; 4% formaldehyde;

0.05 mM HEPES buffer [pH 7.2]; 10 mM CaCl2; 5 mM MgCl2; 0.9% NaCl). A

hole was poked at the apex of the cochlea, fixative was flushed through the

round window, the sample was fixed for 2 hr at RT, and dissected in washing

buffer (0.05 mM HEPES buffer [pH 7.2]; 10 mM CaCl2; 5 mM MgCl2; 0.9%
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NaCl). The stria vascularis, Reissner’s membrane, and tectorial membrane

were removed. Samples were dehydrated and processed to critical drying

point in an Autosamdri-815A (Tousimis). Cochlea were mounted with carbon

tape and coated with iridium (sputter coater EMS150T S; Electron Microscopy

Sciences). Samples were imagedwith aHitachi S-4800-ll Field Emission Scan-

ning Electron Microscope. Quantification of hair bundle morphology and tip

links was carried out as described (Xiong et al., 2012).

DNA Constructs, Transfections, Immunoprecipitations, and

Western Blots

DNA constructs are described in Supplemental Information. Expression of the

constructs, immunoprecipitations, and western blots were carried out as

described (Senften et al., 2006). Immunoprecipitation experiments were

carried out at least three times to verify the reproducibility of the data. The

following antibodies were used for the experiments: a-TMIE (rabbit; Sigma),

a-HA (mouse; Cell Signaling Technology), a-Myc (rabbit; Cell Signaling Tech-

nology), a-FLAG (rabbit; Sigma), a-GFP (Xiong et al., 2012), a-PCDH15 (Kaz-

mierczak et al., 2007), a-LHFPL5 (Longo-Guess et al., 2005).

Injectoporation

The organ of Corti was isolated from P0–P8 mice as described (Grillet et al.,

2009). For recording, tissue was transferred to the recording chamber and

fixed to a nylon mesh. For culture, the organ of Corti was cut into three

pieces, which were placed in DMEM/F12 medium with 1.5 mg/ml ampicillin.

For electroporation, glass electrodes (2 mm diameter) were used to deliver

plasmid (1 mg/ml in 13 HBSS) to the sensory epithelium. A series of three

pulses was applied at 1 s intervals with a magnitude of 60 V and duration

of 15 ms (ECM 830 Square Wave Electroporator; BTX). For Ca2+ imaging,

we used G-CaMP3 (Addgene 22692). Hair cells were imaged on an upright

Olympus BX51WI microscope mounted with a 603 water-immersion objec-

tive and Qimaging ROLERA-QX camera, controlled by MicroManager 1.3

software (Edelstein et al., 2010). Hair bundles were stimulated with a fluid

jet applied through a glass electrode (2-mm-tip diameter) filled with bath so-

lution. Stimuli were applied using Patchmaster 2.35 software (HEKA) and

20 psi air pressure. Images were collected with a 2 s sampling rate. A series

of fluid-jet stimulations (0.1, 0.3, 0.5 s) was applied (60 s intervals). Re-

sponses induced by 0.3 s fluid-jet stimulation were used for quantitative

analysis.

Electrophysiology

Recordings were carried out in the midapical region of the cochlea. During

recording, a Peri-Star Peristaltic Pump (WPI) was used to perfuse artificial peri-

lymph (in mM): 144 NaCl, 0.7 NaH2PO4, 5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 5.6

glucose, and 10 H-HEPES (pH 7.4). In some recordings, Ca2+ concentration

was reduced to 0.02 mM. To record reverse-polarity currents in OHCs from

wild-type animals, 5 mM BAPTA was added to the bath solution. Borosilicate

glass with filament (Sutter) was pulled with a P-97 pipette puller (Sutter), and

polished with MF-830 microforge (Narishige) to resistances of 3–5 MU. Hair

bundles were deflected with a glass pipette mounted on a P-885 piezoelectric

stack actuator (Physik Instrumente). The tip of the pipette was fire-polished to

�4 mm diameter to fit the shape of OHC bundles. The actuator was driven with

voltage steps that were low-pass-filtered at 10 KHz with a 900CT eight-pole

Bessel filter (Frequency Devices). The output driving voltage to the actuator

stack was monitored by an oscilloscope to ensure a rise time < 50 ms. The

tip of the probe was cleaned in chromic acid to allow adherence to hair bun-

dles. The reverse-polarity currents were elicited from OHCs using a fluid jet

from a pipette (tip diameter of 10–15 mm). Sinusoidal force stimulus was

applied to a 27-mm-diameter piezoelectric disc to produce fluid jet. The posi-

tion of the pipette delivering the fluid jet was positioned at the modiolar side of

the hair bundles and adjusted to elicit maximal MET currents. The sinusoids

(40 Hz) were generated with Patchmaster 2.35 software (HEKA) and filtered

at 1.0 kHz with 900CT eight-pole Bessel filter (Frequency Devices). Whole-

cell recordings were carried out, and currents were sampled at 100 KHz with

an EPC 10 USB patch-clamp amplifier operated by Patchmaster 2.35 software

(HEKA). To record macroscopic currents, the patch pipette was filled with

intracellular solution (140 mM KCl, 1 mM MgCl2, 0.1 mM EGTA, 2 mM Mg-

ATP, 0.3 mM Na-GTP, and 10 mM H-HEPES [pH7.2]). Cells were clamped
at �70 mV. The junction potential for the solution in this study was measured

to be 4.1 mV and was not corrected.

Data Analysis

Data analysis was performed using Excel (Microsoft) and Igor Pro 6 (WaveMet-

rics). Calcium signal (DF/F) was calculated with the equation (F�F0)/F0, where

F0 is the averaged fluorescence baseline at the beginning. Transduction cur-

rent-displacement curves (I(X)) were fitted with a three-state Boltzmann model

(Grillet et al., 2009). All data are mean ± SEM. Student’s two-tailed unpaired

t test was used to determine statistical significance (*p < 0.05, **p < 0.01,

***p < 0.001).
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