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We consider a one-dimensional two-phase Stefan-like free boundary problem for 
the heat equation with nonlinear Neumann boundary conditions. Local existence 
has been shown in [8], furthermore it is clear that cases exist, where global 
existence fails. The question arises, under which conditions the solution exists 
globally. In this paper it is shown that especially the natural sign conditions are suf- 
ficient for global existence. (-1 1986 Academic Press. Inc. 

1. INTRODUCTION 

In the last decades free boundary problems for the heat equation have 
been intensively studied. The most general results for two-phase Stefan-like 
problems in one space dimension have been obtained by Fasano and 
Primicerio in [S]. Like them we will deal with a general Stefun-like 
problem with nonlinear Neumann condition. Using the notation, 

&,,b,:=+, t)lTk<t<Tz, O<.U<S(f)}, 

D;,,(s):= ((x,t)lT,<r<T,, s(r)<s< l}, (1.1) 

D;(s) := D&s) and analogously D:(s), 

we will consider: 

DEFINITION 1.1. Let T>O, be (0, l), ci>O and functions qti), h”‘, g(l), 
i= 1, 2, 1 and p be given. 

Then a solution (u(l), , z&‘) s) in [0 r] must fulfill , 

(11 II)- (1) u., -c1u, -4 in D;(s), (1.2) 

u”‘(x, 0) = h”‘(x), Odxdb=s(O), 

(1.3) 

Lbvlyo, t) = g”‘[u’“(O, r), t], O<t<T, (1.4) 
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(2’ I2’- 12’ 
u,, - c2u, - 4 in D;(s), (1.5) 

u”‘(X, 0) = h’2’(x), 66x6 1, (1.6) 

ut2’(1 t) = g@‘[u’2’( 1 f) t] J 2 3 3 3 O<r<T, (1.7) 

dL’(s(t), t)=d2’(s(t), t)=O, O<t<T. (1.8) 

+J’(s(t), t) + u;2’(s(t), t) = jL(s(t), t) s(t) +p(s(t), t), O<t<T, (1.9) 

and exhibit the following regularity: 

S(t)E(o, 1) for all t E [0, T], s E C[O, T] n C’(0, T], 

U(“E C(D,(s)), u.L”(x, I) is continuous in t E (0, T], ?CE [0, s(t)], u\kJ, u)” 
are continuous in D,(S), and analoguous properties for zJ2’. 

To simplify the notation, we take the data to be defined for all t 2 0. 
Under suitable regularity assumptions Fasano and Primicerio proved &al 
existence. Let (u(l), u(“, S) be a solution and 

[IO, T*) its maximal interval of existence, (1.10) 

i.e., for all T< T*(u”‘, d2), S) is a solution in [0, T] and there is no con- 
tinuation to [0, T*]. For the global behauiour the following cases are 
possible: 

(Aj T*=m. 

(B) T*~co,O<liminf,,,,s(t)6limsup,,~.s(t)<l. 

(C) T*<co,liminf,,..s(r)=Oorlimsup,,~.s(t)=l. 

In general, all these cases actually can occur. Indeed, for the one-phase 
problem this is known since [14] and has been thoroughly studied by 
Fasano and Primicerio (e.g., [ 131). On the other hand, in the classical two- 
phase Stefun problem (q’i’=p=O, A= 1. g”‘[y, r]=g”‘(t)<O, 
( - 1 )i+ ‘h”’ 2 0) case (B) cannot occur. This results dates back to [ 111, 
where an La-estimate for u, is proved, which allows the continuation of a 
solution beyond every T* < xc in the case (B). Thus it is likely that the sign 
restriction ( - 1) i+ ‘uci’ 2 0 is a decisive property to exclude pathologies like 
(B). The approach of [ 111, however, seems not to be applicable to the 
general problem above, but due to the mentioned result about local 
existence (see Theorem 2.2), we need only to control some Lp-norm of 
u$‘( ., t). This will be done by blending and extending of techniques, 
developed in [l, 4, lo]. We will end up with the following result: 

THEOREM. Ifu”‘>O, u”‘<O, then 

(1) Case (B)cannot occur. 
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(2) In case (C) we have 

lim s(t)=0 or = 1 and s E C215(0, T*]. 
I- ?-* 

The disappearance of a phase cannot be excluded without information 
about the total energy supplied (cf. [2]), therefore this result-apart from 
the Holder exponent-seems to be optimal. Throughout the paper, we will 
use the following: 

REGULARITY ASSUMPTION A 1. Let Q,,, : = (0, 1) x ( T, , T2), Q,: = 
Q,,. For T> 0 there exists some y E (0, l] such that 

q’j’ E H 1+y.(1+7)i2(QT), q’i’ is bounded in Q r, 

q(j) is Htilder continuous with respect to x uniformly in Q,. (1.11) 
g”’ is continuous in R x {t E R 1 t > 0}, for each compact Kc R there is an 

L > 0 such that 

Ig”‘CY1, (I - g”‘CY2, (II 6 L I.v, - )‘21 for .v,.~EK, (20, 

there exist I”, Y”, G’, G” such that 

( - 1 )i + ’ g’“[ y, t] 2 G’ for 1’2 Y’, ta0, 

( - 1)’ + ’ g’“[ y, t] < G” for .v< Y, (30. 
(1.12) 

p E H”(sZ,) n C(a,) and p is Lipschitz continuous with respect to 
x uniformly in a,. (1.13) 

1, A,, A,, A,, E C(a,), there exist A’, 2” > 0 such that 

for (x, t) E Q,. (1.14) 

h(‘) is continuous in [0, b] (resp. [b, 11) and there are H > 0, c( E (0, l] such 
that 

Ih”‘(x)l < H(b -x)’ for XE [0, b], 

Ih’*‘(x)) < H(x- 6)” for .YE [b, 11. 
(1.15) 

Here and in the following we adopt the function space notation of [ 121, 
which we also apply to noncylindrical domains. The assumptions above 
basically coincide with those from [S]. At some places we have to 
strengthen to: 
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REGULARITY AQXJMPTION A2. (Al ) is fulfi:lled and additionally for 
0-c T, < T, 

there exists ‘1’ E (0, 11 such that 4”’ E W’ ‘(G), (1.16) 

for compact KC Ill there exists y E (t, 1 ] such that 

Ig”‘[y, t,] - gqy, tJl d It, - t,l’ for t,.,e CT,, T,], )‘E K. (1.17) 

In the following we will also use the abbreviations: 

24(x, t) := 
u”‘(X, I) for (x, t)ED;(s) 
d2’(x, t) for (X, f)ED;(S), 

and defined in an analogous way q(s, t) and c(s, t) for 
(x, l)ED,(S)UD,+(S). 

2. LOCAL EXISTENCE OF CLASSICAL SOLUTIONS AND SMMOOTHNESS UP TO THE 
BOUNDARY 

We collect the auxiliary results, which will be needed in the following 
analysis. With the possible exception of Lemma 2.5, basically they are well 
known and given here for exact reference. We start with an L ‘5-estimate 
independent of the boundary s: 

LEMMA 2.1. Let T > 0, s: [0, T] + (0, 1) be continuous, b : = s(O), and 
~6~’ solutions of (1.2)-i 1.8). Then a constant U, exists, only dependent on 
llqll cc,c+ llhll x 1 - G’( >O), G”( >O), Y’, - Y” and T in a monotone wa?q such 
that lu”‘(x, t)l 6 UT. for (x, t) E D;(s) respectivei~~. 

Proof: It suffices to consider i = 1. Set c : = 14”’ - w, where u* solves 
(1.2) in D,(s) with homogeneous initial and Dirichlet boundary values. Set 
Q := 1lqj1 7-,RT. Because of 

INS, t)l < QT, IwJO, t)l < 2,/7rr 2QT’,r, 

only u needs further consideration, where we can apply the results of [S]. 
This proves the assertion. 1 

The local existence of solutions has been studied by Fasano and 
Primicerio in [8]. Although they only treat the case of Dirichlet boundary 
conditions, their analysis can be duplicated for nonlinear Neumann con- 
dition as considered here. A careful investigation of their proof shows the 
following result: 
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THEOREM 2.2. Let T > 0 and for some 6, H > 0, a E (0, 1 ] 

6<b<l-6, 

Ih”‘(x)l < H(b - x)” for 0 6 .Y d 6, 

Ih”‘(.u)l 6 H(.u - b)” ,for b<xd 1. 

Then there exists a T, > 0, only dependent on 

T, IlqlLr.nr~ H, c(, U, (from Lemma 2.1), II’, IJ,nj/ r,Rr, and 6 

such rhat in [0, T,] a solution (u”‘, u’?‘, s) of( 1.2)-( 1.9) exists. 

(2.1) 

(2.2) 

The importance of Theorem 2.2 lies in the fact that an interval of 
existence independent of the initial time in some fixed time interval can be 
guaranteed as long as the distance of the starting point of s to the fixed 
boundaries and the Holder behaviour there of the initial values can be 
controlled. We now attend to the smoothness of solutions of ( 1.2)-( 1.9) to 
settle a basis for the calculations in Section 3. We will see that much less 
regularity will be sufficient. In the following let (u”‘. u(?‘, s) be a solution of 
(1.2)-(1.9) in [0, T]. 

LEMMA 2.3. Let 0 < T, < T, 6 T. There exists y E (0, l] sltch thar 

zdv’(s(. ), . ) E C’[ T,. T,]. 

Proof: Fixsome&E(O,T,)and6E(0,min~s(r)(fE[T,-&,Tz]}).Con- 
sider u”’ for tE[T,-E,Tz], x~[&.s(t)] and write it as u”‘=u+M 
similiar to the proof of Lemma 2.1. Now the Holder continuity of 
~l.,(s(. ), . ) can be deduced from Theorem 2.2 in [ 11. According to ~1, trans- 
formation to cylindrical domain makes IV, Theorem 9.1 in [ 121 applicable 
because of SE C’[T, -E, T,]. This together with [ 123, II, Lemma 3.3 
implies the assertion for i= 1. The proof for i = 2 follows the same lines. 1 

Define for 6>0, 06 T, < T-,, 

DF,r&):= {(,~,r)lT,<t<Tz,6<.u<s(t)} (2.4) 

and D+ T, rz,d(s) in an analogous way. 

LEMMA 2.4. Let 0 < T, < T, < T, 6 > 0. Then there exists 7 E (0, l] such 
that 

a(‘)~ Hz+“,’ +“2(D,,,a(s)), 
(2.5) 
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Proof: In the following we only consider u”), furthermore y denotes a 
generic constant from (0, 11. Fix some E E (0, T,), set T, := T, -E and 
w.1.o.g. let 6 <min(s(t)I tE [0, T]}. Equation (1.9) together with 
Lemma 2.3, (Al) and the Lipschitz continuity of s in [T,, T,] imply 

SE c’[T,, T,]. (2.6) 

We apply the usual transformation XHX/S(~), t H t, which maps Df,Tz.g(s) 
into (26, 1) x (T,, r,) for some dE(O, l/2). Let U(s, t) := u”‘(xs(t), t), 
(x, t) E [0, l] x [0, T] be the solution of the transformed problem. It fulfills 
a boundary value problem in (0, 1) x (0, T), whose coefficients and right- 
hand side are in 

,.W2( (3) using Q : = (6, 1) x ( T, , T,), (2.7) 

because of (2.6) and (Al ). In a first step, this implies 

,,H2+s.l+7~2(p) 
(2.8) 

by means of III, Theorem 12.1 from [12], as for the classical solution ti a 
fortiori ii E I’:,“(Q). 

In a second step, now (2.7), (2.8) enable us to apply IV, Theorem 10.1 
from [12] and to conclude, 

,j E H’ + !‘. 1 + i’. ? ([2& 11 x [T,, T,l). (2.9) 

Having in mind the construction of 6 and (2.6), the reversed transfor- 
mation yields the assertion. m 

To have the smoothness of (2.5) also up to the fixed boundaries, we need 
some information about the regularity of u!~‘J(O, . ) and ~‘,2)( 1, . ). This will 
be provided by 

LEMMA 2.5. Let 0 < T, < T1 < T and (A2) be fulfilled. 
Then there exists y E ( l/2, 1 ] such that 

g”‘[u”‘(O, . ), .] E C)‘[ T,, T,], 

g’“[u”‘( 1, . ), ‘1 E C”‘[ T, , TJ. 
(2.10) 

We omit a proof. Because of (1.12), (1.17) it is sufficient to proof the 
same property for ~“‘(0, .) and u”‘( 1, .). This can be done in a rather 
tedious proof based on heat potential theory and a version of the lemma of 
Gronwall in a similiar fashion as in the proofs of Lemmas 4.1, 4.2 and 
Theorem 4.2 in [7]. 
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LEMMA 2.6. Let 0 -C T, -C T, < T and (A2) be fulfilled. Then there exists 
y E (0, l] such that 

(2.11) 

Proof. The proof is a straightforward continuation of the proof 
Lemma 2.4: We have to consider U also in [0, S] x [T,, T2] for some 
SE(~C#, 1). (2.10) and (1.16) are what we need for the application of the 
quoted theorems from [12]. 1 

3. A PRIORI ESTIMATES 

In this section we prove an a priori estimate, from which the announced 
theorem can easily be deduced. Let (u(l), u’*‘, s) be a solution of (1.2)-( 1.9) 
in [0, T] and 0 < T, < T, < T for the remainder of the section. Then the 
following two identities hold: 

LEMMA 3.1. Let p E Wt[O, 11, supp p c [S, 1 -S] for some 6 20 and 
(A2) be fulfilled, if 6 = 0. Then 

jr2 p(s(t))* u:“(s(t), t)* dt = j” p(O)* u’J’(0, t)’ dt 
TI 7‘1 

+2 I %,@’ 
(p*q”)u;“)(x, t) d,u dt + 2 ! 

+ 2 jjDm 
TIT? 

,s, P(X) p'b) u','k 0' dx dt. 

Proof: Let 52 := D,,,,(s), u := u(I), then 

c,(p*uj”u~‘))(x, t) d,x dt 
G,Tp 

(3.1) 

,emma 2.4 (resp. Lemma 2.6) 
provides enough regularity to justify the following calculations: 

j p*qo.,dxdt=j p’o,u.,dxdt-j*p’c,u,l;.,dxdt 
R R 

and using Stokes’ theorem, 

I R 
p2u,,u,dxdt= j-$(;p*+xdt- jQyp’v:dxdt 

1 
=- 

2 s p=v2, dt - s pp’vz, dx dt; 
r’ R R 
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gives the assertion. m 

LEMMA 3.2. Let the assumptions of Lemma 3.1. be.fuljilled. Then 

ij 
_ Rr I (cp2uf)(s, t) ds dt + $ j’ p(x)* u.,(s. T2)2 ds 

I ? 0 

= + J, p(.u)’ U.,(.Y, T,)’ d-Y + 4 J; p(.~(t))2[uys( t), t)? 

- u\.“(s(r), r)‘] S(r) dt + !., p( l)‘(u)‘W,?)( 1, t) 
Tl 

- P(o)2( uJ”u!~“)(O, r) dt - 
jj 

(p’qu,)(x, t) d,u dt 
QT,T> 

-2 
JJ 

(pp’u,u,)(.x, t) d.x dr. (3.2) 
QT,lJ 

Proof Let Q, := {(x, t)(T,<t<T1,&<.Y<s(t)-&E),I’:= u”‘. Again 
we remember the regularity of L’ provided by section 2 and furthermore 
I’,, E L” (a,) (see, e.g., [ 12, III, Theorem 12.11). Therefore the following 
calculations are justified: 

. - p’qvlds dt = - 
‘Q, i -Q, 

p’c&xdt+j c,p2vjd,udt, (3.3) 
RF 

- 
i 

p2vy,vr dx dt = i 2pp’v,v,d.x dt + J p2vyr c ~ d.x dt 
Q* JR, 0, 

(3.4) 

by Stokes’ theorem; 

and in the same way 

(3.5) 

Substituting (3.5) and (3.4) in (3.3), we get an equation, for which we can 
let E + 0 yielding 
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ss o7 T (s) c, p2uf dx dt + f jsiT2’ p(x)2 LJ,(X, T,)I dx 
I 2 0 

s 

S(TlJ 
1 

=I p(xj2 L’,(x, Z-,)‘dx+ 
0 I ; p(~(t))~ (o,~~,)(s(t), t) dt 

++ j=‘p(~(t))~c,(s(t), t)‘i(t)dt-{7’p(0)2(~~,u,.)(0, t)dt 
TI TI 

-1 Df 7 ,~, p2qLJ, d-y dt - 2 
I z 

jD; 7 ,.~, PP’C,D.~ dy dt. 
I 2 

Using u,(s( t), t) = -u,(s( t), t) S(t) and repeating the same considerations 
for uC2) implies the assertion. 1 

LEMMA 3.3. Let p E Wi[O, 11, supp p c [6, l-61 for some 6 20 and 
(A2) be fulfilled, if S = 0. Then 

p(x)’ ui.“(x, t)’ d,u dt + i‘“T” c,p(x)’ u”~(.~, T2)2 d.u 
0 

e [;“” c,p(x)‘u”‘(x, T,)2d.y-2j[D;T,-,j (p’u”‘q’“)(x, t)dsdt 
I : 

+ 4 Tf P’(x)~ u”‘(x, t)’ d..u dt - 2 
s 

T: 
p(0)2(u”‘u;“)(0, t) dt, 

- %,rp) Tl 

(3.6) 

and an analogous estimate holds for ~6” with the sigrz reversed fbr the last 
term. 

Proof: Let R := DF,,,(s), ~1 := u”‘. We get by calculations analogous 
to the previous proofs: 

- 2 j 
R 

p2qLT d,r dt = 2 s, -$ (p’v) v., d-x dt - 2 ?‘,, pZ~wr dt 

-I 
c, p’t12 dx, 

x2 

and thus using u(s(t), t) = 0: 
. 
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‘~2, d,u dt + 
J‘ 

.s( r: 1 
c,p(x)* u(x, T2)= d.u 

0 

s 

s( 7-1 ’ 
= c, p(x)= P(X, T, )= dx - 2 * p’uq d,x dt 

0 J R 

- 2 1” p(O)’ (ou,)(O, t) dt-4 [ purp’u d.xdt. 
TI ‘R 

An application of Young’s inequality using 4 = 2’,” 8’,’ yields the asser- 
tion. 1 

Remark 3.4. (1) For p = I, q’j’= 0 (3.2) already appears in [I] and 
[4], and (3.6) in [lo], but for different regularity assumptions. 

(2) (3.1), (3.2), (3.6) are valid for a broader class of (u”‘, u(“). 

THEOREM 3.5. Let 

ul”(s(t), t)<O fbr tE CT,, T,] (3.7) 

and 

(1) PE W’,[O, l] and (A2) bejiilfilledor 

(2) PC qo, 11, YIE w:w. 11 such thaf (pp’)(x) < q=(x) ae. in 

CO, 1 I and supp p, supp qc (0, 1). 

Then there exist constants Ck, onfll dependent on A’, A”, c, , c2, T, IIp II* , 
Ilp’ll, andfor case (2) additionally on llp”l/z, l(q/12, Ily~‘Il~ such that, using 
U : = U,, UT from Lemma 2.1, 

. 
JS Rr,s (cp=uf)(x, t) dx dt + j’ p(x)’ u,(x, T,)’ dx 

1 0 

"T? 

+ J As(t))= IS( dt 
TI 

-T? 

< c, J p(l)= (u.\*‘uj”)(l, t) -p(O)* (u;“u;“)(O, t) dt 
Tl 

+ c2 j-’ u,(.x, T, I* d-y+ U’ + lIqll~,~,,r~ + (‘As(t), [I6 dt 
0 > 

in case (1): 

‘T’ +C, 0 TI 
g”‘[u”‘(O, t), t]= dt + j;’ g”‘[u”‘( 1, t). t]’ dtj. 
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Proof In the following C denotes a generic constant, having only the 
claimed dependencies. Let 

A, := d,u, 

s 

72 
A, := p( 1)2 (u\~‘u;“)( 1, I) - ~(0)~ (u\“u;“)(O, I) dt, 

Ti 
*l 

A,:= 
J u,(+v, T, 1’ dx, 

0 

B, := ;I ” p(s(t))2[u;2’(s(f), t)‘- ul”(s(t), t)2] s(t) dt, 
71 

Bz:= - (p2qu,)k 1) dx 4 

B,:= -2 
ss (PP’w~)(,c f) dx df. 

*r,r, 
Then Lemma 3.2 implies 

A,GAj+CA,+ i Bi. 
i= 1 

Furthermore from (1.9), B, = D, + B,, where 

I 
7-1 

D, := + P(s(f))2 &f) j(f)2(ui’)(s(f), f)+ uL2’(s(f), f)) df, 
7-I 

B,:= tJ-~*P(S(f))‘F(f)S(f)(U~“(S(f), t)+u!$(s(t), t))dt, 
Tl 

using .ii(f) := p(s(t), t), I(t) := A(s(t), t). Because of (3.7): 

i 

7-2 
-2D,B p(s(f))2A’S(t)2 Ii(t)S(t)+j(f)j dr 

Tl 
and thus for 

s 
r: 

A, := P(O))’ IWl’df, 
TI 

B, := ;jT2p(s(r))21’S(f)2 Iji(t)l dt: 
T‘I 

A,+qA,$A,fCA,+ i B, 
i=2 

(3.8) 

Therefore it remains to estimate the Bi: 
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Let 8 > 0, Q : = llqll ,E.Rr,r2. 

B,6 GA, + CY’Q’, 

B,<C’EA~+CE- IIpll;. 

both by Young’s inequality with p = 2 (resp. p = $1. 

B,=B,+B,+B, by (1.9), where 

(3.9) 

ST: 

B, = $ -! #o(S(f))‘I(f) S(r)‘p(t) Lft 
Ti 

<CEA~+CE-’ II/#, (3.10) 

! 

. T: 

B,=i p(s(r))’ S(r) ji( t)l dt 
Ti 

<C&A, + CE-’ ’ li/!ll;, (3.11) 

B, 6 ; j~~~(s(r))‘~~\“(S(I),r)~dr+~j~~~(s(r))’S(r)’~(r)‘dt 
TI TI 

= : B, + B,, always using Young’s inequality 

and 

B,,<CEA,+C~-‘~~~~~~. (3.12) 

Lemma 3.1 gives a representation of B, : B, = I:,‘” , , B;, where 

T: 
p(0)’ g”‘[u”‘(O, t), r]‘dt, (3.13) 

Tl 

where 

B,2 = jj (p2q”‘u’,“)(x, t) dx dt 
D;,rp 1 

6 CB,, + CQ2, (3.14) 

(3.15) 

B,,= ss p(x) p’(x) u:.‘)(x, t)’ d.u dt. 
+,rp 
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We estimate B,, by substituting of p by p, using p : = llpl[ 5 in case (1) and 
fi := p in case (2) and then applying Lemma 3.3. This yields: 

B,, d y cIp(x)2 u”)(x, 732 dx - 2 [[ (jj2u(“q(‘))(x, t) dx dt 
Jo JJDf,7*lSl 

+ 4H 
j’(x)’ d’)(x, t)2 d,x dt 

G, rz 

- 2 j; P(O)‘( u”‘u~“)(O, t) dt =: 5 B;. 
I= 16 

We proceed in the usual way 

B,, 6 CU2, B,, d CU2 + CQ’, 

B,, 6 C-U’, B,,=O in case (2), 

T2 
B,,6C s 

g”‘[u”‘(O, t), t-j2 dt + CU’ 
TI 

(3.16) 

(3.17) 

in case ( 1). 

To treat B,,, we now set rj := (llpll, llp’lj r)‘;2 in case (1) and rj := q in 
case (2) and estimate B,, by substitution of pp’ by rj2. Lemma 3.3 implies 

B,, < f Bi, (3.18) 
i= 16 

where Bi corresponds to Bi after substituting of p by rj. Therefore as above, 

BL6 < cu’, i?,, 6 CU2 + CQ’, 

B,, 6 cu’, B,, = 0 in case (2), 
(3.19) 

B,,QC =: 
s 

g”)[u’“(O, t), t]’ dt + CU’ in case (1). 
=I 

Thus finally we are left with an estimation of B,: 

B,<CEA,+E- 
ss 

D; J (s, p’(x)’ u:“(x, t)’ dx dt 
I 2 

+ &-I 
ss G,Jp 

p’(x)’ u;*‘(x, t)’ dx dt = : CL4 , + B,, + B,, . 

Again we use Lemma 3.3, setting cp : = llp’ll r in case (1) and cp : = p’ in 
case (2), and get estimates for B,, B,, analogously to (3.16), (3.17). 

Summarizing all the estimates from (3.8) to (3.19) and taking E suf- 
ficiently small proves the assertion. 1 
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Remark 3.6. In [4] an estimate similar to Theorem 3.5 has been 
developed, but using 6 < s(t) < 1 - 6 for t E [0, r] and some fixed 6 > 0. 

4. GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS 

Theorem 3.5 will be the appropriate instrument to investigate the 
behaviour of a solution of (1.2)-( 1.9) at r = T*. Therefore in this section we 
have to assume for some T< T*. 

u”‘(S( t) t) < 0 .Y 7 for all TV [T, T*). (4.1) 

The natural sufficient condition for (4.1) is u”’ 2 0 and u(” < 0 in the 
corresponding domains. These conditions can be guaranteed in the follow- 
ing way: 

LEMMA 4.1. Let s: [0, T] + (0, I) be Lipschit: continuous, b : = s(O), 
q”‘<O in D,(s), q”‘dO in D;(S), hi”>0 in [0, b], h”‘<O in [b. 11, 
g”‘[O, t] < 0, g’*‘[O, f] 6 0 .for ?E (0, T], then solutions u”’ of (1.2)-( 1.8) 
fu(fill 

U”‘30 in D;(s), Lb”<0 in D:(s). 

Proof. It suffices to consider i = 1. Let U* be a solution of the same 
boundary value problem as u”‘, but with 

g*[J,, r] := g[?‘y rl, 

i 

y30 

SC07 113 j’ < 0 

instead of g. U* exists uniquely [6, Theorem 33 and the strong minimum 
principle and the lemma of Viborny-Friedman (e.g., [9, pp. 34, 491) imply 
U* >, 0 in D;(S). Therefore U* also fulfills the boundary value problem of u. 
As u is unique (again [6] ), we are done. 1 

Now let (u(l), u(‘), S) be a solution of (1.2)-( 1.9), [0, T*) its maximal 
interval of existence and let (4.1) be fulfilled. Then: 

THEOREM 4.2. The caSe 

T*<w, O<i~~*infs(t)~i~~*~~p~(t)<l (4.2 1 

cannot occur. 
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Proof: Inequality (4.2) is equivalent with the existence of some 6 > 0 
such that 

6<s(t)< l-6 for to [0, T*) and T*<Xd. (4.3) 

Now choose PE @[O, 11, VE Wi[O, l] such that pp’< $ a.e. in [0, 11, 
supp p, supp r]c (0, 1) and p = 1 in [d/2, 1 -J/2]. Their existence is 
obvious. Furthermore fix some TE (0, T*) fulfilling (4.1). From 
Theorem 3.5(2) we know the existence of a constant C, only dependent on 
A’, i”, cl, c2, T*, 6 (by the norms of P and rlh UT*, llqll r.Rr., 11~11 r,Rr. and 
IIu,(., T)l12 such that 

[’ p(x)’ u.,(,K, t)’ dx < C for all t E (T, T*). 
Jo 

(4.4) 

Let in (T, T*). Because of the choice of 6, (4.4) implies for 

XE [d/2, s(i)]: lu”‘(X, i)l <Cl” I.u-s(i)l’:2. (4.5) 

Furthermore because of (4.3) using U : = u,., for 

XE [O, d/2]: lu”‘(X, i)l < u< U(2/b)‘,2 (,~-s(i)I’~2. (4.6) 

For i = 2 the same is true. 
Now we consider t = i as a starting time for the solution of the free 

boundary problem, i.e., b : = s(7), h”’ : = ufi’( ., i), etc. Because of (4.5 j, 
(4.6) (2.2) is fulfilled for H:= max(U(2/6)‘:‘, C”‘) and c(=+. (2.1) is also 
satisfied; therefore Theorem 2.2 guarantees the existence of a To >O 
independent of i such that in [i, To + 71 a solution exists. For 7 close 
enough to T* this leads to a contradiction. 1 

THEOREM 4.3. rf T* < IX, then 

s(T*) := lim s(t) 
, - 7-• 

exists and s( T* ) E { 0, 1 >. (4.7) 

Proof To show the existence of s(T*) due to Theorem 3.5 we can 
repeat exactly the reasoning in the proof of Theorem 4.3 in [3, pp. 102, 
1031. Theorem 4.2 then implies s(T*)E (0, 1). 1 

Remark 4.4. Theorems 4.2 and 4.3 are independent of the boundary 
conditions at x = 0 and x = 1. They only rely on the local existence in the 
form of Theorem 2.2 and enough smoothness to justify the calculations of 
Section 3. They are valid especially for Dirichlet conditions. 
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Finally, 

THEOREM 4.5. Let (AZ) be jidjilled. Then 

if’ T* < ,x1, then SE C’ ‘(0, T*]. 

Proof. Fix some TE (0, T*) fulfilling (4.1) and define 

(4.8 1 

(4.9) 

Then p E Wl, [0, 11 and because of p( 0) = p( I ) = 0, Theorem 3.5( 1) guaran- 
tees the existence of a constant C,, which only depends on the data, U,. 
and lIu,(., T)llz such that 

J 
,I 
r~(W’ IW3d6C, for all t E ( 7, T*). (4.10) 

We now adopt a reasoning of [lo]. let 

F(y) := I’ p(t)’ 3 d<, J’E [O, I]. 
0 

Then F is strictly monotone increasing and F ’ is Holder continuous with 
exponent $ which can be seen by explicit calculation of Fp ‘. Thus for 
T<t,<tJ<T*: 

Is(t,)-dr,)l <Cz IF(s(t,))-F(s(r,)jl” 

“? 
I? 

3:5 

= cz d F(s( t)) dt 
I, dt 

= C2 j-” p(s( 2))’ 3 S(t) dr 
35 

11 

> 

I. 5 
d c, p(s(r))’ Is( dr It, - t>1= 

the last estimate by Holder’s inequality. Therefore (4.10) implies the Holder 
continuity of s in [F, T*] with exponent 3, which proves the assertion. 1 
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