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Effect of Tropomyosin on Formin-Bound Actin Filaments
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Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Hungary

ABSTRACT Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic
cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the
effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic
methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase
of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measure-
ments also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The
stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin
on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on
these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an
important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly.
INTRODUCTION

Actin filaments are crucial in the development of cell shape,

polarity, cell division, and transportation of intracellular ves-

icles within eukaryotic cells (1,2). These processes take place

under the control of various actin-binding proteins. Formins

are actin-binding proteins that play important roles in the

arrangement and realignment of the cytoskeleton. Formins

are evolutionarily conserved multidomain proteins that can

be found in a wide range of animal and plant species (1).

The first member of the formin family was identified as

a product of a mutated gene that caused limb deformities

(3). The formin homology (FH) domains were defined by

Castrillon and Wasserman (4). Most formins have FH1 and

FH2 domains. The FH2 domain is the most conservative,

and shows no sequence similarity to any other domain or

polypeptide. It binds to the barbed end of the actin filaments,

and provides protection against capping proteins (5). The

FH2 domain is necessary and sufficient for actin nucleation

and dimer stabilization (5). Formins exert their effects on

the actin cytoskeleton by stimulating the polymerization of

unbranched filaments (6,7). The conformational properties

of actin and actin-binding proteins were studied previously,

using a wide range of spectroscopic methods (8–15). It was

shown recently by fluorescence spectroscopy that formin

fragments have the ability to increase the flexibility of actin

filaments through long-range allosteric interactions, after

binding to the barbed end of filaments (16,17). The biologi-

cal function attributed to these dynamic changes is not prop-

erly understood.

Tropomyosins are abundant proteins in nonmuscle cells,

and the regulation of muscle contraction is attributed to

them (18,19). Despite numerous observations regarding their
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function in muscle regulation, the biological function of

tropomyosins in nonmuscle cells has not been fully de-

scribed. A recent study showed that tropomyosins and

formins can express their effects on actin filaments simulta-

neously, and together they can protect these filaments from

severing (20).

The observation that tropomyosin colocalizes with for-

min-induced actin filament structures in living cells (21–

25) suggests that tropomyosin binding plays a role in the

adjustment of conformational properties of flexible actin

filaments polymerized by the assistance of formins. To test

this possibility, we characterized the effects of tropomyosin

on the conformational properties of formin-bound actin

filaments by using temperature-dependent fluorescence reso-

nance energy transfer and time-dependent fluorescence

anisotropy decay measurements. The results indicated that

flexible formin-bound filaments were stabilized by the bind-

ing of tropomyosin, and the stabilizing effect reached its

maximum under conditions where all binding sites on actin

were occupied by tropomyosin. The stabilization effect

was strongly dependent on magnesium concentration, but

showed little dependence on ionic strength.

MATERIALS AND METHODS

Materials

The KCl, MgCl2, CaCl2, Tris, glycogen, N-(iodoacetaminoethyl)-1-naphtyl-

amine-5-sulfonic acid (IAEDANS), 5-(iodoacetamido)fluorescein (IAF),

EGTA, NaN3, ammonium sulfate, ATP, and b-mercaptoethanol were ob-

tained from Sigma-Aldrich (Budapest, Hungary). Dimethylsulfoxide was

obtained from Fluka (Buchs, Switzerland).

Protein preparation and purification

Acetone-dried powder of rabbit skeletal muscle was obtained as described

previously (26). Rabbit skeletal-muscle actin was prepared according to

the method of Spudich and Watt (27), and stored in a buffer containing
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4 mM Tris-HCl (pH 7.3), 0.2 mM ATP, 0.1 mM CaCl2, and 0.5 mM DTT

(buffer A). The concentration of G-actin was determined spectrophotomet-

rically, with an absorption coefficient of 0.63 mg mL�1 cm�1 at 290 nm

(28). A molecular weight of 42,300 was used for the G-actin (29).

The FH2 fragments of mammalian formin mDia1 (mDia1-FH2) were

prepared as described previously (17,30). The mDia1-FH2 fragments were

expressed as glutathione transferase fusion proteins in the Escherichia coli

BL21 (DE3)pLysS strain. The concentration of protein was determined pho-

tometrically, with an absorption coefficient of A280 ¼ 21,680 M�1 cm�1 at

280 nm (ProtParam, http://us.expasy.org/tools/). The purified protein was

frozen in liquid nitrogen and stored at �80�C. Formin concentrations are

given as mDia1-FH2 monomer concentrations throughout this study.

Tropomyosin was purified from rabbit skeletal muscle according to the

procedure of Eisenberg and Kielley (31) and Smillie (32). The first steps

of the preparation involved three isoelectric precipitations where the pH

was brought down to 4.6 by using 0.1 M HCl each time, followed by

centrifugation (6000 � g for 10 min; Beckman Coulter (Fullerton, CA)

Optima MAX Ultracentrifuge), and then the pH of the dissolved pellet was

adjusted to 8.0 with 1 N KOH. Ammonium sulfate precipitations were

produced (31.2 g (NH4)2SO4/100 mL buffer) twice at the end of the proce-

dure. The concentration of the protein solution was determined photometri-

cally, using an absorption coefficient of A278 ¼ 0.29 mL mg�1 cm�1 at

278 nm (31).

Fluorescent labeling of actin

Actin was labeled fluorescently with IAEDANS or IAF dyes at Cys374,

according to the method of Miki et al. (33). We incubated 2 mg/mL F-actin

(in buffer A without DTT, supplemented with 100 mM KCl and 2 mM

MgCl2) with a 10-fold molar excess of IAEDANS at room temperature

for 1 h. The label was first dissolved in a small amount of (~50 mL) dime-

thylsulfoxide, and then DTT free buffer A was added to the solution (drop

by drop, to a range of 800–1000 mL) before being added to the protein. La-

beling was terminated with 2 mM b-mercaptoethanol. After ultracentrifuga-

tion of the sample for 45 min at 328,000 � g, the pellet was incubated in

buffer A for 2 h, and then gently homogenized with a homogenizer. The

homogenized sample was dialyzed overnight against buffer A at 4�C. The

concentration of fluorescent dye in the protein solution was determined by

using an absorption coefficient of 6100 M�1 cm�1 at 336 nm for actin-bound

IAEDANS (34). The extent of labeling was 0.8–0.9 mol/mol of actin

monomer.

Labeling Cys374 with IAF was performed according to standard proce-

dures (35,36). The monomeric actin (46 mM) was labeled in DTT-free buffer

A with a 15-fold molar excess of IAF, which was dissolved in 0.1 N NaOH

and added to the actin solution drop by drop at room temperature while the

pH was kept constant. Afterward, the sample was incubated at 4�C for 24 h.

After this incubation, the actin was polymerized for 2 h at room temperature,

and then centrifuged at 328,000� g for 45 min at 4�C. The pellet was treated

in a way similar to that described in the case of labeling with IAEDANS. The

concentration of the probe was determined using an absorption coefficient

60,000 M�1 cm�1 at 495 nm. The molar ratio of bound probe to actin con-

centration was 0.6–0.7.

Sample preparation

Preparations of samples were made in the same way for both steady-state

and anisotropy decay measurements each time. Buffer A and labeled G-actin

were added to quartz cuvettes, and 0.2 mM EGTA and 0.05 mM MgCl2 were

added (final concentrations) to initiate the exchange of actin-bound calcium

for magnesium. Five minutes or 10 min later, we added formin or formin and

tropomyosin, and the final concentration of MgCl2 and KCl was adjusted to

1 mM and 50 mM, respectively, to initiate the polymerization of actin. The

total amount of sample was always 1 mL. Samples were incubated overnight

at 4�C in the dark, and before the measurements, they were kept at room

temperature for at least 30 min.
Steady-state fluorescence experiments

Steady-state fluorescence measurements were performed with Horiba Jobin

Yvon (Longjumea cedex, France) Fluorolog-3 and PerkinElmer (Walthom,

MA) LS50B Luminescence Spectrometers, both equipped with a thermo-

stated sample holder. To calculate FRET efficiency, the fluorescence inten-

sities of the donor (IAEDANS) were recorded in the presence and absence of

the acceptor (IAF). The excitation wavelength for IAEDANS was 350 nm.

The optical slit was set to 5 nm in the excitation light path, and 5 nm on the

emission side. During measurements, the emission spectra of the donor were

recorded between 370–550 nm, and the integral was used for calculations.

Fluorescence intensities were corrected for inner filter effect. The corrected

fluorescence intensity of IAEDANS was integrated between 440–460 nm.

The FRET efficiency (E) was calculated as:

E ¼ 1� ðFDA=FDÞ; (1)

where FDA and FD are the integrated fluorescence intensities of the donor

molecule in the presence and absence of acceptors, respectively. The value

of E was determined at different temperatures between 6–34�C, and a special

FRET parameter, the normalized FRET efficiency (f0), was calculated using:

f 0 ¼ E=FDA: (2)

The temperature dependence of f0 can be informative regarding the flexi-

bility of the investigated protein (37,38). For the interpretation of FRET

results, the temperature dependence of the relative f0, defined as the value

of f0 at the given temperature divided by the value at the lowest temperature

(6�C), is presented. The larger temperature-induced changes in the value of

normalized FRET efficiency are indicative of a more flexible protein matrix

(37,38). Relative f0 was measured at 10 mM actin (1:9 ¼ donor/acceptor) in

the presence of 500 nM formin. The experiments were performed in 4 mM

Tris-HCl (pH 7.3), 0.2 mM ATP, 0.1 mM CaCl2, 0.5 mM DTT, 0.2 mM

EGTA, 1 mM MgCl2, and 50 mM KCl.

Fluorescence lifetime and emission anisotropy
decay measurements

Time-dependent fluorescence measurements were performed with an ISS K2

multifrequency phase fluorometer (ISS Fluorescence Instrumentation, Cham-

paign, IL), using the frequency cross-correlation method. The excitation light

was provided by a 300-W Xe-arc lamp, and was modulated with a double-

crystal Pockel cell. The excitation wavelength was set at 350 nm, and the

emission was monitored through a 385FG03-25 high-pass filter. The modu-

lation frequency was changed in 10 steps (linearly distributed on a logarithmic

scale) from 5 to 80 MHz during fluorescence-lifetime measurements, and in

15 steps from 2 to 100 MHz when anisotropy decay was measured. Freshly

prepared glycogen solution was used as a reference (lifetime¼0 ns). The fluo-

rescence lifetimes of the fluorophore were determined by the use of nonlinear

least-square analysis. Data were analyzed with ISS187 and Vinci 1.6 decay

analysis software (ISS, Champaign, IL). In fluorescence-lifetime measure-

ments, all data were fit to double-exponential decay curves, assuming a con-

stant, frequency-independent error in both phase angle (50.200�) and mod-

ulation ratio (50.004). The goodness of fit was determined from the value of

the reduced c2 probe (39). Average fluorescence lifetimes (taver) were calcu-

lated from the results of the analysis, assuming discrete lifetime distribution:

taver ¼ ðt1a1 þ t2a2Þ=ða1 þ a2Þ; (3)

where ai and ti are the individual amplitudes and lifetimes, respectively (39).

The anisotropy is expected to decay as a sum of exponentials (40). The

experimentally obtained data were fitted to a double exponential function:

rðtÞ ¼ r1expð�t=41Þ þ r2expð�t=42Þ; (4)

where f1 and f2 are rotational correlation times, with amplitudes r1 and r2.

The concentration of actin was 30 mM (1.3 mg/mL) during fluorescence

anisotropy decay measurements, except as noted otherwise. The
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experiments were performed in the presence of 1 mM MgCl2 and 50 mM

KCl, unless otherwise stated.

RESULTS AND DISCUSSION

In this study, we applied steady-state and time-dependent

fluorescence methods to describe the effects of tropomyosin

on formin-bound actin filaments. To exclude the possibility

that formin binding weakens the affinity of tropomyosin

for actin, cosedimentation experiments were performed

(Fig. 1). Samples of tropomyosin (3 mM) and actin filaments

(5 mM) in the absence or presence of formin (500 nM) were

centrifuged (for 30 min at 386,000 � g and at 20�C), and the

pellets were analyzed using SDS-PAGE. The concentration

of tropomyosin in pellets was independent of the presence

of formin, indicating that mDia1-FH2 did not substantially

modify the affinity of tropomyosin for actin (Fig. 1). On

the other hand, the appearance of the formin band in pellets

of tropomyosin containing samples showed that tropomyo-

sin did not displace the formins from actin, in agreement

with the observations of Wawro et al. (20). The gels also in-

dicated no contaminating proteins in these protein samples.

It was shown previously, using a temperature-dependent

FRET method (37), that mDia1-FH2 formin dimers bound

to the barbed end of actin filaments have the ability to in-

crease the flexibility of filaments (17). Here we used the

same FRET method to characterize the effects of tropomyo-

sin on the dynamic properties of formin-bound actin

filaments. The temperature dependence of FRET efficiency

was determined between 6–34�C, using donor and acceptor

probes attached to the Cys374 of actin protomers. One proto-

mer bound only one fluorophore, and FRET occurred

between the probes on neighboring protomers. With this ar-

rangement, the inter-protomer flexibility of actin filament

can be characterized. In these experiments, a steeper temper-

ature dependence of FRET efficiency indicates a more

FIGURE 1 Tropomyosin binds to mDia1-FH2 formin-bound actin fila-

ments. SDS-PAGE gels of pellets of actin, formin, and tropomyosin samples

from cosedimentation assays. (A) Calibration proteins with molecular

weights of 150, 100, 75, 50, 35, and 25 kDa (from top). (B) SDS-PAGE

results obtained with 5 mM actin and 3 mM tropomyosin. (C) Gel for

5 mM actin, 0.5 mM formin, and 3 mM tropomyosin. Observed protein bands

are indicated. Experiments were performed in 4 mM Tris-HCl (pH 7.3),

0.2 mM ATP, 0.1 mM CaCl2, 0.5 mM DTT, 0.2 mM EGTA, 1 mM

MgCl2, and 50 mM KCl.
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flexible protein matrix between the donor and acceptor

probes (37,38). In control experiments, the normalized

FRET efficiency, i.e., the relative f0 (Eq. 2), was determined

with 10 mM actin in the absence of tropomyosin and formin.

The results showed ~120% increase of relative f0 over a tem-

perature range of 6–34�C (Fig. 2). In the presence of 500 nM

mDia1-FH2, the temperature profile of relative f0 became

steeper (increasing to ~330%), indicating that the binding

of formin fragments changed the conformation of actin

filaments by making them more flexible (Fig. 2). These for-

min-induced changes were in agreement with our previous

observations (17). To describe the effect of tropomyosin,

tropomyosin was added to formin-bound actin filaments at

a 2 mM concentration. One tropomyosin binds to seven actin

protomers in the filaments. Considering that the affinity of

tropomyosin for actin filaments is ~0.5 mM (46) under these

conditions, the 10 mM actin and 2 mM tropomyosin concen-

trations provided appropriate conditions to saturate the

tropomyosin-binding sites on actin. The results obtained in

the presence of both formin and tropomyosin showed that

the value of relative f0 increased to 150% over the investi-

gated temperature range (Fig. 2). This tendency was similar

to that observed in the absence of formin and tropomyosin,

or in the presence only of tropomyosin (Fig. 2). These obser-

vations indicate that the binding of tropomyosin stabilized

the formin-bound actin filaments, and their conformation

FIGURE 2 Tropomyosin decreases flexibility of formin-bound actin

filaments. Temperature dependence is shown of normalized FRET efficiency

(relative f0) for actin filaments. Experiments were performed with 10 mM

actin in absence of actin-binding proteins (open squares), or in presence

of mDia1-FH2 (500 nM; solid squares). Data obtained in presence of tropo-

myosin (2 mM) and in absence (solid triangles) or presence (open circles) of

500 nM formin are shown. Errors presented are standard errors from at least

three independent experiments. (Inset) Fluorescence intensity of donor

measured in absence of actin-binding proteins. Data were obtained in

absence (D) or presence (DA) of acceptor (as indicated). Buffer conditions

are as in Fig. 1.
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became similar to that observed in the absence of formin and

tropomyosin.

For the interpretation and confirmation of FRET results,

anisotropy decay measurements were performed with IAE-

DANS-labeled actin filaments. This method was successfully

used previously to describe the dynamic properties of actin

(17,41,42). Recent studies showed that the affinity of bind-

ing of mDia1-FH2 to the barbed end of actin filaments

falls into a range of 20–50 nM (43,44). Therefore, the for-

min concentration we applied here (500 nM mDia1-FH2)

sufficed to saturate the binding sites at the ends of fila-

ments. The analysis of data resolved two rotational corre-

lation times. The value of the shorter rotational correlation

time was between 1–4 ns, and showed no formin or tropo-

myosin concentration dependence. In our interpretation, the

shorter rotational correlation time can be related to the

motion of the probe relative to the protein, which did not

show significant formin-induced or tropomyosin-induced

changes. In a previous work (16), the longer rotational cor-

relation time indicated formin concentration dependence. In

this study, the longer rotational correlation time was ~700–

800 ns in the absence of formins, and decreased to ~250 ns

in the presence of 500 nM mDia1-Fh2 (Fig. 3). This obser-

vation is in agreement with our previous results (16), and

indicates that formin-binding made the actin filaments

more flexible. We repeated the anisotropy decay experi-

ments with formin-bound actin filaments in the presence of

tropomyosin at various concentrations (Fig. 3, A and B).

FIGURE 3 Tropomyosin affects anisotropy decay of formin-bound IAE-

DANS-actin filaments. Tropomyosin concentration dependence is shown for

longer rotational correlation times obtained for actin filaments. (A) Actin

concentration was 30 mM, and sample also contained 1.25 mM mDia1-

FH2. (B) Tropomyosin concentration dependence of longer rotational corre-

lation times, measured with 20 mM actin and either 500 nM mDia1-FH2

(solid squares) or 500 nM mDia1-FH1FH2 (open circles). Errors presented

are standard errors from at least three independent experiments. Buffer

conditions are as in Fig. 1.
The value of the longer rotational correlation time in-

creased with increasing tropomyosin concentrations from its

value in the absence of tropomyosin (250 ns) to ~800 ns.

When the actin concentration was 30 mM, the longer rota-

tional correlation time reached its maximum at ~4 mM

tropomyosin (Fig. 3 A). At 20 mM actin, the breaking point

appeared at ~3 mM tropomyosin (Fig. 3 B). These tropo-

myosin concentrations correlate well with the [tropomyo-

sin]/[actin] ¼ 1:7 binding stoichiometry, indicating that

the maximal tropomyosin effect was achieved when all

tropomyosin-binding sites were occupied on the actin fila-

ments. Under saturating conditions, the longer rotational

correlation times of formin-bound actin filaments remained

constant. These results indicate that the relatively flexible

formin-bound actin filaments were stabilized by the bind-

ing of tropomyosin, in agreement with our conclusions

from the FRET results (Fig. 2).

It is well-established that formin-domain FH1 also plays

an important role in the biological function of formins

(45). In another set of experiments, we investigated whether

the presence of the FH1 domain could modify the effect of

the FH2 domain on the conformation of actin filaments.

The experiments were performed at 20 mM actin and at var-

ious mDia1-FH1FH2 concentrations. The longer rotational

correlation time observed in the presence of mDia1-

FH1FH2 and in the absence of tropomyosin was ~200 ns,

similar to that observed with mDia1-FH2, indicating that

the binding of mDia1-FH1FH2 increased the flexibility of

actin filaments. The longer rotational correlation time in-

creased when tropomyosin was added to the mDia1-

FH1FH2-bound actin filaments. The values were identical

to those measured with mDia1-FH2 at the corresponding

tropomyosin concentrations (Fig. 3 B). This observation sug-

gests that the FH1 domain does not modify the effect of the

FH2 domain on the structure of actin filaments.

The effect of formins on actin filaments was shown to be

ionic strength-dependent in previous studies (16,17). We

measured the salt concentration dependence of the effect of

tropomyosin on mDia1-FH2-bound actin filaments. The re-

sults showed that the effect of tropomyosin on actin filaments

was independent of the KCl concentration between 10–30

mM KCl (Fig. 4 A).

These experiments were performed at 1 mM MgCl2.

Previous results showed that the interaction between tropo-

myosin and actin is magnesium-dependent. The affinity of

tropomyosin for actin, and the corresponding association

and dissociation rates, were dependent on magnesium con-

centration (46). The affinity is tighter at higher MgCl2 con-

centrations (KD ¼ 2.4 mM at 0.5 mM MgCl2, and KD ¼
0.5 mM at 2.5 mM MgCl2). These observations indicated

that magnesium has an influence on the interaction between

actin and tropomyosin. We tested the effect of magnesium on

the interaction of tropomyosin and formin-bound actin fila-

ments by using fluorescence anisotropy decay experiments.

In these experiments, the actin concentration was 30 mM,
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and the tropomyosin and formin concentrations were 4 mM

and 1.25 mM, respectively. Considering the affinity of tropo-

myosin for actin (46), under these conditions most of the

tropomyosin-binding sites on the actin filaments were occu-

pied by tropomyosin, regardless of the magnesium concen-

tration. Thus, these experiments reflected the alterations of

the interaction between actin and tropomyosin, and not the

level of saturation of tropomyosin-binding sites on actin.

The fluorescence data showed that the longer rotational cor-

relation time increased from ~250 ns at 0.5 mM MgCl2 to

~850 ns at 2 mM MgCl2 (Fig. 4 B). The strong magnesium

concentration dependence of the tropomyosin effect was in

accordance with previous observations (46,47), and indi-

cated that the tropomyosin-induced stabilization effect was

modified by magnesium.

CONCLUSIONS

The observation that formins can make actin filaments more

flexible (16,17) can be understood in two ways. It is possible

that the change in actin filament dynamics is only the conse-

quence of the rapid and distinct process of polymerization in

the presence of formins, and the increase in flexibility by

itself does not have a biological function. Alternatively, the

generation of flexible actin filaments can serve a well-defined

biological aim, as manifested under special intracellular con-

ditions for particular functions. One may speculate that the

latter reason is less probable, because the functions (as attrib-

FIGURE 4 KCl and MgCl2 dependence of effect of tropomyosin on flex-

ibility of formin-bound actin filaments. (A) Results obtained at fixed MgCl2
concentration (1 mM) with 30 mM actin and 1.25 mM formin in either ab-

sence (open circles) or presence (solid squares) of tropomyosin (8 mM). Ex-

periments were performed at various KCl concentrations in 4 mM Tris-HCl

(pH 7.3), 0.2 mM ATP, 0.1 mM CaCl2, 0.5 mM DTT, 0.2 mM EGTA, and 1

mM MgCl2. (B) results of magnesium-dependent experiments at fixed KCl

concentration (30 mM) with 30 mM actin, 1.25 mM formin, and 4 mM tropo-

myosin. Other buffer conditions are as in Fig. 1.
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uted to actin filaments so far) require the mechanical stability

of these filaments. If the first explanation is valid, then it is

reasonable to assume that a cellular mechanism regulates

the dynamic properties of actin filaments, and provides the

opportunity for formin-induced filaments to become similar

to those polymerized in the absence of formins. Tropomyosin

appears to be the right candidate to play a role in this mech-

anism, because tropomyosin was associated with formin-me-

diated actin filament structures in cells (20,21). In our study,

we tested whether tropomyosin can stabilize the conforma-

tion of actin filaments, and found that tropomyosin is able

to reverse formin-induced conformational changes. This ob-

servation provides support for the contention that the in-

creased flexibility of formin-induced actin filaments is only

the consequence of the special process of their polymeriza-

tion, and to adapt these filaments to their biological function,

a subsequent tropomyosin-based mechanism exists in cells.

The stabilization by tropomyosin is probably manifested

structurally by the binding of contact points between appro-

priate surfaces on actin and tropomyosin, which implements

formin

actin

tropomyosin

SCHEME 1 Model for sequence of events during formin-induced actin

polymerization and subsequent tropomyosin binding. First step is elonga-

tion, after rapid formin-induced actin nucleation. Second step is binding

of tropomyosin, which stabilizes structure of actin filaments from formin-

mediated polymerization.
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molecular strains and forces to restore the conformational

state of the actin filaments, similar to that established during

polymerization in the absence of formins. Based on this con-

sideration, one can envisage that other actin-binding proteins

possessing binding sites on neighboring actin protomers can

also function as molecular clamps in cells, adjusting and main-

taining the conformation of actin filaments. We suggest that an

alternative candidate could exist in the myosin superfamily.

Experiments testing this hypothesis are in progress.

Based on our observations, a simple model for the time

sequence of events is presented in Scheme 1. According to

this model, formins nucleate actin and initiate the elongation

of actin filaments. This polymerization results in flexible actin

filaments that require further adjustments for their biological

function. The subsequent step is the binding of tropomyosin

and the formation of formin-actin-tropomyosin complexes.

The structure of actin filaments is stabilized in these com-

plexes, and their dynamic properties are more appropriate

for expressing force or fulfilling other mechanical tasks. Re-

gardless of whether this model is complete and valid or needs

adjustment in later studies, our results here provide experi-

mental support for a molecular mechanism where the effect

of tropomyosin plays a central role in forming mechanically

stable actin filaments, even in the case of formin-induced rapid

filament assembly.
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