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Abstract

An integrated approach for all necessary variations within direct analysis, variational design sensitivity analysis and
shakedown analysis based on Melan’s static shakedown theorem for linear unlimited kinematic hardening material behav-
ior is formulated. Using an adequate formulation of the optimization problem of shakedown analysis the necessary vari-
ations of residuals, objectives and constraints can be derived easily. Subsequent discretizations w.r.t. displacements and
geometry using e.g. isoparametric finite elements yield the well known ‘tangent stiffness matrix’ and ‘tangent sensitivity
matrix’, as well as the corresponding matrices for the variation of the Lagrangian-functional which are discussed in detail.
Remarks on the computer implementation and numerical examples show the efficiency of the proposed formulation.
Important effects of shakedown conditions in shape optimization with elasto-plastic deformations are highlighted in a
comparison with elastic and elasto-plastic material behavior and the necessity of applying shakedown conditions when
optimizing structures with elasto-plastic deformations is concluded.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When optimizing structures with elasto-plastic deformations the fundamental problem occurs that defor-
mations and stresses depend on the load path. Thus the optimized structure depends not only on the maximal
loading but also on the loading history. The resulting shapes of structures optimized for the same maximal
loading but different loading paths can be very diverse. This problem becomes even more aggravated if more
than one load case must be considered. All possible load-combinations then form the so-called load domain.
For elastic problems with multiple load cases it is permissible to consider only the corners of this load domain
during optimization. The optimized structure will be safe for all possible load paths within this load domain.
For elasto-plastic structures this is not the case. For optimization of these elasto-plastic structures with multi-
ple load cases it is necessary to consider shakedown conditions.
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Shakedown of elasto-plastic systems subjected to variable loading occurs if after initial yielding plastifica-
tion subsides and the system behaves elastically. This is due to the fact that a stationary residual stress field is
formed and the total dissipated energy becomes stationary. Elastic shakedown (or simply shakedown) of a
system is regarded as a safe state. In Section 3 the shakedown analysis of structures with unlimited linear kine-
matic hardening behavior is described.

It is important to know whether a system under given variable loading shakes down or not. But besides this
other important tasks have to be considered. Such as the maximal possible enlargement of a load domain
while the geometry of a given structure is kept fixed, the optimization (topology, shape design or material
parameters) of the structure for a fixed load domain or the investigation of the sensitivity of the load factor
with respect to changes in geometry, e.g. in order to take into account geometrical imperfections. All these
problems require an efficient strategy for deriving sensitivity information, where special attention must be paid
to the adequate numerical formulation and implementation to prevent the computations from becoming very
time-consuming. In Section 4 the details for performing a variational design sensitivity analysis for shakedown
problems with unlimited linear kinematic hardening are given. Classical Prandtl–Reuß elasto-plasticity for lin-
ear unlimited kinematic hardening with von Mises yield criterion is seen to be a relevant model problem with
practical importance. For problems with this material behavior the shakedown analysis results in upper
bounds for the shakedown load due to the fact that theoretically an infinite number of load cycles is permitted.

Shakedown analysis problems for two- and three-dimensional problems can normally only be solved
numerically. In Section 5 the finite element discretization of the proposed formulation and details of the imple-
mentation concerning the algorithmic formulation of structural, sensitivity and shakedown analysis as well as
storage requirements are discussed.

In Section 6 optimization problems for a square plate with a central circular hole in plane stress state are
formulated, solved and compared for different material behavior and loading conditions.

2. State of the art

In 1932 Bleich (1932) was the first to formulate a shakedown theorem for simple hyperstatic systems con-
sisting of elastic, perfectly plastic materials. This theorem was generalized by Melan (1938a,b) in 1938 to con-
tinua with elastic, perfectly plastic and linear unlimited kinematic hardening behavior. Koiter (1956)
introduced a kinematic shakedown theorem for an elastic, perfectly plastic material in 1956, that was dual
to Melan’s static shakedown theorem. Since then extensions of these theorems for applications of thermoloa-
dings, dynamic loadings, geometrically nonlinear effects, internal variables and nonlinear kinematic hardening
have been carried out by different authors, see e.g. Corradi and Maier (1973), König (1969), Maier (1972),
Prager (1956), Weichert (1986), Polizzotto et al. (1991) and Stein et al. (1993). Several papers were published
concerning especially 2-D and 3-D problems, see Gokhfeld and Cherniavsky (1980), König (1966), Sawczuk
(1969a), Sawczuk (1969b) and Leckie (1965). The shakedown investigation of these problems leads to grave
mathematical problems. Thus, in most of these papers approximate solutions, based on the kinematic shake-
down theorem of Koiter or on the assumption of a special failure form, were derived. But these solutions often
lost their bounding character due to the fact that simplifying flow rules or wrong failure forms were estimated.
Thus, the use of the finite element method was beneficial for the numerical treatment of shakedown problems,
see Belytschko (1972), Corradi and Zavelani (1974), Nguyen Dang and Morelle (1981), Shen (1986) and Stein
et al. (1993).

Structural optimization essentially needs an efficient strategy for performing the sensitivity analysis, i.e. for
calculating the design variations of functionals modeling the objective and the constraints of the optimization
problem. These demands are addressed within the so-called design sensitivity analysis which has been dis-
cussed in the literature for about the last three decades and especially for shape design sensitivity within
the past 15 years. Two basic methods, i.e. the material derivative approach and the domain parametrization
approach, have been used to derive the shape design sensitivity expressions. The material derivative approach
dates back to 1981 (Céa, 1981; Zolésio, 1981) and was later extended to several different viewpoints. The
domain parametrization method, also called control volume approach, was briefly introduced by Céa
(1981), but did not gain popularity until Haber published a modified formulation in 1987. For a concise
description and further hints to literature, see Tortorelli and Wang (1993) and Arora (1993). In Barthold
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and Stein (1996) a systematic reformulation of these two equivalent approaches was presented called the sep-
aration approach taking advantage of their merits but avoiding their drawbacks. The described approach was
outlined for general hyperelastic material behavior with large strains. It was then extended to problems with
linear and finite elasto-plastic material behavior for single load cases, see Wiechmann et al. (1997), Barthold
and Wiechmann (1997) and Wiechmann and Barthold (1998).

Optimal plastic limit and shakedown design of bar structures with constraints on plastic deformation was
investigated in Kaliszky and Lógó (1997). A first step towards an integrated formulation for general two- and
three-dimensional elasto-plastic problems with multiple load cases under shakedown conditions was published
first in Kaliszky and Lógó (2002) and Wiechmann et al. (2000).

3. Shakedown analysis of structures with unlimited linear kinematic hardening behavior

In Table 1 the constitutive equations of the classical Prandtl–Reuß elasto-plasticity with linear unlimited
kinematic hardening and von Mises yield criterion are presented. Fig. 1 shows a typical stress–strain curve
for this material in a cyclic test. The necessary shakedown condition for this material is that there exist at least
one residual stress field �qðXÞ and one backstress field �cðXÞ, such that
Table
Set of

Kinem

1. Free

2. Mac

3. Mic
4. Plas
5. Yiel

6. Flow

7. Evo
8. Loa

l: shea
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���dev
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rEðX ; tÞ þ �qðXÞ � 2

3
�cðXÞ

i����
ffiffiffi
2

3

r
Y 0 6 0 8X 2 X0 ð1Þ
is satisfied for all possible loads P(t) within the given load domain M.
The following static shakedown theorem due to Melan states, that the necessary shakedown condition Eq.

(1) in the sharper form Eq. (2) is also sufficient.
1
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atics ee = $su � ep

ee ¼ ee : 1; ~ee ¼ dev½ee�
energy W ¼ bWvolðeeÞ þ bWisoð~eeÞ þ bK ðaÞ

¼ 1
2 jðeeÞ2 þ ltr½~ee~ee� þ 1
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ro stresses c ¼ oa
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3 ck �
ffiffiffiffiffiffiffiffi
2=3

p
Y 0

rule _ep ¼ k½dev½r� � 2
3 c�=kdev½r� � 2

3 ck ¼ kn

lution _a ¼ �oc
bUðr; cÞ ¼ 2
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ding/unloading k P 0, U 6 0, kU = 0

r modulus, j: bulk modulus, H: hardening parameter, Y0: yield stress.

Fig. 1. Stress–strain curve for a material with linear unlimited kinematic hardening behavior.
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Theorem 1. If there exist a time-independent residual stress field �qðXÞ, a time-independent backstress field �cðXÞ
and a factor m > 1, such that the condition
U½mrEðX ; tÞ;m�qðXÞ;m�cðXÞ� 6 0 ð2Þ

holds for all P(t) in M and for all X in X0, then the system will shake down.

Based upon this static shakedown theorem an optimization problem can be formulated. We will investigate
for a given system and a given load domain M how much the load domain M can be increased or must be
decreased, respectively, such that the system will still shake down. The investigation of this optimization prob-
lem will be called shakedown analysis in the sequel. Introducing a load factor b we can reformulate the prob-
lem as follows: Calculate the maximal possible load factor b such that the system will shake down for the
increased or decreased load domain Mb, respectively. This optimization problem consists of the scalar valued
objective b, the equilibrium conditions for the residual stresses �q and for the elastic stresses rE, i.e.
Gq ¼
Z

X0

Gradg : �qðXÞdV X0
; ð3aÞ

GrE ¼
Z

X0

Gradg : rEðX ; tÞdV X0
�
Z

X0

g � bðX ; tÞdV X0
�
Z

oX0

g � pðX ; tÞdAoX0
ð3bÞ
(here, g denotes a test function and b and p are the applied loads) and the shakedown conditions U, i.e. Eq. (2).
Thus the optimization problem can be represented as
Objective b! max; ð4aÞ
Constraints Gq ¼ 0; ð4bÞ

GrE ¼ 0; ð4cÞ
U 6 0 8 X 2 X0; 8 t > 0. ð4dÞ
Here, b is the objective function and the design variable of the optimization problem as well. Note the simple
form of objective function as it consists only of this design variable b which must be maximized. The con-
straints GrE

, Gq and U depend on the elastic stresses rE, the residual stresses �q and the backstresses �c as shown
in Eqs. (2), (3a) and (3b). Due to the fact that the equilibrium conditions for the elastic stresses GrE

and the
shakedown conditions U must be fulfilled for any time t > 0 the number of constraints of this optimization
problem is infinite.

In the frame of the classical shakedown theory the elastic stresses caused by the pseudo-time dependent
sequence of loadings within the given load domain can be treated with time-independent stresses at the corners
of a convex load domain. Thus, we assume that the load domain has the form of a convex n-dimensional poly-
hedron with M load vertices, see Fig. 2. Any point within the load domain can be described by a convex com-
bination of the load vertices
PðtÞ ¼
XM

j¼1

ajðtÞPðjÞ; where
XM

j¼1

ajðtÞ ¼ 1. ð5Þ
Fig. 2. Initial load domain M0 and maximized load domain Mb with M = 4 load vertices.
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The time-dependent elastic stresses rE can then be represented as
rEðtÞ ¼
XM

j¼1

ajðtÞrEðjÞ. ð6Þ
As a result of this formulation the number of shakedown conditions is limited to the number of load vertices
of the load domain.

Taking advantage of this formulation Stein and Zhang (1992) introduced the following special optimization
problem for unlimited linear kinematic hardening material behavior
Objective b! max ð7aÞ
Constraints GjðX ; u0

j Þ ¼ 0; ð7bÞ
UjðX ; u0

j ; b; �yÞ 6 0; j 2 ½1; . . . ;M � 8 X 2 X0; ð7cÞ
where �q denotes the residual stresses, �c denotes the backstresses and y is the difference of residual stresses and
backstresses, i.e. y :¼ �q� �c, and will be denoted as internal stresses in the sequel. Note that the residual stresses
q have to fulfill the homogeneous equilibrium conditions Gq ¼ 0. The backstresses c are unconstrained because
we consider the simplified limit case of unlimited kinematic hardening behavior, cf. Stein et al. (1992) and Stein
and Zhang (1992). For the shakedown analysis it is sufficient to show that one time-independent (constrained)
residual stress field �q and one time-independent (unconstrained) backstress field �c exist, cf. Theorem 1 but we
are not interested in their explicit computation. Thus, by definition of the new variables y, the shakedown con-
ditions (2) can be reformulated in the form (7c). It is then sufficient to show the existence of one time-indepen-
dent unconstrained internal stress field �y, and thus the equality constraints for the backstresses Gq can be
eliminated from the formulation. Furthermore no time-dependency occurs, whereas the optimization problem
now depends on the displacements corresponding to the loading of the jth load vertex u0

j . Gj now denotes the

weak form of equilibrium corresponding to the jth load vertex where the superscript rE is dropped for conve-
nience. In order to simplify the notation this optimization problem is replaced by a Lagrangian-functional
LðX ; u0
j ; z; l; kÞ ¼ �bþ ljGjðX ; u0

j Þ þ kjUjðX ; u0
j ; zÞ ! stat; ð8Þ
where lj and kj are Lagrangian-multipliers for the equality and inequality constraints, respectively, and the
vector z is the solution of the optimization problem and consists of the load factor b and the internal stresses
y, i.e. zT = [b,yT]. The Kuhn–Tucker conditions which are necessary for an optimal solution are
LðX ; u0
j ; z; l; kÞ ¼ 0; ð9aÞ

GjðX ; u0
j Þ ¼ 0; ð9bÞ

UjðX ; u0
j ; zÞ 6 0; ð9cÞ

kj P 0; ð9dÞ
kjUj ¼ 0. ð9eÞ
Here L is derived from the Lagrangian L by variation w.r.t. the primal unknowns z, i.e. dzL ¼ �L. A detailed
presentation of Eq. (9a) for the chosen model problem is given in Eqs. (24a) and (24b). Note that in a shape
optimization process the geometry field X is no longer fixed but depends on the choice of geometrical design
variables. Thus, when shakedown constraints are considered in a shape optimization process the dependency
of the Lagrangian-functional L on the field X must be considered. This general formulation of the optimiza-
tion problem is the basis for a sensitivity analysis described in the next section.

4. Variational design sensitivity analysis

The sensitivity analysis of the objective function or the constraint functions under consideration can be per-
formed with different methods. Our approach is based upon the variational design sensitivity analysis of the
investigated functionals. This means the variations of the continuous formulation are calculated and then in a
subsequent step they are discretized in order to get computable expressions. The main advantage of this
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methodology is that the sensitivity analysis can be formulated analogous to and consistent with the structural
analysis and the shakedown analysis. The weak form of equilibrium and the Lagrangian-functional presented
above are formulated for the continuous structure and are then being discretized. Thus, many formulations
that were derived for and are being used for the direct analysis (structural analysis and shakedown analysis)
can also be applied to the sensitivity analysis.

The separation approach to continuum mechanics based on convected coordinates, see Barthold and Stein
(1996), yields a decomposition of the deformation mapping x = u(X, t) into an independent geometry mapping

X ¼ ~wðHÞ and a displacement mapping u ¼ ~mðH; tÞ, see Fig. 3. Different gradient operators can be defined, i.e.
grad, Grad and GRAD, see Fig. 4, corresponding to the independent variables x, X and H of the considered
domains Xt, X0 and TH, respectively. Furthermore, the convected basis vectors are eE i on TH, Gi :¼ oX/oHi

on X0 and gi :¼ ox/oHi on Xt. Thus, the material displacement gradient can be decomposed as follows:
H ¼ GradmðXÞ ¼ GRAD~mðHÞ½GRAD ~wðHÞ��1. ð10Þ
The gradients GRAD~mðHÞ and GRAD ~wðHÞ are used to decompose continuum mechanical tangent mappings
and to perform pull back and push forward transformations between X0 or Xt and the parameter space TH.
See Eq. (22) for details on deriving explicit expressions for the necessary variations for the chosen model
problem.

4.1. Sensitivity analysis of shakedown analysis problems

4.1.1. General formulation

Sensitivity analysis of problems with shakedown conditions should be based on the chosen numerical
implementation of the direct problem in order to obtain correct and consistent expressions and numerically
efficient implementations. The key points of our approach are:
Fig. 3. Configurations and mappings in continuum mechanics.
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• The variation of the geometry mapping dX is assumed to be given.
• The equilibrium condition Gj ¼ 0 of the jth load vertex is derived by variation of the energy P w.r.t. the

displacement function, i.e. duP ¼ �G. Here g are admissible test functions using the embedding
~u ¼ uþ �g. The equilibrium condition is solved to compute the displacement mapping u0

j , i.e.
Gjðg;X ; u0
j Þ ¼ 0. ð11Þ
• The optimality condition L ¼ 0 is derived by variation of the Lagrangian L w.r.t. the unknown function z,
i.e. dzL ¼ �L. Here f are admissible test functions using the embedding ~z ¼ zþ �f. The optimality condi-
tion is solved to calculate the solution of the shakedown analysis problem z, where zT = [b,yT], i.e.
Lðf;X ; u0
j ; z; l; kÞ ¼ 0. ð12Þ
• The variation of the equilibrium condition Gj ¼ 0 yields
0 ¼ dsGj þ du0
j
Gj ¼ sjðg; dXÞ þ kjðg; du0

j Þ; ð13Þ

where sj(g,dX) denotes the ‘tangent sensitivity’ of the jth load vertex

sjðg; dXÞ ¼ oGj

oX
dX ð14Þ

and kjðg; du0
j Þ denotes the ‘tangent stiffness’ corresponding to the jth load vertex

kjðg; du0
j Þ ¼

oGj

ou0
j

du0
j . ð15Þ

• Thus, the variation of the displacement mapping du0
j is implicitly defined by Eq. (13) and can be represented as
oGj

ou0
j

du0
j ¼ �

oGj

oX
dX . ð16Þ
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• The variation of the optimality condition L ¼ 0, see Eq. (12), yields
0 ¼ dzLþ dsLþ du0
j
L ¼ lzðf; dzÞ þ lsðf; dXÞ þ lu0

j
ðf; du0

j Þ; ð17Þ

where three bilinear forms are being introduced. Here lz(f,dz) is known from shakedown analysis. It de-
notes the variation of L w.r.t. z, i.e.

lzðf; dzÞ ¼ oL

oz
dz. ð18Þ

The term ls(f,dX) denotes the variation of L w.r.t. geometry and can be represented as

lsðf; dXÞ ¼ oL

oX
dX . ð19Þ

And finally lu0
j
ðf; du0

j Þ denotes the variation of L w.r.t. the displacements of the jth load vertex, i.e.

lujðf; du0
j Þ ¼

oL

ou0
j

du0
j . ð20Þ

• Thus, the variations of load factor db and internal stresses dy of the shakedown analysis problem are
implicitly defined by Eq. (17) and can be represented by
oL

oz
dz ¼ � oL

oX
dX � oL

ou0
j

du0
j . ð21Þ
Using Eq. (16) the variation of the displacement field du0
j can be denoted in terms of the variation of the geo-

metry mapping dX and thus, the variation of the solution of the shakedown analysis problem dzT = [db,dyT],
i.e. the variation of the load factor and the internal stresses, can finally be denoted in terms of dX, too.

4.1.2. Formulation for the chosen model problem

To derive the variational formulation presented above the total variation of the weak form of equilibrium
and of the optimality condition must be supplied, see Eqs. (11) and (17).

4.1.2.1. Variation of the weak form of equilibrium. For notational convenience we limit our attention to the
internal part of the weak form of equilibrium
Gint
j ¼

Z
X0

Gradg : rE
j dV X0

. ð22Þ
Its total variation consists of partial variations w.r.t. displacements and w.r.t. geometry and it is computed by
a ‘pull-back–variation–push forward’ – scheme, i.e.
dGint
j ¼ d

Z
TH

Gradg : rE
j JW dV TH

� �
¼
Z
TH

Gradg : d½rE
j �JW þ rE

j : d½Gradg�JW þ rE
j : Gradgd½JW�dV TH

¼
Z

X0

Gradg : CE : ½Graddu0
j �GradgGraddX �dV X0

�
Z

X0

rE
j : GradgGraddX dV X0

þ
Z

X0

rE
j : GradgDivdX dV X0

. ð23Þ
The first part of this total variation corresponds to the partial variation of the elastic stresses rE w.r.t. the dis-
placements u0

j of the jth load vertex. This part is well known from finite element analysis. The last three terms
correspond to the variation of the elastic stresses rE, the material gradient of the test-functions Gradg and the
Jacobi-determinant of the transformation onto the parameter space JW w.r.t. geometry X.

4.1.2.2. Variation of the optimality condition. This variation consists of the partial variations w.r.t. z, X and u0
j

and is equal to zero. The optimality condition L of the Lagrangian-functional L consists of parts variations
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w.r.t. the load factor denoted as Lb and w.r.t. the internal stresses denoted as Ly , i.e. L ¼Lb þLy . For the
chosen model problem these terms read
Lb ¼ �aþ kj½2rj : P : rE
j a�; ð24aÞ

Ly ¼ þkj½2rj : P : c�. ð24bÞ

Here a and c are admissible test functions using the embedding ~b ¼ bþ �a and ~y ¼ yþ �c, respectively.

Thus, the total variation of the optimality condition dL can be split additively into two parts: the total
variation of Lb, which results from the partial variation of the Lagrangian-functional L w.r.t. the load factor
b, and the total variation of Ly , which results from the partial variation of the Lagrangian-functional L w.r.t.
the internal stresses y. Each of these total variations dLb and dLy consists of partial variations w.r.t. the load
factor b, the internal stresses y, the displacements of the jth load vertex u0

j and the geometry X as indicated in
the following equations:
dLb ¼ 2kjarE
j : P : I : rE

j db

þ 2kjarE
j : P : I : dy

þ 2kjarj : P : CE : Graddu0
j

þ 2kjarE
j : P : bCE : Graddu0

j

� 2kjarj : P : CE : H jGraddX

� 2kjarE
j : P : bCE : H jGraddX ;

���������������

db

dy

du0
j

dX

ð25aÞ

dLy ¼ 2kjc : P : I : rE
j db

þ 2kjc : P : I : dy

þ 2kjc : P : bCE : Graddu0
j

� 2kjc : P : bCE : H jGraddX ;

���������

db

dy

du0
j

dX

ð25bÞ
where the following notation is used:

CE: linear elastic tangent operator,
I: fourth-order unity tensor,
P: fourth-order deviatoric projection tensor,
H j: displacement gradient for the jth load vertex.

Note that the structure of the derived variations is almost identical. Furthermore the partial variations of the
functionals Lb and Ly w.r.t. the load factor b and w.r.t. the internal stresses y are required for solving the
shakedown analysis problem and are already known. Thus, the only additional effort to perform sensitivity
analysis is the computation of the partial variations w.r.t. displacements u0

j corresponding to the jth load ver-
tex and w.r.t. geometry X.

5. Numerical solution of shakedown analysis problems with unlimited linear kinematic hardening

using the finite element method

5.1. General considerations

The numerically efficient implementation of shakedown analysis problems is an important task due to the
fact that normally a discretized optimization problem with very many constraints has to be analyzed. This is
because in case of perfect plasticity or limited kinematic hardening the shakedown constraints must be calcu-
lated for every load vertex in every Gaussian point of the discretized structure. Thus, numerical solution pro-
cedures have been formulated like a reduced bases technique or a special SQP-algorithm, see Stein et al. (1992,
1990). Nevertheless it was shown by Stein and Zhang (1992) that for unlimited linear kinematic hardening the
formulation of the optimization problem can be simplified because of the local nature of the failure of prob-
lems with this kind of material behavior.
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The following strategy allows to take advantage of the special structure of the shakedown optimization
problem

• In a first step the solution of the equilibrium conditions Gj ¼ 0 for any load vertex j is computed.
• Then the vectors of elastic stresses rE

j ðiÞ in any Gaussian point i of the discretized structure are being
calculated.

• In a final step the solution of the global discretized shakedown optimization problem is calculated by solv-
ing local optimization problems in any Gaussian point based upon the following lemma, see Stein and
Zhang (1992).

Lemma 2. The global maximal load factor b of a shakedown analysis problem with unlimited linear kinematic

hardening material behavior is given by
b ¼ �b with �b ¼ min
i¼1;NGP

bi; ð26Þ
where bi is the solution of the local sub-problem defined in the ith Gaussian point
Objective bi ! max; ð27aÞ
Constraint U½bir

E
j ðiÞ þ yðiÞ� 6 0 8 j ¼ ½1; . . . ;M �. ð27bÞ
Note that the structure of the local optimization problems is very simple because the number of constraints is
equal to the number of load vertices. We adopt the solution strategy described above and formulate the sensitiv-
ity analysis consistent with this formulation, see Fig. 5. First of all the sensitivities of the elastic stresses are being
computed and after the shakedown analysis problem has been solved its sensitivities are being calculated as well.

5.2. Finite element discretization

The continuous formulation derived in Section 4.1 is now being discretized by using a standard displace-
ment formulation. Two expressions, the total variation of the weak form of equilibrium and the total variation
of the optimality condition of the shakedown analysis problem, must be investigated.

The total variation of the weak form with respect to design using the introduced bilinear forms sj(g,dX) and
kjðg; du0

j Þ reads, see Eq. (13),
dGj ¼ dsGj þ du0
j
Gj ¼ sjðg; dXÞ þ kjðg; du0

j Þ ¼ 0. ð28Þ
The FE-discretization with gh, duh and dXh on each element domain leads to an approximation of the variation
of the considered functionals by the derivative with respect to scalar valued design variables
dGj ¼ 0!
dGh

j

ds
¼
[E
e¼1

fse;h
j ðgh; dXhÞ þ ke;h

j ðgh; du0;h
j Þg ¼ ĝTSjdbX þ ĝTKjdû0

j ¼ ĝTfSjdbX þ Kjdû0
jg ¼ 0;

ð29Þ

where underlined symbols denote matrices and vectors of the respective continuous quantities.

Thus, we obtain for each virtual node coordinate vector dbX 2 Rk the induced virtual node displacement
vector dû0

j 2 Rn
dû0
j ¼ �K�1

j SjdbX ; ð30Þ
where Kj is the global tangential stiffness matrix of order (n · n), Sj is the global tangential sensitivity matrix of
order (n · k), n is the overall number of degrees of freedom and k is the overall number of coordinates, see
Barthold and Stein (1997).

The total variation of optimality condition for any local sub-problem with respect to design using the intro-
duced bilinear forms lz(fi,dzi), ls(fi,dX) and lu0

j
ðfi; du0

j Þ reads, see Eq. (17),
dLi ¼ dzLi þ dsLi þ du0
j
Li ¼ lzðfi; dziÞ þ lsðfi; dXÞ þ lu0

j
ðfi; du0

j Þ ¼ 0. ð31Þ



Fig. 5. Flow chart of structural analysis, sensitivity analysis and shakedown analysis.
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The FE-discretization on each element domain leads to an approximation of the variation of the considered
functionals by the derivative with respect to scalar valued design variables
dLi ¼ 0! dLh
i

ds
¼ fle;h

z ðf
h
i ; dzh

i Þ þ le;h
s ðf

h
i ; dXhÞ þ le;h

u0
j
ðfh

i ; duo;h
j Þg ¼ fT

i Lzzdẑi þ fT
i LzsdbX þ fT

i Lzu0
j
dû0

j

¼ fT
i fLzzdẑi þ LzsdbX þ Lzu0

j
dû0

jg ¼ 0. ð32Þ
Thus, by using Eq. (30) we obtain for each virtual node coordinate vector dbX 2 Rk the induced virtual vector
dẑ 2 Rl
dẑ ¼ �L�1
zz Lzs � Lzu0

j
K�1

j Sj

n o
dbX ; ð33Þ
where Lzz is the local Hessian matrix of order (l · l), Lzs is the local shakedown sensitivity matrix of order
(l · k), Lzu0

j
is the local shakedown displacement matrix of order (l · n) and l is the number of unknowns of

the local shakedown problem.
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5.3. Storage requirements

Two different methods are suitable for the implementation of the shakedown analysis and its variation.
One way is to compute the global displacement vectors u0

j and the elastic stress vectors rE
j ðiÞ at each

Gaussian point i for each load vertex. The stress vectors rE
j ðiÞ as well as their total variations drE

j ðiÞ must

be stored to solve the shakedown analysis problem and the sensitivity analysis problem, respectively.
In order to minimize the storage required to perform shakedown analysis and its sensitivity analysis we use

the following strategy instead. The vectors of the global displacements u0
j are being stored for each load vertex

j = 1, . . . ,M. The vectors of the elastic stresses rE
j ðiÞ at each Gaussian point are being recomputed in order to

solve the local optimization problem. Additionally, in order to perform the sensitivity analysis, the total var-
iation of the global displacement vectors du0

j is being stored for each load vertex j = 1, . . . ,M and for each
scalar valued design variable s = 1, . . . ,NDV. The vectors of the total variation of the elastic stresses drE

j ðiÞ
at each Gaussian point are then being recomputed in order to solve the sensitivity analysis problem. Thus,
implementing the sensitivity analysis for a shakedown analysis problem requires additional storage that is
equal to that needed to implement the shakedown analysis multiplied with the number of design variables
of the shape optimization problem.
6. Numerical examples

The formulation of sensitivity analysis of kinematically linear elasto-plastic materials as described above
was implemented into a finite element research tool for inelastic analysis and optimization (INA-OPT).
Computations of shakedown with unlimited linear kinematic hardening were performed which decouples
the problem completely such that upper bounds (infinite number of load cycles) for low cycle fatigue were
computed.

6.1. Square plate with a central circular hole – comparison of elastic and elasto-plastic optimization without

and with shakedown constraints

The system depicted in Fig. 6 is a square plate with a central circular hole in plane stress state. The dimen-
sion of the whole structure is a · a = 20 · 20 cm. The diameter of the central hole is 2 cm. This structure is
loaded by a uniformly distributed load p in the y-direction. Due to symmetry conditions only one quarter
of the structure was investigated. It was discretized with standard two-dimensional isoparametric Q1-displace-
ment elements, Fig. 8. The geometry of the circular hole was modeled by a Bézier curve with five control
points, Fig. 7.

The material parameters used in the numerical analysis are shown in Table 2. With the initial geometry
and material data three different optimization problems were investigated, Table 3. For all of these
optimization problems the objective was to minimize the weight of the structure. The coordinates of 10
Bézier-points controlling the outer vertical and inner (hole) boundary of the plate were used as design vari-
ables, Fig. 7.

• Example 1 (elastic optimization problem). In the first of these optimization problems only elastic material
behavior was considered and a static load p = 3.0 kN/cm was applied. Von Mises equivalent stress in the
whole domain as well as maximum displacement uy of the lower and upper edges y ¼ � a

2
were restricted; the

displacement condition is necessary for elasto-plastic deformation only and was not active for this optimi-
zation problem.

• Example 2 (elasto-plastic optimization problem). The same loading conditions and constraints were used for
the second optimization problem but in this case elasto-plastic material behavior was considered. For
details on the formulation of shape optimization of problems with linear elasto-plastic material behavior
see e.g. Wiechmann et al. (1997).

• Example 3 (shakedown optimization problem). In the third optimization problem shakedown constraints
were applied and a load domain was investigated with load vertices �1.5 6 p 6 3.0 kN/cm.



Fig. 6. Initial geometry and loading conditions.

Fig. 7. Position of Bézier control-points and design variables.

Table 2
Material parameters

Young’s modulus E = 206.90 kN/mm2

Poisson’s ratio m = 0.29
Initial yield stress Y0 = 0.45 kN/mm2

Linear hardening H = 16.93 kN/mm2

Table 3
Formulation of three different optimization problems

Example Material behavior Loading Active constraints

1 Elastic p = 3.0 kN/cm r

2 Elasto-plastic p = 3.0 kN/cm u

3 Elasto-plastic �1.5 6 p 6 3.0 kN/cm b
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As depicted in Table 3 for example 1 (elastic material behavior) the stress constraints were active, whereas
for example 2 (elasto-plastic material behavior) the displacement constraints were active. In example 3 (shake-
down conditions) neither stresses nor displacements were restricted, but the maximal global load factor b was
constrained.

All optimization problems (examples 1–3) were solved for three different discretizations (mesh a–c in
Fig. 8). In Table 4 the weight of the optimized structures w.r.t. the weight of the initial design is shown. Sum-
marizing, the results of the three optimization problems are as follows. The maximal reduction of weight is
gained for example 2. The least saving of weight is obtained for example 1, Table 4. These results are discussed
in detail in the following paragraphs.

In Fig. 9a–c the optimized structures for examples 1–3 (mesh c) are depicted. It can be seen that the optimal
shapes of the structures become similar. During the optimization process the hole is extended in loading direc-
tion in order to reduce weight, whereas the diameter of the hole remains small perpendicular to the loading
direction. Due to plastic yielding savings are larger in elasto-plastic optimization (Fig. 9b) than in elastic opti-
mization (Fig. 9a). In example 3 (Fig. 9c) savings are larger than for the elastic behavior but less than for the
elasto-plastic optimization.

In Fig. 10 results of elastic and elasto-plastic optimization are compared. Due to the reduction of stresses by
plastic deformation the elasto-plastic optimization yields a higher utilization of the material and thus a con-
siderable weight-reduction in comparison to the elastic problem. Note that the boundary of the hole becomes
smoothly rounded in the elastic case for avoiding stress singularities, whereas non-smooth corners appear in
the elasto-plastic case because elastic stress singularities are reduced.

In Fig. 11 results of elasto-plastic and shakedown optimization are compared. The difference of geometries
for optimization with shakedown conditions with a load domain versus optimization for the elasto-plastic case
with only one load case are relatively small. Thus the consideration of shakedown conditions yields only
slightly higher weight than the consideration of only one elasto-plastic load case. The smaller savings for
the shakedown problem with a load domain are due to the fact that the material cannot be utilized as much
as in the plastic case where the resulting geometry is ideally suited for only one load case. But the resulting
smoothness of the boundary of the hole in case of shakedown is a very important effect of shakedown analysis
for application to low cycle fatigue where the resulting geometry is safe not only for one load case but for any
load path with (theoretically) unlimited load cycles in the load domain.
a b c

Fig. 8. Discretization of the initial design (only one quarter was considered for calculation due to symmetry); (a) mesh with (4·)32
elements; (b) mesh with (4·)112 elements; (c) mesh with (4·)240 elements.

Table 4
Weight of optimized structures in percentage of initial design

Mesh a Mesh b Mesh c

Initial design (%) 100 100 100
Example 1 (%) 71 73 84
Example 2 (%) 67 67 67
Example 3 (%) 68 73 73



a

b

c

Fig. 9. Results for geometry and position of design variables for weight minimization of a plane stress problem under different conditions.
(a) Elastic problem with one load case, (b) elasto-plastic problem with one load case and (c) shakedown problem with load domain.
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Fig. 10. Optimized geometries for elastic vs. elasto-plastic optimization.

Fig. 11. Optimized geometries for elasto-plastic vs. shakedown optimization.
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In Fig. 12 results of elastic and shakedown optimization are compared. The effect of an unlimited number
of load cycles of elasto-plastic material in comparison with elastic material behavior for only one load case
leads to the following conclusions. It can be seen that savings for shakedown optimization are considerably
larger than for elastic optimization, while for both results the boundary of the hole remains smooth. The first
result is due to the fact that hardening occurs for the shakedown problem and thus the material can be utilized
more efficiently than for the elastic problem. The latter shows that the structural safety of the shakedown case
is very close to that for the elastic case, whereas it is considerably higher than that for the elasto-plastic case.

6.2. Square plate with a central circular hole – optimizations with different load domains (proportional and

non-proportional loading)

We consider once more a square plate with a central circular hole under plane stress condition. Material
parameters and dimensions are those from Section 6.1, cf. Table 2 and Fig. 6. In this example the plate is
loaded by two uniformly distributed and independently varying loads px and py in x- and y-direction, see
Fig. 13a.

For this structure the following optimization problem is considered, cf. Table 5. The objective of the opti-
mization is the reduction of weight G. A minimal shakedown factor of b P 0.3 is a constraint to the problem.



Fig. 12. Optimized geometries for elastic vs. shakedown optimization.

ba

Fig. 13. (a) Geometry and loading conditions. (b) Design space.
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For this example only the inner boundary of the central hole of the plate is varied. The design variables are
eight coordinates of the control points of the Bézier curve defining the interior boundary. The chosen lower
and upper bounds of the design variables are shown in Table 5. The corresponding design space is shown in
Fig. 13b. The optimization is performed with three different load domains with proportional and non-propor-
tional loading.
Table 5
Formulation of the optimization problem

Objective Weight G!min
Constraint Shakedown factor b P 0.3
Design variables Control points DV = [yA, xB, yB, xC, yC, xD, yD, xE]

Bounds 0.0L 6 DVi 6 0.35L

Loading Bounds �0.5 6 px 6 1.0; � 0.5 6 py 6 1.0



a b

dc

Fig. 14. Distribution of the shakedown factors for initial and improved geometry (proportional loading). (a) Load domain, (b) mesh of
improved geometry, (c) initial geometry and (d) improved geometry.
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Firstly, a load domain with two load vertices is considered, cf. Fig. 14a. The proportional loading of hor-
izontal and vertical loads px and py varies between �0.5 6 p 6 1.0. For this example the distribution of the
shakedown factor b for the initial design is shown in Fig. 14c. As can be seen the relevant shakedown factor
b � 0.6 for this initial geometry can be found at the interior boundary of the hole. The optimized geometry
and its corresponding distribution of shakedown factor can be seen in Fig. 14d. The symmetry of the structure
is preserved which is due to the fact that equal bounds are considered for the two loads px and py. The resulting
hole is not a circle anymore and it is not smooth. To the authors opinion this is due to the fact that the ratio of
the diameter of the hole and the total dimension of the plate becomes larger during optimization such that the
result of the optimization is influenced by the edges of the square plate.

A different result is obtained when non-proportional loading is considered. One example for non-propor-
tional loading is the load domain with four load vertices as shown in Fig. 15a. For the initial design the dis-
tribution of shakedown factor b is shown in Fig. 15c. The minimal shakedown factor for the initial design is
b � 0.3. Thus, only small savings can be achieved during optimization. Nevertheless, the size of the hole is
increased slightly while its boundary remains smooth and the distribution of the shakedown factor b becomes
more uniformly when compared with the initial distribution. Results for a non-symmetric load domain are
shown in Fig. 16a–d. Again, a load domain with four load vertices is considered, cf. Fig. 16a, but its shape
is not symmetric with respect to the bisector of the load domain. Thus, the resulting geometry of the plate
is non-symmetric as well. But the boundary of the hole remains a smooth curve and savings are considerable.
This is due to the fact that the shakedown factor b � 0.55 for the initial design which is considerably higher
than the restraint of the optimization problem b P 0.3.

The results of the shape optimization of a square plate with a hole with non-proportional loading shows
that for load domains with equal lower and upper bounds but different shape the resulting shapes of the varied
inner boundary of the plate are very different. Thus for shape optimization of elasto-plastic structures it is of



a b

dc

Fig. 15. Distribution of the shakedown factors for initial and improved geometry (non-proportional loading). (a) Load domain, (b) mesh
of improved geometry, (c) initial geometry and (d) improved geometry.

b

dc

a

Fig. 16. Distribution of the shakedown factors for initial and improved geometry (non-proportional loading). (a) Load domain, (b) mesh
of improved geometry, (c) initial geometry and (d) improved geometry.
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great importance to consider not only single load cases but the correct load domain in order to derive reliable
results.

Comparison of the results of the shape optimization for the non-proportional loading shows that the find-
ings of the first example in Section 6.1 are confirmed. Generally, the resulting form of the hole remains a
smooth curve. The level of structural safety is high due to the fact that arbitrary load paths within the con-
sidered load domains are admissible.

7. Conclusions

The proposed representation of variational design sensitivity describes an integrated treatment of all nec-
essary linearizations in structural analysis and sensitivity analysis of shakedown problems. It is directed
towards an easily applicable variational design sensitivity analysis and efficient numerical algorithms. The pro-
posed methodology and the investigated problems are in line with our research on variational design sensitiv-
ity analysis described in Wiechmann et al. (1997), Barthold and Wiechmann (1997), Wiechmann and Barthold
(1998) and Wiechmann et al. (2000).

The resulting geometries derived by optimization with shakedown constraints are adapted to arbitrary load
paths and an unlimited number of load cycles in the whole load domain and not only to one single load case
with a fixed load path. Comparison with results for problems with elastic and elasto-plastic deformations
where only one load case is considered show that the level of structural safety as well as the savings derived
in optimization with shakedown constraints are in-between these two limiting cases. If only elastic deforma-
tions are permitted during optimization the level of structural safety is high but savings are small due to the
fact that utilization of the material is not optimal. On the other hand if elasto-plastic deformations are per-
mitted the material is utilized optimally but only for the one load case that is considered. Thus savings are
large but the level of structural safety is low. This indicates that the consideration of shakedown conditions
when optimizing structures with elasto-plastic material behavior with multiple load cases is important for
deriving robust and reliable designs.
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Melan, E., 1938b. Zur Plastizität des räumlichen Kontinuums. Ing. Arch. 8, 116–126.
Nguyen Dang, H., Morelle, P., 1981. Numerical shakedown analysis of plates and shells of revolution. In: Proceedings of 3rd World

Congress and Exhibition on FEMs. Beverly Hills.
Polizzotto, C., Borino, G., Caddemi, S., Fuschi, P., 1991. Shakedown problems for material models with internal variables. Eur. J. Mech.

A/Solids 10, 787–801.
Prager, W., 1956. Shakedown in elastic–plastic media subjected to cycles of load and temperature. In: Proc. Symp. Plasticita nella Scienza

delle Costruzioni, Bologna.
Sawczuk, A., 1969a. Evaluation of upper bounds to shakedown loads of shells. J. Mech. Phys. Solids 17, 291–301.
Sawczuk, A., 1969b. On incremental collapse of shells under cyclic loading. In: Second IUTAM Symposium on Theory of Thin Shells.

Kopenhagen. Springer Verlag, Berlin.
Shen, W.P., 1986. Traglast- und Anpassungsanalyse von Konstruktionen aus elastisch, ideal plastischem Material. PhD thesis, Inst. für

Computeranwendungen, Universität Stuttgart.
Stein, E., Zhang, G., 1992. Theoretical and numerical shakedown analysis for kinematic hardening materials. In: 3rd Conference on

Computational Methods in Mechanics and Engineering, Barcelona.
Stein, E., Zhang, G., Mahnken, R., König, J.A., 1990. Micromechanical modeling and computation of shakedown with nonlinear

kinematic hardening including examples for 2-D problems. In: Proceedings of the CSME Mechanical Engineering Forum, Toronto,
pp. 425–430.

Stein, E., Zhang, G., König, J.A., 1992. Shakedown with nonlinear hardening including structural computation using finite element
method. Int. J. Plast. 8, 1–31.

Stein, E., Zhang, G., Mahnken, R., 1993. Shake-down analysis for perfectly plastic and kinematic hardening materials. In: Progress in
Computational Analysis of Inelastic Structures. Springer Verlag, pp. 175–244.

Tortorelli, D.A., Wang, Z., 1993. A systematic approach to shape sensitivity analysis. Solids Struct. 3 (9), 1181–1212.
Weichert, D., 1986. On the influence of geometrical nonlinearities on the shakedown of elastic–plastic structures. Int. J. Plast. 2, 135–148.
Wiechmann, K., Barthold, F.J., 1998. Remarks on variational design sensitivity analysis of structures with large elasto-plastic

deformations. In: Proceedings of the 7th AIAA/USAF/NASA/ISMO Symposium on Multidisciplinary Analysis and Optimization,
St. Louis, pp. 349–358.

Wiechmann, K., Barthold, F.J., Stein, E., 1997. Optimization of elasto-plastic structures using the finite element method. In: Second
World Congress of Structural and Multidisciplinary Optimization, pp. 1013–1018.

Wiechmann, K., Barthold, F.J., Stein, E., 2000. Shape optimization of shakedown analysis problems. In: Inelastic Analysis of Structures
under Variable Loads: Theory and Engineering Applications. Kluwer, pp. 49–68.

Zolésio, J.P., 1981. The material derivative (or speed) method for shape optimization. In: Optimization of Distributed Parameter
Structures. Sijthoff & Noordhoff, pp. 1088–1151.


	Shape optimization for elasto-plastic deformation under shakedown conditions
	Introduction
	State of the art
	Shakedown analysis of structures with unlimited linear kinematic hardening behavior
	Variational design sensitivity analysis
	Sensitivity analysis of shakedown analysis problems
	General formulation
	Formulation for the chosen model problem
	Variation of the weak form of equilibrium
	Variation of the optimality condition



	Numerical solution of shakedown analysis problems with unlimited linear kinematic hardening�using the finite element method
	General considerations
	Finite element discretization
	Storage requirements

	Numerical examples
	Square plate with a central circular hole - comparison of elastic and elasto-plastic optimization without�and with shakedown constraints
	Square plate with a central circular hole - optimizations with different load domains (proportional and�non-proportional loading)

	Conclusions
	References


