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We construct a new 2-parameter family of static topological solitons in 5D minimal supergravity which 
are endowed with magnetic charge and mass. The solitons are asymptotically R4 × S1, where the radius
of the S1 has a lower bound Rs � Rmin. Setting up initial data on a Cauchy slice at a moment of time
symmetry, we demonstrate that if Rs > Rmin these solitons correspond to a perturbatively stable “small” 
static bubble as well as an unstable “large” static bubble, whereas if Rs < Rmin there are no static bubbles. 
The energetics and thermodynamics of the magnetic black string are then discussed and it is shown that 
the locally stable bubble is the end point of a phase transition for an appropriate range of black string 
parameters.

© 2011 Elsevier B.V. Open access under CC BY license.
Since the seminal papers of Hawking and Page [1] and of Gre-
gory and Laflamme [2], the stability of black objects, particularly 
in various higher-dimensional gravity theories, has become a par-
ticularly active vein of research. In the modern parlance of the 
AdS/CFT correspondence, the Hawking–Page phase transition of 
AdS black holes, which is thermodynamic in nature, is dual to a 
confinement–deconfinement phase transition in the large N limit 
of the boundary gauge theory [3]. Meanwhile the qualitatively un-
related Gregory–Laflamme instability, which manifests as unstable 
modes in metric perturbations at the horizon, has been shown 
to be similar to the Rayleigh–Plateau instability of classical mem-
branes [4]. There are then two important types of stability when 
it comes to black holes: thermodynamic and perturbative. In [5] 
it was conjectured that there exists a relation between thermody-
namic stability and perturbative stability, although this conjecture 
has since been shown to be violated in some cases [6].

Perturbative stability, à la Gregory–Laflamme, of black strings 
with magnetic charge and mass parameters P and m, consistent 
with the notation in this Letter, was demonstrated to hold in the 
range P � m � 3 

2
√

2 
P , corresponding to where the heat capacity is

positive [7]. While this was regarded as evidence that the Gubser– 
Mitra conjecture is satisfied for these objects, a proper thermody-
namic stability analysis was not possible since it was unclear what 
the magnetic black string could phase transition to. For neutral and 
electrically charged black strings, there exist spherical black holes 
that are (un)charged under the same gauge field as the string. This 
is not true for strings carrying a topological magnetic charge since
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this charge must have flux on a sphere of the same dimension as 
the rank of the gauge field. This means that spherical magneti-
cally charged black holes are charged under a larger rank gauge 
field than the black string, and so charge conservation must be vi-
olated to allow a transition between these objects. The question 
is then begged: do there exist other objects with the same topo-
logical charge as the black string? Here we demonstrate that if one 
considers anti-periodic boundary conditions for the fermions, there 
indeed exists a 2 parameter family of solitons that carry the same 
topological charge as the black string. This 2-parameter family is 
sub-divided into “small” and “large” solitons, which we will show 
contribute dramatically to the thermodynamic stability of magnetic 
black strings.

It is, however, well known that Kaluza–Klein spacetimes with 
supersymmetry breaking boundary conditions have rather fatal in-
stabilities. For instance, in [9] Witten showed that in empty space 
with a Kaluza–Klein direction, “bubbles of nothing” can nucleate 
and expand exponentially fast, eating up the entire spacetime. Brill 
and Horowitz [8] then expanded on the work of Witten by consid-
ering an asymptotically Kaluza–Klein spacetime with initial data on 
a Cauchy surface of time symmetry and demonstrating that such 
spacetimes with anti-periodic fermionic boundary conditions are 
unstable to the nucleation of dynamic bubbles of arbitrary neg-
ative energy. These results hold for vacuum Einstein as well as 
Einstein–Maxwell with electric charge and magnetic charge with 
flux around the periodic dimension. Further investigations have re-
vealed that topological solitons carrying the appropriate Maxwell 
charges in these theories generically correspond to perturbatively 
unstable static bubbles [10–12] and are therefore a subset of the 
bubbles considered in [8].

Bubbles carrying a topological magnetic charge are not cov-
ered by the above analysis. It is our aim to demonstrate that the
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addition of a topological magnetic charge locally stabilizes the
Kaluza–Klein vacuum,1 where the vacuum is a small static mag-
netically charged topological soliton.

We start with the metric of the static, magnetically charged
black string of 5D minimal supergravity [7]

ds2 = − f (r)dt2 + dr2

f (r)h(r)
+ h(r)dz2 + r2 dΩ2

2 , (1)

A = −√
3P cos θ dφ, (2)

f (r) = 1 − r+
r

, h(r) = 1 − r−
r

, (3)

where dΩ2 is the metric on a unit two-sphere, A is the gauge
potential and the outer and inner horizons are r± = m±√

m2 − P 2.
The magnetic charge and the ADM mass of the black string are
related to the parameters m and P as

Q M = √
3P , MBS = π Rs

2G5

(
3m +

√
m2 − P 2

)
(4)

where Rs corresponds to the radius of the compact z direction
and G5 is the five-dimensional Newton’s constant. The extremal
solution is given by m2 = P 2 and takes the explicit form

ds2 =
(

1 − P

r

)(−dt2 + dz2) + dr2(
1 − P

r

)2
+ r2 dΩ2, (5)

which is the extremal M53 string of [13] if anti-periodic fermionic
boundary conditions are taken.

We observe that ∂t and ∂z are Killing directions and that the
gauge field has the form A = Aφ dφ, which permits us to Wick
rotate (1) as follows: t → iz and z → it . This operation yields the
metric of a static magnetically charged soliton:

ds2 = − f̃ (r)dt2 + dr2

f̃ (r)h̃(r)
+ h̃(r)dz2 + r2 dΩ2, (6)

A = −√
3P cos θ dφ, (7)

f̃ (r) = 1 − rc

r
, h̃(r) = 1 − rs

r
, (8)

where the critical radii are now rs = μ + √
μ2 − P 2 and rc = μ −√

μ2 − P 2. The magnetic charge and the ADM mass of the soliton
are

Q M = √
3P , MSol = π Rs

2G5

(
3μ −

√
μ2 − P 2

)
. (9)

The signature of the metric in the region rc < r < rs is (− − −
+ +), so the solitons are static bubbles of radius rs . To ensure that
there is no conical singularity at r = rs , we require z = Rsσ such
that σ has period 2π and

Rs = 2

√
r3

s

rs − rc
. (10)

Rearranging for rs we find r2
s = R2

s
8 (1 ±

√
1 − 16P 2/R2

s ), mean-
ing that a given compactification radius admits a large soliton
(‘+’ sign) and a small soliton (‘−’ sign) and furthermore these
two solitons degenerate at a minimum compactification radius of
Rs = 4P . These solitons also admit an “extremal” limit obtained by
taking μ2 = P 2. Such an extremal limit again yields the metric of
Eq. (5), as could be anticipated since this metric is invariant under
Wick rotation of t and z.

1 It should be understood that this is a local vacuum. There are bubbles with
arbitrary negative energy and so a true vacuum cannot be defined.
Having constructed the static bubble solutions, we turn now to
constructing general bubble solutions that are dynamic. We choose
a Cauchy surface, Σ , at a moment of time symmetry so that the
extrinsic curvature vanishes:

ds2
Σ = dr2

f (r)h(r)
+ r2 dΩ2 + h(r)R2

s dσ 2 (11)

where, to ensure our static bubbles are contained in the initial
data, we choose f (r) = 1− rc

r and h(r) is determined by the Hamil-
tonian constraint:

4 R = 1

4
Fab F ab. (12)

Here 4 R is the Ricci scalar of the Cauchy surface and Fab F ab = 6P 2

r4

is the square of the gauge field projected onto the Cauchy surface.
With our choice of f (r), the Ricci scalar is

4 R = −2r(r − rc)h′′ + (8r − 7rc)h′ + 4(h − 1)

2r2
(13)

where a prime denotes a derivative with respect to r. The function
h(r) satisfying the Hamiltonian constraint is

h(r) = 1 − rs

r
+

√
f (r)

r2
C1

+ 2(r − 3rc) + 3
√

f (r)rc ln(r − rc
2 + r

√
f (r) )

r2
C2 (14)

where C1 and C2 are constants of integration and we have used
rsrc = P 2 in the second term.

Next we require h(r) to have a simple zero at rs , meaning C1 is
determined in terms of the other variables as

C1 = −2(rs − 3rc) − 3
√

f src ln(rs − rc
2 + rs

√
f s )√

f s
C2 (15)

where f s ≡ f (rs). Near r = rs > rc the function h(r) = h′(rs)(r −
rs) + · · · where

h′(rs) = rs − rc + 2C2

rs(rs − rc)
. (16)

In order for the boundary r = rs to be free of conical singularities,
Rs is constrained via

h′(rs)
√

f (rs) = 2

Rs
(17)

which can be solved for C2:

C2 = 1

2

√
r2

s − P 2

(
2rs

Rs
−

√
r2

s − P 2

rs

)
. (18)

From Eqs. (14) and (15) it is clear that when C2 = 0 the static
solution (6) is recovered. This occurs when r2

s = P 2, which is the

extremal string, or when Rs = 2
√

r3
s

rs−rc
which is the relation (10).

When Rs < 4P , C2 has no zeroes, meaning there are no static bub-
bles.

At the moment of time symmetry, the time derivative of the
metric vanishes, meaning that ∂t is approximately Killing and the
5-dimensional metric momentarily takes the form of (6) with
f̃ (r) = 1 − rc

r and h̃(r) given by Eq. (14). This allows us to con-
struct an ADM energy sufficiently close to the moment of time
symmetry. The physical process is that of a static black string with
a well-defined ADM energy tunnelling to a bubble configuration by
releasing energy in the form of radiation; the left-over energy will
be the ADM energy of the bubble. Away from the moment of nu-
cleation, the bubble will generally expand or contract and so, at
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Fig. 1. The solid lines are the potential V (rs) for (i) Rs = 4.9P , (ii) Rs = 8P√
3

,

(iii) Rs = 4.3P , (iv) Rs = 4P and (v) Rs = 3.8P . The dotted line shows the energy of
the static solitons: the intersection of the dotted line with a potential curve occurs
at an extremum of the potential. The dashed line shows the energy of the extremal
black string.

least close to the time of nucleation, the ADM energy will act as
a potential the bubble “moves” through. The asymptotic form of
the metric functions are f (r) = 1 − rc

r and h(r) ≈ 1 − rs−2C2
r , which

yields

M5 = 2π Rs

4G5

(
P 2

rs
+ 2rs − 2rs

Rs

√
r2

s − P 2

)
. (19)

Note that if Rs = 2
√

r3
s

rs−rc
, corresponding to the static soliton

C2 = 0, this mass agrees with (9), and furthermore, if rs = P ,
corresponding to the extremal string, this mass agrees with the
extremal limit of (4).

In Fig. 1 we plot the potential V (rs) ≡ M5G5
2π Rs P for different val-

ues of Rs
P (solid lines) as well as plot the position of rs for large

and small static solitons (dotted line) and the energy of the ex-
tremal black string (dashed line). Wherever the dotted line crosses
a solid curve, the potential has an extremum corresponding to a
static soliton. The minima represent the small solitons, the max-
ima represent the large solitons and the inflection point on line
(iv) corresponds to where the small and large solitons degenerate
at Rs = 4P . Line (v) has Rs < 4P and hence has no static solutions.

From this potential diagram, we can see that the large solitons
are perturbatively unstable while the small solitons are perturba-
tively stable. In Ref. [7], it was found that the magnetic black string
is perturbatively stable if the mass parameter lies in the range
P � m � 3

2
√

2
P . If we Wick rotate t → iz and z → it to get the cor-

responding soliton, this range corresponds to P � μ � 3
2
√

2
P which

is the parameter range of μ defining small solitons. μ = 3
2
√

2
P

corresponds to the minimum compactification radius, Rmin = 4P ,
where large and small solitons degenerate. We then see that the
perturbative stability of the solitons is directly related to the per-
turbative stability of the black string via a Wick rotation. We fur-
ther note that although the exact evolution of the dynamic bubbles
is not known, the small static bubble will remain perturbatively
stable and the large one unstable. This is because although the
potential may evolve in time, the positions of the minima and
maxima in Fig. 1 are time independent.

Recall that in setting up the initial data on the Cauchy slice,
we chose a specific form for f (r) and determined h(r) via the
Hamiltonian constraint. Such initial data was found to contain our
static soliton solutions, one of which is locally stable within this
phase space slice. To verify that the small soliton is truly sta-
ble, we choose an orthogonal slice through phase space by fixing
h(r) = 1 − rs

r and now determine f (r) via the Hamiltonian con-
straint. It is conceivable that in this orthogonal slice, the small
soliton might be unstable. Omitting the details, it is not difficult
to show that for this choice of initial data with f (r) vanishing at
some radius rc < rs such that rcrs = P 2, there is a unique solution
given by f (r) = 1 − rc

r . This initial data yields only the static so-
lution so there is no orthogonal direction in phase space to which
the small soliton could be unstable. We conclude, then, that the
small soliton is indeed locally stable.

In a thermodynamic analysis, it is not the energy but rather the
free energy that is of importance in determining the phase struc-
ture. To this end, we consider the Euclidean path integral approach
to semiclassical gravity to compute the actions of the bubbles and
the black string. The action used is 5D Einstein–Maxwell with a
Gibbons–Hawking counterterm and a Mann–Marolf counterterm
[14,15], which renders the actions finite and does not rely on am-
biguous background subtractions. Both instantons have a metric
ds2 = f (r)dτ 2 + ds2

Σ where ds2
Σ is the initial data (11). The black

string is given by f (r) = 1 − r+
r , h(r) = 1 − r−

r while the bubbles
are given by f (r) = 1 − rc

r and h(r) as in Eq. (14). The actions are
found to be

Ib = βπ Rs

2G5

(
2P 2

r+
+ r+

)
, (20)

Is = βπ Rs

2G5

(
2P 2

rs
+ rs − 2C2

)
(21)

where β = 4πr2+√
r2+−P 2

is the inverse temperature and ensures the

black string instanton is free of conical singularities. Subscripts b
and s denote the black string and soliton bubble respectively.

The free energies are now defined as Fi = β−1 Ii . Both solutions
are put at the same temperature and have the same radius of the
compact dimension so as to allow a transition that is due entirely
to local phenomena at the horizon. In keeping the transition local,
we consider a black string with horizon radius r+ and a bubble
with radius rs = r+ . The relative free energy per unit length, F ≡
Fb−Fs
2π Rs

determines the phase structure: if F > 0 then the bubble is
preferred, if F < 0 then the black string is preferred and if F = 0
both are equally likely. A simple calculation yields

F = C2

2G5
, (22)

meaning that the black string is thermodynamically favored to a
bubble of the same size as long as C2 < 0. We find generically
that the condition C2 < 0 occurs for the range of parameters lying
between the two static solitons; alternatively this corresponds to
the region in which the nucleated bubble would be initially con-
tracting (see Fig. 1). We therefore conclude that the black string
of horizon radius r+ will tunnel to a bubble of equal size as long
as the nucleated bubble is initially expanding, otherwise it will be
stable.

The extremal black string, corresponding to rs = P in Fig. 1, is
always unstable to decay to a bubble and has the lowest energy in
the family of black strings, so a natural question to ask is whether
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such an extremal string is stable against forming a bubble that
will expand out to consume the entire spacetime. From Fig. 1 it is
clear that lines (iii), (iv) and (v) will allow this since the bubble
will form arbitrarily close to rs = P , giving it enough energy to
continue down the potential indefinitely. However, line (ii) has the
peak of the hump at the same energy as the extremal string so
as long as Rs > 8√

3
P , as in line (i), the extremal string is stable,

at least classically. In this case the nucleated bubble will oscillate
between the two turning points, settling down to the static small
soliton by emitting gravitational radiation.

Strictly speaking, we should worry about quantum tunneling
through the potential barrier. However, if the compactification ra-
dius is taken to be large compared to the magnetic charge, the
supersymmetry breaking boundary conditions are arbitrarily weak.
In this case, the height and thickness of the potential barrier be-
come arbitrarily large so that tunnelling through the barrier can be
ignored and the small soliton effectively becomes the vacuum, pro-
vided the black string’s mass is sufficiently small compared to Rs .
The black string will then Hawking evaporate until the horizon ra-
dius approaches the size of the small static soliton, at which point
it will have a non-zero probability of tunneling to the local vac-
uum.

Apart from anti-periodic boundary conditions for the fermions,
no stringy considerations have been required in our analysis up to
this point. Such considerations are, however, quite relevant to the
physics of Kaluza–Klein bubbles. For instance, when the size of the
periodic dimension shrinks below the string scale, strings wrapped
around this cycle become tachyonic [16]. Furthermore, when this
tachyon condensation is localized, it induces a topology changing
transition [17].

For the black strings we consider, the size of the periodic di-
mension at arbitrary radius is controlled by the value of h(r), from
which we immediately see that the circle shrinks to zero at the
inner horizon (recall h(r−) = 0). One must also in principle be
careful about α′ corrections. However the curvature at the outer
horizon goes like 1/r2+ which will remain much smaller than the
string scale, even at extremality, provided P 2 � �2

s . Restricting our
attention to large magnetic charges, what we require in order to
nucleate a bubble is for tachyon condensation to take place just
outside the horizon. Using the relation r−r+ = P 2, this condition
becomes

�2
s

R2
s

=
(

1 − P 2

r2+

)
. (23)

In order to avoid tachyon condensation at large r, we also require
R2

s � �2
s , which implies that the black string is near extremality.

These stringy considerations provide a nice verification of our
findings above that the extremal black string will always nucleate
a bubble. In the extremal limit, the circle shrinks to zero at the
degenerate horizon, so tachyon condensation takes over before ex-
tremality is reached and a bubble is nucleated. Sufficiently far from
extremality it becomes increasingly difficult to nucleate a bubble if
the size of the extra dimension is appropriately large. For the static
bubble of minimum compactification radius (Rs = 4P , r+ = √

2P )
for which all nucleated bubbles will expand out to infinity, we find
that �2

s = 8P 2 which is inconsistent with our requirement that α′
corrections can be ignored; we must choose R2
s � P 2 which means

we can ignore any “catastrophic” bubbles. Stated concisely, stringy
analysis suggests that magnetic black strings will Hawking evapo-
rate until they approach extremality sufficiently closely, at which
point tachyon condensation will cause the circle to pinch off. This
destroys the horizon, leaving a bubble which settles down to the
small static configuration considered above. Similar results were
found in [18] where black strings with F1 charge and black strings
with F1 and NS5 charges also settle down to stable static bubbles.2

We would like to stress, however, that our current analysis makes
use only of the Einstein–Maxwell equations and does not require
the properties of other string-inspired fields, such as the dilaton or
various other gauge fields.

The ability to construct magnetically charged solitons from
magnetic branes seems to be generic and directly carries over into
10D Einstein–Maxwell–Dilaton theory. The dilaton has a non-trivial
effect on the spacetime structure, for instance making the singu-
larity for the charged black hole spacelike and as well as elimi-
nating the problematic inner Cauchy horizon [19]. It was shown
in [20] that SUSY black p-branes are perturbatively stable, i.e. do
not suffer the Gregory–Laflamme instability. This result is insen-
sitive to fermionic boundary conditions and holds for extremal
black p-branes as well. Further arguments were given in favor of
their thermodynamic stability [20]; however these were based on
comparing the entropies of black p-branes to spherical black holes
but these objects are charged under different rank gauge fields. In
much the same way as black p-branes with RR charge were con-
sidered in [18], it would be interesting to revisit the question of
thermodynamic stability of black p-branes with magnetic charge
to see if they suffer a similar fate.

Acknowledgements

We would like to thank the Natural Sciences and Engineering
Research Council of Canada for providing the funding for this re-
search. We would also like to thank Keith Copsey for very valuable
discussions.

References

[1] S.W. Hawking, D.N. Page, Commun. Math. Phys. 87 (1983) 577.
[2] R. Gregory, R. Laflamme, Phys. Rev. Lett. 70 (1993) 2837.
[3] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505.
[4] V. Cardoso, O.J.C. Dias, Phys. Rev. Lett. 96 (2006) 181601.
[5] S.S. Gubser, I. Mitra, JHEP 0108 (2001) 018.
[6] J.J. Friess, S.S. Gubser, I. Mitra, Phys. Rev. D 72 (2005) 104019.
[7] U. Miyamoto, Phys. Lett. B 659 (2008) 380.
[8] D. Brill, G.T. Horowitz, Phys. Lett. B 262 (1991) 437.
[9] E. Witten, Nucl. Phys. B 195 (1982) 481.

[10] O. Sarbach, L. Lehner, Phys. Rev. D 71 (2005) 026002.
[11] O. Sarbach, L. Lehner, Phys. Rev. D 69 (2004) 021901.
[12] M. Dine, A. Shomer, Z. Sun, JHEP 0612 (2006) 013.
[13] S.-S. Kim, J.L. Hornlund, J. Palmkvist, A. Virmani, JHEP 1008 (2010) 072.
[14] R.B. Mann, D. Marolf, A. Virmani, Class. Quant. Grav. 23 (2006) 6357.
[15] R.B. Mann, D. Marolf, Class. Quant. Grav. 23 (2006) 2927.
[16] R. Rohm, Nucl. Phys. B 237 (1984) 553.
[17] A. Adams, X. Liu, J. McGreevy, A. Saltman, E. Silverstein, JHEP 0510 (2005) 033.
[18] G. Horowitz, JHEP 0508 (2005) 091.
[19] D. Garfinkle, G.T. Horowitz, A. Strominger, Phys. Rev. D 43 (1991) 3140.
[20] R. Gregory, R. Laflamme, Phys. Rev. D 51 (1995) 305.

2 We would like to thank an anonymous referee for bringing this paper to our
attention.


	Magnetic charge can locally stabilize Kaluza-Klein bubbles
	Acknowledgements
	References


