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1. Introduction

This paper is devoted to the extension of the results of [1–3] about the group gradings on
finite-dimensional matrix algebras to the case of infinite-dimensional simple algebras of finitary lin-
ear transformations. After reminding the main results in the case of finite dimensions, we describe
the G-graded embeddings of one finite-dimensional graded matrix algebra into another (Theorem 3),
with G a finite abelian group. Our next result says that if a simple locally finite algebra with minimal
one-sided ideals is graded by G as above then it can be presented as the direct limit of finite-
dimensional G-graded matrix algebras (Theorem 4). This allows us to describe in Theorem 5 the
gradings on the simple algebra of finitary matrices that is, the algebra of infinite matrices such that
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each matrix has only finitely many nonzero entries. Finally, in Theorem 6, we give a necessary and
sufficient condition for the equivalence of elementary gradings on the above algebra of infinite matri-
ces.

2. Some notation and simple facts

Let F be an arbitrary field, R a not necessarily associative algebra over an F and G a group. We
say that R is a G-graded algebra, if there is a vector space sum decomposition

R =
⊕
g∈G

R(g), (1)

such that

R(g)R(h) ⊂ R(gh) for all g,h ∈ G. (2)

Two G-gradings

R =
⊕
g∈G

R(g) and R =
⊕
g∈G

(
R ′)(g)

(3)

are called isomorphic if there is an automorphism ϕ of R such that ϕ(R(g)) = (R ′)(g) , for all
g ∈ G .

A subspace V ⊂ R is called graded (or homogeneous) if V = ⊕
g∈G(V ∩ R(g)). An element a ∈ R is

called homogeneous of degree g if a ∈ R(g) . We also write deg a = g . The support of the G-grading is a
subset

Supp R = {
g ∈ G

∣∣ R(g) �= 0
}
.

3. Reminder: Group gradings on matrix algebras

Below we briefly recall the results of [1–3], where the full description of a finite group gradings
on the full matrix algebra has been given.

A grading R = ⊕
g∈G R(g) on the matrix algebra R = Mn(F ) is called elementary if there exists an n-

tuple (g1, . . . , gn) ∈ Gn , such that the matrix units Eij , 1 � i, j � n are homogeneous and Eij ∈ R(g) ⇔
g = g−1

i g j . If R is a matrix algebra with an elementary G-grading defined by a tuple (g1, . . . , gn) ∈ Gn

and B an algebra with a G-grading then the tensor product R = A ⊗ B will be given a grading if,
given a homogeneous element x of degree h, we set Eij ⊗ x ∈ R(g) provided that g = g−1

i hg j , for any
1 � i, j � n. This grading of the tensor product is called induced.

A grading is called fine if dim R(g) = 1 for any g ∈ Supp R . In this case T = Supp R is always a
subgroup of G [3]. In this case if V is a natural R-module then V is the space of a faithful irreducible
representation of T (see [2]). If we denote by Xt the image of t ∈ T in R corresponding to this
representation then Xt is a basis of Rt and there is a 2-cocycle α : G × G → F ∗ such that Xt Xs =
α(t, s)Xts , for any t, s ∈ T . This makes R isomorphic to a twisted group algebra F αG .

The main result of [1, Theorem 6] can be formulated as follows.

Theorem 1. Let G be a group of order d, F an algebraically closed field and R = Mn(F ). Then, as a G-graded
algebra, R is isomorphic to the tensor product with induced grading R ∼= A ⊗ B where A = Mk(F ) has an
elementary G-grading, with support S, B = Ml(F ) has a fine grading, with support T , and S ∩ T = {e}.
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A particular case of the fine gradings is a so-called ε-grading where ε is an nth primitive root of 1.
Let G = 〈a〉n × 〈b〉n be the direct product of two cyclic groups of order n and

Xa =
⎛
⎜⎝

εn−1 0 . . . 0
0 εn−2 . . . 0
· · · · · · · · · · · ·
0 0 . . . 1

⎞
⎟⎠ , Xb =

⎛
⎜⎝

0 1 . . . 0
· · · · · · · · · · · ·
0 0 . . . 1
1 0 . . . 0

⎞
⎟⎠ . (4)

Then

Xa Xb X−1
a = εXb, Xn

a = Xn
b = I (5)

and all Xi
a X j

b , 1 � i, j � n, are linearly independent. Clearly, the elements Xi
a X j

b , i, j = 1, . . . ,n, form a
basis of R and all the products of these basis elements are uniquely defined by (5).

Now for any g ∈ G , g = aib j , we set Xg = Xi
a X j

b and denote by R(g) a one-dimensional subspace

R(g) = 〈
Xi

a X j
b

〉
. (6)

Then from (5) it follows that R = ⊕
g∈G R(g) is a G-grading on Mn(F ) which is called an ε-

grading.
Now let R = Mn(F ) be the full matrix algebra over F graded by an abelian group G . The following

result has been proved in [3, Section 4, Theorems 5, 6] and [1, Section 2.2, Theorem 6, Section 2.3,
Theorem 8].

Theorem 2. Let F be an algebraically closed field of characteristic zero. Then as a G-graded algebra R is
isomorphic to the tensor product

R0 ⊗ R1 ⊗ · · · ⊗ Rk

where R0 = Mn0 (F ) has an elementary G-grading, Supp R0 = S is a finite subset of G, Ri = Mni (F ) has the
εi grading, εi being a primitive nith root of 1, Supp Ri = Hi ∼= Zni × Zni , i = 1, . . . ,k. Also H = H1 · · · Hk

∼=
H1 × · · · × Hk and S ∩ H = {e} in G.

4. Embeddings of graded matrix algebras

To describe the gradings on the algebra of finitary matrices we will need to consider the embed-
ding of one G-graded finite-dimensional simple algebra into another. It follows from Theorem 1, if
R ∼= Mn(F ) is G-graded then, as a graded algebra, R is isomorphic to a tensor product C ⊗ D where
C = M p(F ), D = Mq(F ), n = pq, M p(F ) is a matrix algebra with elementary G-grading, Mq(F ) a ma-
trix algebra with a fine T -grading where T = Supp D is a subgroup in G such that T ∩ Supp C = {1}
where 1 is the identity element of G . Thus we may think that R = C D ∼= C ⊗ D . Let us notice that
the subalgebra D is not defined uniquely and once D has been fixed, C is uniquely defined as the
centralizer of D in R .

Theorem 3. Let F be an algebraically closed field and G a finite abelian group. Let R1 ∼= Mk(F ) and R2 ∼=
Mn(F ) be two G-graded matrix algebras with identity elements e1 and e2 , respectively, R1 = C1 D1 , R2 =
C2 D2 their decompositions in which C1, C2 have elementary grading while D1 , D2 have fine grading. Let also
D1 ∼= D2 as G-graded algebras and ϕ : R1 → R2 be an injective homomorphism of graded algebras. Then there
exists a decomposition R2 = C̃2 D̃2 ∼= C̃2 ⊗ D̃2 such that C̃2 is a matrix algebra with elementary grading, D̃2 is a
matrix algebra with fine grading, D̃2 ∼= D2 as graded algebras and ϕ(C1) ⊂ C̃2 . If ϕ(e1)R2ϕ(e1) = ϕ(R1) then
also ϕ(e1)C̃2ϕ(e1) = ϕ(C1). Besides, there is an isomorphism ψ : D1 → D̃2 such that ϕ(a)ϕ(d) = ϕ(a)ψ(d),
for any a ∈ R1 , d ∈ D1 .
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Proof. Since D1 ∼= D2, in particular, Supp D1 ∼= Supp D2. We denote T = Supp D1. Then for any t ∈ T
there exist invertible matrices Xt ∈ R1 and X ′

t ∈ R2 such that

D1 = Span{Xt | t ∈ T }, D2 = Span
{

X ′
t

∣∣ t ∈ T
}
.

In addition, for any t, s ∈ T there is α(t, s) ∈ F such that

Xt Xs = α(t, s)Xts, X ′
t X ′

s = α(t, s)X ′
ts, (7)

following because D1 and D2 are isomorphic. One may also assume that X1 and X ′
1 are the identity

elements of R1 and R2, respectively.
Since T ∩ Supp C2 = {1} it follows that ϕ(Xt) = At X ′

t for some matrix At ∈ C2, deg At = 1 in the
G-grading. We then set

A′
t = Atϕ(e1) + e2 − ϕ(e1) and X ′′

t = A′
t X ′

t,

where e2 is the identity of R2.
We will first show that

D̃2 = Span
{

X ′′
t

∣∣ t ∈ T
}

is a graded subalgebra in R2 isomorphic to D1 (or D2). Now since

ϕ(e1)At X ′
t = ϕ(e1)ϕ(Xt) = ϕ(Xt) = At X ′

t

and X ′
t is nondegenerate, it follows that ϕ(e1)At = At . Since At and X ′

t commute in R2, it follows that

X ′
t Atϕ(e1) = ϕ(Xt)ϕ(e1) = ϕ(Xt) = X ′

t At,

and so

ϕ(e1)At = Atϕ(e1) = At . (8)

In particular, (e2 − ϕ(e1))At = 0.
Now let us recall that ϕ(e1) = ϕ(X1) = A1 X ′

1 = A1 ∈ C R2 (D2) and so

ϕ(e1)X ′
t = X ′

tϕ(e1) for any t ∈ T . (9)

If we use (7), (8), and (9) we will obtain the following

X ′′
t X ′′

s = (
At + e2 − ϕ(e1)

)
X ′

t

(
As + e2 − ϕ(e1)

)
X ′

s

= At X ′
t As X ′

s + (
e2 − ϕ(e1)

)
X ′

t X ′
s

= ϕ(Xt)ϕ(Xs) + (
e2 − ϕ(e1)

)
X ′

t X ′
s

= ϕ(Xt Xs) + (
e2 − ϕ(e1)

)
X ′

t X ′
s

= ϕ
(
α(t, s)Xts

) + (
e2 − ϕ(e1)

)
α(t, s)X ′

ts

= α(t, s)Ats X ′
ts + α(t, s)

(
e2 − ϕ(e1)

)
X ′

ts

= α(t, s)X ′′
ts.
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Since the elements X ′′
t , t ∈ T are linearly independent, it follows that the mapping Xt �→ X ′′

t is a
(graded) isomorphism of algebras D1 and D̃2.

Now we denote by C̃2 the centralizer C R2 (D̃2) of D̃2 in R2. Then C̃2 is a graded subalgebra of R2.
The identity element e2 of R2 is in D̃2 since X1 = e1 and

X ′′
1 = ϕ(X1) + e2 − ϕ(e1) = ϕ(e1) + e2 − ϕ(e1) = e2.

In this case R2 = C̃2 D̃2 ∼= C̃2 ⊗ D̃2 (see, for instance, [3]).
Now we would like to show that C̃2 is an algebra with elementary G-grading. Since C̃2 is a

central simple F -algebra, by the main result of [3] C̃2 = C̃0 D̃0 ∼= C̃0 ⊗ D̃0 where the grading on
C̃0 is elementary while on D̃0 fine. We set T0 = Supp D̃0. Then T0 is a subgroup in G such that
T0 ∩ T = {1}. It follows that D̃0 D̃2 ∼= D̃0 ⊗ D̃2 is a graded subalgebra in R2 with fine grading such
that Supp D̃0 D̃2 = T0T ∼= T0 × T . Besides, R2 ∼= C̃0 ⊗ (D̃0 ⊗ D̃2) is another decomposition of R2 as the
tensor product of algebras with elementary and fine grading. From the above mentioned property of
the supports, the identity component Re of R = C ⊗ D , C elementary, D fine, is Ce ⊗ I . The centralizer
of Re is a graded subalgebra Ce ⊗ D which has the same support as D . This uniquely defines the
support of the fine component. As a result, we have T = Supp D̃2 = Supp D̃0 D̃2 = T0T . Then T0 = {1}
implying that C̃2 = C̃0 is an algebra with elementary grading.

Now we need to show that ϕ(C1) ⊂ C̃2 = C R2 (D̃2). Let a ∈ C1 = C R1 (D1). Then aXt = Xta for any
t ∈ T . Then we have the following

ϕ(a)X ′′
t = ϕ(a)

(
ϕ(Xt) + e2 − ϕ(e1)

)
= ϕ(a)ϕ(Xt) + ϕ(a)ϕ(e1)

(
e2 − ϕ(e1)

) = ϕ(aXt)

= ϕ(Xta) = (
ϕ(Xt) + e2 − ϕ(e1)

)
ϕ(a)

= X ′′
t ϕ(a),

proving that ϕ(a) ∈ C R2 (D̃2), that is, ϕ(C1) ⊂ C̃2.
Finally, let us assume ϕ(e1)R2ϕ(e1) = ϕ(R1). Since ϕ(C1) ⊂ C̃2 the containment ϕ(C1) ⊂

ϕ(e1)C̃2ϕ(e1) is obvious. To prove the converse, we notice that

ϕ(R1) ∩ C̃2 = ϕ(e1)̃C2ϕ(e1).

Now C1 = C R1 (D1) and so b ∈ R1 satisfies ϕ(b) ∈ C R2 (D̃2) if and only if b ∈ C1, that is, ϕ(R1) ∩ C̃2 =
ϕ(C1) which now implies ϕ(C1) = ϕ(e1)C̃2ϕ(e1).

It remains to look at the homomorphism ψ : D1 → D̃2 given by ψ(Xt) = X ′′
t . We have the following

ϕ(e1)X ′′
t = ϕ(e1)At X ′

t + ϕ(e1)
(
e2 − ϕ(e1)

)
X ′

t

= ϕ(e1)At X ′
t = ϕ(e1)ϕ

(
X ′

t

)
so that ϕ(e1)ψ(d) = ϕ(e1)ϕ(d) for any d ∈ D1 and thus

ϕ(a)ψ(d) = ϕ(a)ϕ(e1)ϕ(d) = ϕ(a)ϕ(d).

Now the proof is complete. �
To describe the elementary gradings on infinite-dimensional simple algebras we first consider the

case of one finite-dimensional matrix algebra embedded in another, both having elementary gradings.
Notice that in the claims to follow the grading group G may be infinite and nonabelian.
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To start with we notice that if R = Mn(F ) is an algebra with an elementary grading given by a
tuple (h1, . . . ,hn), n = km + r for some k,m � 1, r � 0 and h1, . . . ,hn satisfy the conditions

h−1
i+1hi+2 = h−1

i+k+1hi+k+2 = · · · = h−1
i+(m−1)k+1hi+(m−1)k+2 for 1 � i � k − 2 (10)

then the subalgebra C consisting of all block-diagonal matrices of the form diag{X, . . . , X,0} where X
is an arbitrary (k×k)-matrix repeated m times on the diagonal is G-graded and isomorphic to a matrix
algebra Mk(F ) with an elementary grading given by the tuple (h1, . . . ,hk). This easily follows because
by (10) all matrix units Eα+ik,β+ik , i = 0,1, . . . ,m−1, have the same degree for fixed 1 � α,β � k. We
would like now to prove that any embedding of simple algebras with elementary gradings amounts
to this construction.

Let us recall that if V = ⊕
g∈G V g is a G-graded space then R = End V canonically becomes G-

graded if, given a G-graded basis {v1, . . . , vn} of V with deg vi = g−1
i , 1 � i � n, one gives the matrix

unit Eij the degree equal g−1
i g j . Thus the grading of Mn(F ) induced from V is elementary.

Lemma 1. Let V be an n-dimensional G-graded space over a field F and End V = R = ⊕
g∈G R(g) the algebra

of all linear transformations of V with induced elementary grading. Let C be a graded subalgebra in R which is
isomorphic to the matrix algebra Mk(F ) with an elementary grading given by the tuple (g1, . . . , gk). Then V
splits as the sum of C-invariant subspaces

V = V 1 ⊕ · · · ⊕ Vm ⊕ V 0 (11)

where dim V 1 = · · · = dim Vm = k, V 1, . . . , Vm are faithful irreducible C-modules while C V 0 = {0}. Besides,
there is a homogeneous basis of V in which all matrices of the transformations in C have the block-diagonal
form diag{X, . . . , X,0} where X is a (k × k)-matrix and the tuple (h1, . . . ,hn) giving the induced elementary
grading on R = Mn(F ) satisfies (10).

Proof. Since the grading on C ∼= Mk(F ) is elementary, any subspace spanned by a set of matrix units
is graded. In particular, this is true for any minimal left ideal spanned by all matrix units in a fixed
column. Let L be one of such minimal ideals, corresponding to the last, kth column of C . If we fix any
v ∈ V then the left C-module Lv is either irreducible or equal zero. Moreover, if v is homogeneous
then the C-submodule Lv is also G-graded. These remarks are sufficient to prove the existence of the
decomposition (11).

Now let Eij , 1 � i, j � k be the set of all matrix units of C . Since V 1 in (11) is a faithful C-
module, there exists a homogeneous element v ∈ V such that E1k v �= 0. In this case the vectors vi =
Eik v = Ei,i+1 · · · Ek−1,k v , i = 1, . . . ,k − 1, vk = v , form a homogeneous basis of V 1 and the elementary
grading on C induced from this grading is given by the tuple (g1, . . . , gk). Indeed, if deg v = h then
deg vi = g−1

i gkh, deg v j = g−1
j gkh and so deg Eij = g−1

i g j and still Eij v j = vi . If we choose the bases
in other V 2, . . . , Vm and an arbitrary homogeneous basis in V 0 then we obtain a realization of C by
the block-diagonal matrices of the form diag{X, . . . , X,0}.

It remains to consider the tuple (h1, . . . ,hn) which defines the elementary grading on R = Mn(F )

induced from the graded basis of V just constructed. If we denote by Ẽ st , 1 � s, t � n, the matrix
units of R corresponding to this basis, then, as usual, deg Ẽ st = g−1

s gt . Also, for any 1 � i, j � k we
will have

Eij = Ẽ i j + Ẽ i+k, j+k + · · · + Ẽ i+(m−1)k, j+(m−1)k

in R and deg Eij = g−1
i g j in C , hence in R , since the embedding of C in R is graded. Now all Ẽ st are

homogeneous and so the conditions (10) must be satisfied. Now the proof is complete. �
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Example 1. The condition of C having an elementary grading is essential. For example, suppose
C ∼= Mn(F ) with a fine grading. Let V be C itself as a graded vector space and let us assume that
C acts on itself by multiplication on the left. Then R = End V is an algebra with elementary grading
induced from V and C a graded subalgebra. So, C is a graded matrix subalgebra of a matrix algebra
with an elementary grading but the grading of C is not elementary. So the conclusion of the previous
lemma cannot hold for C .

Lemma 1 enables one to describe the gradings on all possible direct limits of matrix algebras with
elementary gradings. Here we will need a special case where C = ⋃

i�1 Ci where C1 ⊂ C2 ⊂ · · · is an
ascending chain of matrix algebras and Ci = ei C jei , for any 1 � i � j, where ei is the identity element
of Ci . To start with we generalize the notion of the elementary grading to the case of finitary matrices.

Definition 1. Let R be the algebra of finitary matrices and g = (g1, g2, . . .) a sequence of ele-
ments in a group G . Then a grading R = ⊕

g∈G R(g) is called elementary defined by g if R(g) =
Span{Eij | g−1

i g j = g}.

Lemma 2. Let C = ⊕
g∈G C (g) be a G-graded algebra over a field F which is the union C = ⋃

i�1 Ci of an
ascending chain of graded matrix subalgebras of orders n1,n2, . . . , with identity elements e1, e2, . . . . Suppose
all the gradings on the subalgebras C1, C2, . . . are elementary and Ci = ei C jei for all i, j with 1 � i � j.
Then C is isomorphic to the algebra R of finitary matrices with elementary grading given by a sequence g =
(g1, g2, . . .) of elements of G in which every Ci is embedded as a graded subalgebra of all matrices with zero
entries in all rows and columns whose numbers are greater than ni , i = 1,2, . . . . The G-grading on Ci is
elementary given by an n-tuple (g1, . . . , gni ).

Proof. By Lemma 1, we may adjust our graded embeddings in the sequence C1 ⊂ C2 ⊂ · · · in such
a way that each Ci can be viewed as a graded subalgebra of Ci+1 consisting of all ni × ni matrices
in the left upper corner. These adjustments do not change the isomorphism class of the limit since
this depend only on the module structure of Ci+1 over Ci , for each i (see [4]). But then the set of
all matrices Li in Ci with zeros outside the first column is a graded subspace of the similar subspace
Li+1 in Ci+1. If {e = g−1

1 , g−1
2 , . . . , g−1

ni
} is the set of degrees of the matrix units spanning Li then the

elementary grading of Ci is defined by the tuple (g1, . . . , gni ). Then the set of degrees of the matrix
units in L = ⋃∞

i=1 is the desired sequence of elements of G defining the elementary grading on the
algebra of finitary matrices C . �
5. Gradings on simple algebras with minimal one sided ideals

In this section we consider the gradings by finite abelian groups on simple locally finite algebras
with minimal one sided ideals. Suppose that R is such an algebra. Using the Structure Theorem in
[7, Chapter 4, Section 9], we find a pair of mutually dual spaces V and Π ⊂ V ∗ such that R ∼= V ⊗ Π

with the product given by

(v1 ⊗ π1)(v2 ⊗ π2) = π1(v2)(v1 ⊗ π2)

where v1, v2 ∈ V , π1,π2 ∈ Π and the kernel of the bilinear mapping (v,π) �→ π(v) is trivial. If
dim V = dimΠ = n < ∞ we have R ∼= Mn(F ), the matrix algebra of order n over F .

The linear mapping S : V → V and T : Π → Π are called adjoint if (T (π))(v) = π(S(v)). Actu-
ally, T is completely defined by S and we write T = S∗ . The Isomorphism Theorem [7, Chapter 4,
Section 11] describes the automorphisms of V ⊗ Π with the help of the automorphisms of V in the
following way. If ϕ ∈ Aut(V ⊗Π) then there exists a linear automorphism S : V → V , for which there
exists the adjoint automorphism S∗ : Π → Π , such that

ϕ(v ⊗ π) = S−1(v) ⊗ S∗(π) for any v ∈ V , π ∈ Π.

The automorphism S is defined by ϕ uniquely up to a nonzero scalar multiple.
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The finite-dimensional subspaces V ′ ⊂ V and Π ′ ⊂ Π are called compatible if they are of the same
dimension n and the annihilator of V ′ in Π ′ is zero. As mentioned above, in this case V ′ ⊗ Π ′ ∼=
Mn(F ). A simple remark is that V ′ ⊗ Π ′ ⊂ V ′′ ⊗ Π ′′ if and only if V ′ ⊂ V ′′ and Π ′ ⊂ Π ′′ . It is shown
in [7, Chapter 4, Section 16] that R = V ⊗ Π has a local system of matrix subalgebras of such form.
It will be convenient to label the subalgebras in this local system by the elements of a directed set I ,
that is, an ordered set such that for any α,β ∈ I there is γ ∈ I with α ≺ γ and β ≺ γ . We will have
Vα ⊗ Πα ⊂ Vβ ⊗ Πβ if and only if Vα ⊂ Vβ and Πα ⊂ Πβ . The latter holds if and only if α ≺ β .

Our aim is to prove the following.

Theorem 4. Let a simple locally finite algebra R with minimal one sided ideals over an algebraically closed
field of characteristic zero be given a grading by a finite abelian group G. Then R has a local system of graded
finite-dimensional matrix algebras.

Proof. Using Litoff’s Theorem [7, Chapter 4, Section 15], we find that R is locally matrix, that is, there
a local system {Vα ⊗ Πα | α ∈ I} of matrix subalgebras in a G-graded algebra R = V ⊗ Π . We need
to prove that there is another local system whose terms are G-graded matrix subalgebras of the form
{V α ⊗ Πα | α ∈ I}.

Now the conditions imposed on the field allow one to replace the graded subspaces by the in-
variant subspaces with respect to the automorphisms corresponding to the multiplicative characters
χ ∈ Ĝ , given by χ ∗ r = χ(g)r, for any r ∈ R(g) . As mentioned before, to each such χ one can associate
an automorphism Sχ : V → V and its adjoint S∗

χ : Π → Π so that χ ∗ (v ⊗ π) = S−1
χ (v) ⊗ S∗

χ (π), for
any v ∈ V and π ∈ Π . Since Sχ is defined up to scalar, the mappings χ �→ Sχ and χ �→ S∗

χ are

projective representations of Ĝ by linear transformations of V and Π . It is obvious that given a Ĝ-
invariant subspace U in V , the annihilator U⊥ in Π is also Ĝ-invariant. With these facts in mind, we
first pick, for each α ∈ I a subspace of finite codimension Π⊥

α . Set

Uα =
⋂
χ∈Ĝ

Sχ

(
Π⊥

α

) ⊂ Π⊥
α .

This is a Ĝ-invariant subspace in V of finite codimension. Since
⋃

α∈I Πα = Π we must have⋂
α∈I Π⊥

α = 0, hence
⋂

α∈I Uα = 0. Note that Uγ ⊂ Uβ as soon as β ≺ γ . Let us now consider
a finite-dimensional Ĝ-invariant subspace Ĝ(Vα) = ∑

χ∈Ĝ χ(Vα). Then there exists Uβ such that

Ĝ(Vα) ∩ Uβ = 0. Since I is a directed set, there is γ ∈ I such that α,β ≺ γ hence Ĝ(Vα) ∩ Uγ = 0.
Since the projective representation of a finite group is fully reducible there is a Ĝ-invariant subspace L
in V such that V = L ⊕ (Ĝ(Vα)⊕ Uγ ) = 0. We then set V α = L ⊕ Ĝ(Vα). Also, we set Πα = U⊥

γ . Since

Uγ ⊂ Uα ⊂ Π⊥
α , we have that Πα ⊂ Πα . Being an orthogonal complement to a Ĝ-invariant space, Πα

is Ĝ-invariant. By construction, dim Πα = dim V α and also Π⊥
α = Uγ has trivial intersection with V α .

This proves that V α and Πα are compatible invariant spaces so that V α ⊗Πα is a Ĝ-invariant matrix
subalgebra. Since V ⊗ Πα ⊂ V α ⊗ Πα , we obtain a Ĝ-invariant local system, hence a local system of
graded matrix subalgebras. �
6. Gradings on simple algebras of finitary matrices

Now we are ready to prove our main result.

Theorem 5. Let G be a finite abelian group, R = ⊕
g∈G R(g) be a G-graded algebra of infinite matrices each

having only finitely many nonzero entries over an algebraically closed field F of characteristic zero. Then R is
isomorphic to a graded tensor product C ⊗ D where C is such with an elementary grading and D = Mn(F ) is
a matrix algebra of order n with a fine grading. Additionally, we have Supp C ∩ Supp D = {1}.

Proof. According to [7, Chapter 4, Section 15] R is the same as the simple algebra with minimal
one sided ideals since in our case dim R is countable. Clearly, in this case we can remove unnecessary
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terms from the local system provided by Theorem 4 and conclude that R is the union of the ascending
chain R1 ⊂ R2 ⊂ · · · of graded simple finite-dimensional subalgebras. Each Ri decomposes as the
tensor product Ri = Ci Di ∼= Ci ⊗ Di of a simple subalgebra Ci with an elementary grading and a
simple subalgebra Di with a fine grading. The support Ti = Supp Di is a subgroup in G . Since the
number of subgroups in G is finite, by excluding unnecessary subalgebras Ri we may assume that
T1 = T2 = · · · is the same subgroup T of G . In particular, dim Di = |T | for all i and that the Di as
ungraded algebras all isomorphic to the same Mn(F ). Since the number of different fine gradings is
also finite, we may, as before, assume that all Di are isomorphic as graded algebras.

Let ϕi+1,i be the graded embedding of Ri in Ri+1. We also set ϕ ji = ϕ j, j−1 · · ·ϕi+1,i . If we
apply Theorem 3 to each embedding Ri ⊂ Ri+1 then we may assume that ϕi+1,i(Ci) ⊂ Ci+1 and
ϕi+1,i(Ci) = ϕi+1,i(ei)Ci+1ϕi+1,i(ei) where ei is the identity element of Ci and that there is an iso-
morphism ψi+1,i(Di) → Di+1 such that

ϕi+1,i(a)ϕi+1,i(d) = ϕi+1,i(a)ψi+1,i(d) for all a ∈ Ci, d ∈ Di . (12)

We set ψ1 = idD1 and ψi = ψi,i−1 · · ·ψ2,1 : D1 → Di , for all i � 2. Then ψ j(d) = ψ j,i(ψi(d)) for any i, j
with 1 � i � j, and any d ∈ D1. Besides, using (12), we may write

ϕ j,i(a)ϕ j,i(d) = ϕi, j(a)ψ j
(
ψ−1

i (d)
)

for all a ∈ Ci, d ∈ Di . (13)

Let us set C = ⋃
i�1 Ci and construct an isomorphism ρ : R → C ⊗ D1. If a ∈ Ci , d ∈ Di then we set

ρ(ad) = a ⊗ ψ−1
i (d) for any a ∈ Ci, d ∈ Di . (14)

Clearly, (14) defines an injective homomorphism of Ri = Ci Di into C ⊗ D1. Actually, the same formula
defines an isomorphism of R to C ⊗ D1. To prove this we only need to check that ρ is well defined
on R . Indeed, if a ∈ Ci , d ∈ Di and i < j then ϕ j,i(ad) = ϕ j,i(a)ϕ j,i(d) in R and a = ϕ j,i(a) in C since
we identify a ∈ Ci with its image ϕ j,i(a) in C j . But then, according to (13) we should have

ρ
(
ϕ j,i(a)ϕ j,i(d)

) = ρ
(
ϕi, j(a)ψ j

(
ψ−1

i (d)
))

= ϕ j,i(a) ⊗ ψ−1
i (d) = a ⊗ ψ−1

i (d),

proving that, indeed, ρ is defined correctly.
By Lemma 2 C is isomorphic to the algebra of finitary matrices with an elementary G-grading.

Since Supp C = ⋃
i�1 Supp Ci and T ∩ Supp Ci = {1}, for all i � 1, we have T ∩ Supp C = {1}, and the

proof is complete. �
7. The uniqueness theorem for the elementary gradings of simple algebras of finitary matrices

The defining sequence g of an elementary grading is not defined uniquely. In what follows we
prove a theorem that gives necessary and sufficient conditions for two sequences to define isomorphic
gradings. It will be convenient to denote such sequence as a function τ : I → G such that τ (i) = gi .
Here I is the sequence of natural numbers or any initial segment of this. In the latter case we sim-
ply deal with R = Mn(F ) for a natural number n. With each such function we associate a function
Sτ : G → N ∪ {∞} given by Sτ (g) = Card(τ−1(g)).

Further notice that for each elementary grading defined by a function τ there is a graded vector
space V with a basis {vi | i ∈ I} such that deg vi = g−1

i . We denote the subspace spanned by all vi
with τ (i) = g by V g−1 . In this case the algebra of finitary matrices can be identified with the set
all linear transformations of V spanned by the linear transformations with matrices Eij with respect
to the above basis. The homogeneous component R(g) is then the set of all linear transformations ϕ
such that ϕ(Vh) ⊂ V gh .
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Theorem 6. Let G be a group, R and R ′ the algebras of finitary matrices endowed by two elementary grad-
ings R = ⊕

g∈G R(g) and R ′ = ⊕
g∈G(R ′)(g) defined by the tuples τ and τ ′ , respectively. Then R and R ′ are

isomorphic as graded algebras if and only if there is an element g0 ∈ G such that Sτ (g) = Sτ ′ (g0 g), for all
g ∈ G.

Proof. First we assume that the gradings defined by τ and τ ′ are isomorphic. Note that two se-
quences g = (g1, g2, . . .) and h = (ag1,ag2, . . .) define the same gradings on R and Sτ (g) = Sρ(ag)

for all g ∈ G where ρ(i) = ag . Hence we can suppose that ρ(1) = e that is g1 = 1 in g.
Let f : R → R ′ be the graded isomorphism of R and R ′ , that is, f (R(g)) = (R ′)(g) , for all g ∈ G . Let

us consider the identity components R(e) and (R ′)(e) . Each of these algebras is the sum of simple ide-
als M(g) and (M ′)(g) each defined as the linear span of the set of matrix units Eij or E ′

i j , respectively,
such that τ (i) = τ ( j) = τ ′(i) = τ ′( j) = g .

Since f (R(e)) = (R ′)(e) we must have f (M(g)) = (M ′)(σ (g)) for a bijective map σ : Supp R �→
Supp R ′ = Supp R on G . Let us also recall [7, Corollary 2, Section 4.11] that there is a linear bijec-
tive map α : V → V ′ such that f (ϕ) = αϕα−1 for any ϕ ∈ R . Let us notice first that such α must
satisfy the equation α(V g−1 ) = V ′

σ(g)−1 . Indeed, we have

M(g) = {
ϕ ∈ R(e)

∣∣ ϕ(V ) ⊂ V g−1

}
and

(
M ′)(g) = {

ϕ ∈ (
R ′)(e) ∣∣ ϕ(

V ′) ⊂ V ′
g−1

}
.

We have αM(g)α−1 = (M ′)(σ (g)) and so αM(g) = (M ′)(σ (g))α. Applying both sides to V and having in
mind the equations

α(V ) = V ′, M(g)(V ) = V g−1 and
(
M ′)(σ (g))(

V ′) = V ′
σ (g)−1

we obtain α(V g−1 ) = V ′
σ(g)−1 .

Now let us use αR(g)α−1 = (R ′)(g) or αR(g) = (R ′)(g)α, for all g ∈ Supp R ⊂ G . Applying both sides
of this equation to any Vh , h ∈ Supp V ⊂ G , we obtain αR(g)(Vh) = (R ′)(g)α(Vh) and so α(V gh) =
(R ′)(g)(V ′

σ(h−1)−1 ). In other words, V ′
σ(h−1 g−1)−1 = V ′

gσ(h−1)−1 and

σ
(
h−1 g−1)−1 = gσ

(
h−1)−1

(15)

for any h ∈ Supp R , g ∈ Supp R . Recall that g1 = e in g that is e−1 = e ∈ Supp V . Substituting h = e
in (15) and setting g0 = σ(e), we obtain σ(g−1) = g0 g−1, for any g ∈ Supp R . Note that for any
elementary grading oh g−1 ∈ Supp R if and only if g ∈ Supp R . Hence also σ(g) = g0 g for all g ∈
Supp R . So we have dim V g = dim V ′

g0 g . Since Sτ (g) = dim V g , we easily obtain the desired condition:
there is g0 ∈ G such that Sτ (g) = Sτ ′ (g0 g) for all g ∈ G .

To prove the converse, we consider two G-graded finitary matrix algebras R = ⊕
g∈G R(g) ,

R ′ = ⊕
g∈G(R ′)(g) and assume that there is g0 ∈ G such that Sτ (g) = Sτ ′ (g0 g), for any g ∈

Supp R ⊂ G .
We define an isomorphism f : R → R ′ in the following way. For each g ∈ G , let the ordered subset

I g label the elements vi of the basis of V ∩ V g−1 . Let I ′g be the same thing for V ′ . Then there is
an ordered map βg : I g → I ′g0 g . We extend it to a bijection β of I into itself. Then β satisfies the
following condition. If g = (g1, g2, . . .) and h = (h1,h2, . . .) then

hβ(i) = g0 gi . (16)

Denote by f the linear map R → R ′ such that f (Eij) = Eβ(i)β( j) . Then f is an isomorphism and
f (R(g)) = (R ′)(g) due to (16). �
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Remark 1. The theorem above is no longer true if we replace the algebra of finitary matrices by
the other direct limits of matrix algebras. For example, suppose an algebra R is the direct limit of
the algebras Ri = M2i , i = 1,2, . . . , where the structure mappings ϕi : Ri → Ri+1 are given by X �→
diag{X, X}. Then the elementary grading by G = 〈a〉2 of Ri given by a tuple τ can be extended to the
grading of Ri+1 defined by τ ′ to make ϕi graded if we either choose τ ′ = (τ , τ ) or τ ′ = (τ ,aτ ). If we
start with the grading of R1 defined by τ = (e,a) and consider the identity component of the grading
in each of the two cases then we will see the limits of semisimple algebras, each of which is the sum
of two isomorphic matrix subalgebras. But the Bratteli diagrams [5] of these limits are different and
so the limits are not isomorphic. At the same time the “Steinitz numbers” Sτ and S ′

τ are the same
and both equal to e∞a∞ .

Remark 2. A uniqueness theorem for the G-gradings of matrix algebras over algebraically closed field
F of characteristic zero has been established by A.A. Chasov [6].
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