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Abstract. We present a categorical generalisation of the notion of domains, which is closed under 
(suitable) exponentiation. The goal was originally to generalise Girard's model of polymorphism 
to F,,. If we specialise this notion in the poset case, we get new cartesian closed categories of 
domains. 

Introduction 

The purpose  of  this paper  is to present an abstract and general f ramework where 
we deal with categories o f  "structures" and embeddings,  which are closed under  
directed colimits, and such that any "'structure" is the directed colimit o f  its finite 
substructures. This is a categorical generalisation of  the notion of  domain  used in 

denotat ional  semantics. 
Examples o f  such categories are the category of  sets and injections, the category 

of  graphs and embeddings,  the category of  linear orders and strictly increasing maps,  
any category of  domains  with embedding-project ion pairs as morphisms,  but also 
any domain ,  seen as a category. We show that if we have two such categories, then 
the category of  cont inuous  (resp. cont inuous and stable, i.e. pull-back preserving 
~22]) functors with natural  t ransformations (resp. cartesian natural t ransformations) 

as morphisms is still a category of  this kind. Therefore,  the category of  all such 
categories is a cartesian d o s e d  category (since the existence of  products  does not  
raise any problems).  The situation is similar to the one in domain  theory, where 
the poset  o f  cont inuous (resp. cont inuous and stable) functions between two domains  
is still a domain.  

The original motivat ion of  this work comes from the denotat ional  semantics o f  
po lymorphism [6, 2, 3]. A direct application is indeed the extension of  the models  
o f  F2 described in [6, 2, 3] to models  o f  Fo~. This work shows that there is a large 

class o f  models  for Fo, where,  as in Girard's  model  [6], types are interpreted as 
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domains. There may be other areas in computer  science where one wants to give 
a denotation as an object in a category instead of  as an element of  a poset. 

Such a general concept seems also to play a role in the theory of  dilators of  
Girard and it may be interesting to look for applications in this framework. 

As pointed out by Gunter, if we restrict these definitions to posets, we do not get 
exactly the known notion of Scott domains (resp. dI-domains),  but a generalisation 
of  it. This new category of domains is still a cartesian closed category, and seems 
to be interesting in itself (we have a stable corresponding notion that generalises 
the cartesian closed category of dl-domains).  This new category of  domains has 
been recently discovered by Jung [11]. The author was unaware of  his work, until 
Gunter remarked that if we restrict our definition in the poset case, we obtain exactly 
the same notion of domains [8]. In the extensional case, the drawback of these 
domains is that they are not countably based in general. If  we restrict ourselves to 
profinite such domains, we get the "short" domains of  Gunter  [7]. In the stable 
case, we obtain a new category of domains. 

The reader who is not familiar with stable functions may skip the stable part 
(since the ideas are almost the same in both cases). Actually, one may even read 
this paper by con~;dering only the poset case, since some results are (we hope) new 

in that special case. 
In the first part we recall some definitions and basic properties about domains 

and categories. It is then shown how certain posets of  sections of  a Grothendieck 
(co-)fibration of a functor form a domain. After the definition of the categories of 
embeddings (in the extensional and stable cases), this fact is directly used to show 
that this notion of category is closed under suitable exponentiation (thus this work 
is really an example of  the use of the notion of  dependent  family and dependent  
products in domain theory). A brief account of how this can be used to build a 
full model of  polymorphism is then outlined. 

1. About some notions in category theory 

1.I. Generalities and notations 

Since we will deal with very large categories, we have to be careful with founda- 
tional problems. For this, the notion of  Grothendieck universe [18] seems con- 
venient. We work in ZFC + the axiom of universes, and we write U0, U~, U2 for 
the first universes. Any category is a set (there are no classes), but this set may be 
in different universes. We say that a set is small if and only if its cardinality belongs 

to /do. 
If c~ is a category, then C~o denotes the set of  objects of c~ and c~1 the set of  

morphisms of  c~. We have the domain dom and codomain codom maps from c~ 

to C~o. If  a, b ~ ~o, then C~(a, b) denotes the set of  all f ~  c~1 such :hat dora ( f )  = a 
and c o d o m ( f )  = b. As usual, we say that c~ is locally small if, and only if, for any 
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objects a and b of ~, the set ~(a, b) is small. We work only with locally small 
categories. If S a subset of ~¢o, we say that S is essentially small  if and only if there 
exists a small subset of S so that any element of S is isomorphic to one object in 
this small subset. 

We will need the concept of filtered colimits (see [15, 18], it is important to note 
that the empty category is not filtered, see [9, p. 24]). It is the categorical analogue 
of the notion of directed sups: a category is filtered if and only if any finite diagram 
(the empty diagram as well) may be completed into a cone (see [15, p. 67], this 
cone is not necessarily a colimit one). We say that a functor is Scott-continuous or 
simply continuous if and only if it preserves [15] filtered colimits. This is the 
categorical generalisation of the notion of "Scott-continuous" maps in denotational 
semantics. Another important property has been considered in denotational seman- 
tics, that is the preservation t;f meets of compatible elements, and we will also need 
its categorical version: a functor is said to be stable if and only if it preserves 
pull-backs. 

In any category ~, we can consider, for any object a ~ ~, the poset of equivalence 
classes of maps of codomain a, associated to the pre-order of subobjects of a. We 
write Sub(a) this poset, and allow ourselves to say that f belongs to Sub(a) instead 
of "the equivalence class defined by f belongs to Sub(a)". One says that ~ is 
well-powered if and only if each Sub(a) is of small cardinality (see [15, p. 126]). 
The poset Sub(a) is equivalent to the category Mon(a) of monics into a. 

We have for any object a a functor F~:Mon(a)-->~ defaed on objects by 
F~( f : b --> a)  = b and on morphisms by F~( g : ( f l : b~ --> a)  --> (f2: b2--> a)) = g. For any 
category ~, we have that F~ creates arbitrary colimits (see [15, p. 108]). Hence, if 

has filtered colimits, each Mon(a) has filtered colimits, and F~ preserves filtered 
colimits. We deduce that each Sub(a) has directed sups if rg has filtered colimits. 

If we suppose furthermore that all morphisms in ~ are monomorphisms, then to 
each map f e  ~(a, b) is associated the direct image functor f.,:Sub(a)->Sub(b), 
which is the composition with f If c¢ also has pull-backs, f o r f e  ~(a, b), we have 
that f *  : Sub(b) -> Sub(a), pull-backs along f, is a fight adjoint to f,: Sub(a) --> Sub(b), 
which is the direct image functor. Hence, the image functor f.,: Sub(a)--> Sub(b), 
which is a left adjoint, preserves arbitrary sups, and hence is continuous. But in 
general,f* will not be continuous. If f *  is continuous, then ( f , , f*)  is an embedding- 
projection pair between the two cpos Sub(a) and Sub(b). 

But there is more. First, both f~  and f, are stable (since ~ has pull-backs, each 
Sub(a) has pull-backs as a poset, that is infs of compatible elements). Secondly, 
(f.,,f*) is a rigid embedding. That is f *  of., = id, f,. of*  ~< id for the stable ordering, 
which is to say that f., o f*  ~< id for the extensional ordering and f, of*(x) =f,  of*(y) ^ 
x if x ~< y (see [ 1, 22, 6] for more about the notion of rigid embedding). One intuition 
behind this concept is that there are no "holes" in the image off, .  Indeed we can 
check that if x ~<f,.(y), then there exists z ~< y such that x =f,(z) (namely z =f*(x)) .  

The category ~ of posets with directed sups and pull-backs, and rigid embeddings 
as morphisms, is a category with pull-backs and small directed colimits. The 
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proposition that follows, which summarizes our discussion, is a motivation for the 
notion of  stable functors. 

Proposition 1.1. Let ~ be a category where all morphisms are monomorphisms. Then, 
~ has pull-backs if  and only i f  each posets Sub(a),  a ~ ~o, has infs. Suppose that c£ 
has pull-backs, small filtered colimits, is well-powered, and that, for any f ~ ~( a, b ), 
the pull-back functor f *  .from Sub (b) into Sub(a)  is continuous. Then Sub defines 
a continuous and stable functorfrom the category ~ into the category ~. 

Note that the fact that c~ has all filtered colimits is used twice: for the definition 
of Sub as a functor from c~ to Dora, and then for proving that this functor is 
continuous. For proving this last part, use the characterisation of  directed colimits 
in the category ~ :  A is the directed colimit o f ( A ,  ( f f i , f f f ) )  if and only i f V f f i  ° j R  = 
id (same proof as in [17]). 

From now on, we shall work mainly with well-powered categories where all 
morphisms are monomorphisms. This is not a restriction with respect to our goal, 
which is to give a formalisation of the notion of  substructure. However, it is likely 
that our notions may be generalised to the case where morphisms are not always 
monomorphisms. For instance, we would like to have a notion that also covers the 
notion of locally finitely presentable category, see [10]. Our framework is enough 
for the main application we have in mind, the extension of  the semantics proposed 
in [6] to a model of  Fo,. 

In categories where all morphisms are monomorphisms, we can say that b is a 
directed colimit of a directed system (ai,f~), with f~ e C~(ai, b) instead of  saying that 
(b,f~) is the directed colimit of the system (ai, (f~j)), since the maps f0 are uniquely 
determined by the equations fj of~ =f~. In that case, we can also work with directed 
colimit instead of filtered colimit. However, we will state some definitions in the 
general case. 

Definition 1.2. Let ~ be a category. An object a e ~o is a finitely presentable if and 
only,if  ~g(a , - )  commutes with filtered colimits. 

For instance, in the category of  sets with injections (or in any reasonable category 
of domains with embeddings),  this definition of  finiteness coincides with the set- 
theoretic nodon of finiteness. In the category of  groups with c~beddings,  this notion 
coincides with the notion of  being finitely generated. 

We will say sometimes, instead of  finitely generated, that a is finite, since it seems 
a good generalisation of  being finite (and we will see that in the stable case, we 
have indeed very strong finiteness properties). In general, perhaps "isolated "~ cr  
"compact"  would be a better terminology. 

In the case where morphisms are monomorphisms,  an object A is finite if and 
only if any morphism of A into a directed colimit, factors through one of  the 
canonical maps of the directed colimit. This is, however, not true in general. 
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1.2. Ind-comnletion 

We assume known the notion of the ind-completion of  any small category (see 
[18, 9]), and we write ind(C~) for the ind-completion of  c¢. This is a direct generalisa- 
~:ion of the concept of ideal-completion of  a poset. Intuitively, we add formally all 
filtered colimits. This is the full subcategory of  the pre-sheaf category over cg of  
functors c~opp._> Uo that are filtered colimits of representable functors (which corre- 
sponds to the ideals, i.e. downward closed and filtered subsets, of a poset). 

Definition 1.3. A category ~ is algebraic if and only if the full subcategory ~a, of  
finitely presentable objects of  ~ is essentially small and for any object a in ~, the 
comma category ~a,~a is filtered, and has a for colimit. 

We have the general result [18]. 

Proposition 1.4. Let ~ be a category. Then ~ is algebraic if  and only if  ~ .  is essentially 
small and ~ is the ind-completion o f  ~ , .  The ind-completion o f  an arbitrary small 
categorv ~ is algebraic, its category o f  finit~ ~, elements b ~ing the Karoubi envelope of  ~. 

Actually, we will need only this result in the case where all morphisms in ~, ~g 
small category, are monomorphisms,  and in that case ( ind(~))~,  is equivalent to 
~. In the case of  posers, this proposition says that an algebraic lattice is actually 
isomorphic to the poset we obtain by adding formal directed colimits from the 
subposet of  its finite elements. 

For an algebraic category ~, we have a stratification (C~), K cardinal, of the 
objects of  ~, by saying that an object is in C~, or is generated by less than K elements 
if and only if this object is a filtered colimit over a filtered family of cardinality less 
than x. One fundamental  remark is then that, in an algebraic category, for any 
(small) cardinal K, the set C~ is essentially a small set. 

1.3. About finiteness 

, Let us say that a ~ ~o is finite relative to f ~  ~(a ,  b) if and only if f is a finite 
element of  Sub(b). Then, there are two notions of  finiteness: one "global",  and 
another "local",  that do not coincide in general. However, we can state the following. 

Proposition 1.5. Let ~g be a category where all morphisms are monomorphisms, with 
directed colimit, pull-backs, and such that for any f ~ ~( a, b ), the pull-back functor f *  
flora ll;~ slice category C£/b into l;~e siice category ~ / a  is continuous. Let a be an 
object o f  ~'. We can consider Fo : ~ /  a -> ~, defined on object by Fa( f  : b --> a) = b, and 
on morphisms by Fo ( g : ( f l : b~ --> a ) --> (A  : b2 -> a ) ) = g. Then f is finite in ~ / a i f  and 
only if  F~(f)  is finite in ~. 
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Proof. We have here, for any object b of ~ that b is finite in ~ if and o~lly if idb 
is finite in ~/b. This is a direct consequence of the fact that each f *  preserves 
filtered colimits. 

Let us consider f :  b-~ a in ~/a.  We know that f., is an embedding. Hence, 
f=f , ( idb)  is finite in ~ / a  if and only if idb is finite in ~/b,  if and only if b = Fo(f) 
is finite in ~. [] 

Thus, in that case, to be finite has both a "local" and "global" meaning, and 
these meanings coincide, i.e. the following conditions are equivalent 
• a is finite, 
• id~ ~(a, a) is a finite element of Sub(a), 
• there exists f ~  ~(a, b) which defines a finite element of Sub(b). 

2. Domain of  sections 

We recall in this section some results about domains of section of a Grothendieck 
fibration of a functor from a small category into a category of domains with 
embeddings. There are two cases. In the extensional case, the category of domains 
is the category of complete algebraic lattices and embeddings. In the stable case, 
the functor must be from a small category with pull-backs, into the category of 
complete dI-domains with rigid embeddings (the complete dI-domains are the posets 
that are algebraic complete, completely distributive, and that satisfy the property of 
finiteness, called property I, that every finite element dominates only a finite number 
of elements, see [22]). 

Let us first give the result in the case of complete algebraic lattices. First, let us 
recall that if we have a functor F from a small category c¢ to the category Dom of 
complete algebraic lattices and embedding-projection pairs as morphisms, then the 
Grothendieck (co-)fibration of F (see [18, 3]), written ,Y(F) is the category whose 
objects are the pairs (X, x), X objects of c¢ and x element of F(X) ,  and a morphism 
f :  (X, x)-* ( Y, y) is f ~  c¢(X, Y) such that F(f )L(x)  <~ y. We then have a eofibration 
[18] p:,Y(F)--> c~ which is the first projection. The category of sections of this 
eofibration is here the poset of family (tx) such that tx ~ F ( X )  and F(f)L(tx)<~ ty 
i f f ~  cO(X, Y) ordered by the pointwise ordering. 

Theorem 2.1. Let c¢ be a small category, and F be an arbitrary functor from c¢ to 
Dom. The poset II( F) of  all sections of  the Grothendieck cofibration o fF  is a complete 
algebraic lattice. 

Proof. The fact that it is a complete lattice follows by straightforward manipulation. 
We can actually even describe explicitly the finite elements of II(F).  Let S be a 
finite set of pairs of the form (,4, a), where A is an object of c~, and a a finite 
element of F(A). Then the family u s defined by 

u s = V {F(f)L(a)[(A,  a)6 S & f ~  ~(A,  X)} 
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is a finite element, and any finite element is of  this form. The fact that u s is indeed 
finite comes from the equivalence, for any section (tx),  of uS<~ t and a <~ tA for all 
(A, a) ~ S. The collection of all u s is directed, since u s, v u s, = u s,Us" (notice that 
the sup in the poset of  sections is computed pointwise). Furthermore, a continuous 
section ( tx)  is the directed sup of all sections u s, where S is a finite set of pairs 
(A, a) such that a <~ tA. [] 

in the stable case, we need to have pull-backs, and the proof is a little trickier. 
Here, Dora is the category of complete dI-domains with rigid embeddings (it would 
be possible to take the category of complete atomic boolean algebras and rigid 
embeddingr.). 

Theorem 2.2. Let ~ be a small category with pull-back, and F be a stable (i.e. pull-back 
preserving) functor from c¢ to Dora. The poset I I (F)  (for the stable ordering) o f  all 
stable sections o f  the Grothendieck cofibration o f  F is a dI-domain, not complete in 
general. 

Proof. First, we have indeed the fact that the  Grothendieck cofibration ,Y(F) of  F 
has pull-backs, so we can speak about stable sections and one stable ordering. "l~fis 
corresponds to the notion of  cartesian natural transformation. That is, ~ : F-~ G is 
a cartesian natural transformation if and only if it is a natural transformation and 
furthermore whenever f :  X-> Y, the diagram defined by ( F ( f ) ,  ~/x, G ( f ) ,  ,?y) is a 
pull-back diagram. 

We can compute explicitly the pull-backs o f f e  (X, x)-> (Z, z), g e ( Y, y) -> (Z, z) 
(that is f e  cg(X, Z)  and F(f)L(x)<~ z, and g e c~( }; Z)  and F(g)L(y)<~ z). Take 
the pull-back o f f  and g to be u e C~(T, X)  and v c ~(  T, Y). Then the pull-back in 
~ ( F )  is (T, F(u)R(x)  ^ F(v)R(y)) .  

The stable ordering on sections is nothing but the ordering defined by cartesian 
natural transformations. A simple calculation, using the form of the pull-back in 
the Grothendieck cofibration of  F, shows that we have u <~ t for the stable ordering, 
if and only if for any f ~  ~ (X ,  Y),  Ux = tx ^ F ( f ) R ( u y ) .  Notice that, in general, 
it does not coincide with the extensional ordering (see the remark below). 

Here again, the fact that I I (F)  is a conditionally complete completely distributive 
cpo follows from a formal argument. We only show that it is aigebi-aic, and that 
the property of  finiteness I is satisfied. 

Let us fix an element t of  FI(F). We show that t is indeed the directed sup of 
finite elements that satisfy the property I. Notice the important difference with the 
exten~:,onal case: here we can only give effectively finite elements less than one 
given element, even if each F ( X )  is a complete domain. This seems to be a general 
phenomenon:  in the extensional case, one can describe directly the finite elements 
of  the function space (finite sups of  steps functions), but in the stable case, one can 
only describe the finite elements less than one given element. 
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A proof that H ( F )  is a dI-domain could be given by using the notion of  event 
structure of Winskel (see [22, 2]), instead we will sketch a purely domain theoretic 
proof. We consider the set of  pairs (A, a) with A ~  ~o and a ~  < tA. We define the 
relation (A, a)  ~< (B~ b) on that set by "there ex is t s f~  ~(A,  B) such that F( f )L (a )  <~ 
b" (notice that it is nothing eNe than the pre-order associated with the Grothendieck 
cofibration of F).  For any fir ' te set S of  pairs (A, a),  a finite element of F(A)  and 
a ~< tA, we consider the family (uS),  where u s is defined as 

~/ {F(tp)L(u)I(A, a) ~ S & tp ~ ~ (X ,  Y) & (X, x ) _ ( A ,  a)}. 

We claim that this family is a stable section of  F, that it is finite, that all finite 
elements have this form, and that it dominates only a finite number of  elements. 

In order to keep the argument simple, we consider only the case where S is the 
singleton {(A, a)}, and we write u instead of  u s. We show that u ~< t for the stable 
ordering, that is Ux <~ tx for all X and if g e  ~(  Y, Z) ,  then Uy = ty A F(g)R(Uz). 
This is a direct consequence of  F preserving pull-backs, and that the category 
has pull-backs. Indeed, we show that for p prime (that is, if p is less than a sup, 
it is less than one of  the element of  the sup, see [22]), if p <~ ty and F(g)L(p)~< uz 
then p <~ ty, and that is enough since, in a dI-domain,  all element is the sup of  the 
primes below it (see [22, 2]). From this, it is possible to derive that u is indeed a 
stable section. 

If  u <~ v and v = ~/vi (for the stable ordering), then there is a iv such that a <~ rio(A), 
and it is then formal to check that u ~< v~ o for the stable ordering. 

Finally, we must prove that u dominates only a finite number  of elements. But 
if v <~ u for the stable ordering, then we have that vy is equal to 

V {F(¢)L(x)lx <<- tx & tp ~ ~(X ,  Y) & (X, x ) E ( A ,  a ^ VA)}, 

by looking at the prime elements below vy. Hence the result, since there are only 
a finite number  or .:ements below a. [] 

Notice that FI(F) has one " top"  section: the section always equal to the top 
element, but this section is not the greatest element of I I (F)  for the stable ordering. 
The fact that I I (F)  is not a complete lattice in general is not a problem, since we 
will only need to consider the lattice of  element less than this special section, and 
this poset is indeed, a complete dI-domain. 

The next remark explains why Girart~'s definition in [6] of  the product of a family 
of type seems different from the definition given here. 

Remark 2.3. Let us say that a category cg satisfies Moggi's condition i f  and only i f  
for a n y f  ~ ~(X ,  Y),  then we can find u, v~ ~(  Y, Z )  such that ( f , f ,  u, v) is a pull-back 
diagram. Then as shown in [2], a family ( t x ) ~ F l x ( F ( X ) )  is a stable section o f  F if  
and only i f  it is a uniform section ofF,  that is, f ~ cg(X, Y)  implies tx = F ( f ) R (  ty), 
and, in that case, the stable and the pointwise ordering are equivalent. 

Proof. Let (tx)  be a stable section of  F over a category that satisfies Moggi's 
condition. By the explicit computation of  the pull-back in ,X(F) and by stability 
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of ( tx ) ,  we obtain, f o r f ~  cO(X, Y),  tx = F ( f ) ~ ( t ,  .) ^ F ( f ) ~ ( t y )  = F( f )R(h , ) .  Thus, 
( tx)  is uniform. [] 

3. Categories of embeddings 

First, we present a definition in the extensional framework. 
Let us call a small category, a category o f  information if and only if all morphisms 

are monomorphisms and each slice is a sup-semi-lattice (it is even enough to say 
only that each slice is a sup-semi-lattice, since this implies that all morphisms are 
monomorphisms).  Note that the ordinary notion of  partial sup-semi-lattice (poset 
of  finite elements of  a Scott domain) falls into this framework, so that we can ~ee 
this notion as a categorical version of  the notion of  information system (see [19]). 

Definition 3.1. A category ofembeddings is a category equivalent to the ind-comple- 
tion of  a category of  information. 

Note that in the case where the category is a poset, then we obtain a generalisation 
of  partial sup-semi-lattices, and the ind-completions of  these posets are algebraic 
domains that are more general than Scott domains, where (see below) all we ask 
is that any element dominates a complete algebraic lattice. 

Let us give at once an equivalent definition for the notion of  category of  embed- 
dings. 

Proposition 3.2. Let c~ be a category. Then c~ is a category o f  embeddings i f  and only 
if  c~ is an algebraic category such lhat 

• all morphisms are monomorphisms, 
• c¢ has allfiitered (or directed, since all morphisms are monomorphisms) colimits, 
• for any object A, Sub(A) ( which is the slice category over A) is a complete algebraic 

lattice. 

Examples of  categories of  embeddings, which show that this notion is quite 
general, are: 
• the category of  sets with injections (here Sub is the subset functor), 
• the category of graphs, with embeddings, 
• the category Dora itself of  complete algebraic lattices with embeddings as 

morphisms, 
• the category ,of linear order, with strictly increasing functions as morphisms 

(example used in the theory of  dilators), 
• any Scott domain,  seen as a category. 

One intuition is that a category of embeddings is a category of structure of  a 
certain kind, with embeddings as morphisms. 
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Let us give still another: equivalent definition of categories of embeddings, which 
is convenient in order to check that something is indeed a category of this kind. 

Proposition 3.3. Let ~ be a category. Then c£ is a category of  embe~ldings i f  and only 

if 
• all morphisms are v~onomorphisms, 
• c£ has allfiltered (or directed, since all morphisms are monomorphisms) colimits, 
• for any objeci A, Sub(A) (which is the slice category over A) is a complete algebraic 

lattice, 
• by the previous conditions, ~ has pull.backs, and we ask that the pull-backfunctors 

f *  : Sub( B ) -> Sub(A ), for any f ~ ~( A, B ), preserves directed colimits, 
• the last condition entails that to befinite has an intrinsic meaning, and we ask that 

the set of  finite objects is essentially small. 

The fact that these two last definitions are equivalent comes from the fact that, 
in the case where the pull-back morphisms preserve directed ¢olimits, the two 
possible notions of finiteness (global and local) coincide (by Proposition 1.5). Now, 
if we take a category that satisfies the second definition, it is (equivalent to) the 
ind-completion of its subcategory of its finite objects, which is small by hypothesis, 
and the verification of the second condition is nothing other than the fact that the 
set of finite elements of a complete algebraic lattice is stable under finite sups. 

We thus see, that a poset is a category of embeddings if and only if it is closed 
under directed sups (but not necessarily with a least element) and any element in 
that poser dominates a complete algebraic lattice (thus, this is more general than 
Scott domains: such a poser is not necessarily consistently complete). 

Let Dom be the category of complete algebraic lattices and rigid embeddings. 
We have for any category of embeddings ~, a function Sub: C£o-->Domo, so that 
Sub(A) is a complete algebraic lattice that is in Uo and isomorphiv to the poset of 
subobjects of A. We will identify this isomorphic lattice with the real poset of 
subobjects of A. 

As an application of Proposition 1.1, we have the following resalt. 

Proposition 3.4. The application Sub: ~o--> Domo is the object pa ~ of  a continuous 
and stable functor Sub: ~ -> Dora, where Sub(f)  L is the direct i m ~ e  mapping f,  and 
Sub(f)  R the inverse image mapping f* .  

Let us look at what happens with the first definition of"ca tego~ ,~f embeddings'. 
If A is an object of the category ~ we start with, and we complete by ind-completion, 
then A "becomes" a finite object of ind(~),  and Subind¢~(A) is really the completion 
of Sub(A). Thus we have Subind(~)(A)= ind(Sub~(A)). In particular, if Sub~(A) 
was finite, then it will not be "perturbed" and made infinite by the ~nd-completion, 
and that is what happens in the stable case. 
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In the general case, A is a filtered colimit of  objects A~ in ca, and Sub(A) is the 
filtered colimit (in the category of cpos with embeddings) of  the posets 
ind(Sub~(Ai)). 

Theorem 3.5. The category of continuous functors between two categories of embed- 
dings, with morphisms the natural transformation, is a category of embeddings. 

Proof. Let ca and ~ be two categories of  embeddings. We want to show that ca-> ~,  
category of continuous functors, is still a category of embeddings. Since ca is an 
ind-completion, we first reduce the problem to the one of showing that if ca is a 
category of information and ~ a category of embeddings, then the functor category 
is a category of  embedding. We prove actually that if ca is any small category, and 

a category of embeddings, then the category of functors from ca to ~ is a category 
of  embeddings. 

Let us check that this functor category satisfies the conditions of the third 
definition. By [15, p. 112], we see that ca-> ~ has all filtered colimits, has pull-backs, 
which commute with filtered colimits, and that all morphisms in this category are 
monomorphisms. We thus reduce the problem to show that each Sub(F) is a complete 
algebraic lattice, and that the set of  finite functors is essentially small. The first point 
is a consequence of  the following computation of Sub(F). 

Lemma 3.6. Let ~ be a category of embeddings, ca be a small category and F an object 
of  ca -> ~. The subobjects of  F are precisely the sections of the functor Sub o F. 

W e  have thus Sub~_~(F) = / / ( S u b  o F). And we know that this poset is a complete 
algebraic lattice by the previous section. 

For showing the second point, we need to know what is the shape of the finite 
functors. For this, we need only to know what is the shape of finite sub-functors of 
a given functor F (since we are in the good case where pull-backs commute with 
directed colimits). If  we translate the proof of  the fact t ha t / / (Sub  o F) is a complete 
algebraic lattice we find the following description. Let S be a finite set of pairs 
(A , f ) ,  where A is an object of  ca, dom(f )  a finite object of ~, and codom(f)  = F(A). 
We define a functor OF.s together with a natural transformation ~': OF, s -> F, by 

• (X)  = V {F(q')L(f)I'P e Ca(A, X)  ,~ ( A , f )  ~ S}, 

so that ~" is a subobject of  F. Then, ff~v.s is a finite functor, and F is the directed 
sups of  all the functors ~ . s .  This is actually a mere reformulation of the result 
about the domain of  sections (Theorem 2.1). If F is a finite functor, then there 
exists S such that tPF.s is isomorphic to F. Hence, we have a description of finite 
functors of  the functor category. 

All we have now to prove is that the set of  all the functors tPF.s is essentially 
small. The difficulty is that this family is indexed over the set of all functors in 
ca--> ~,  which is not small in general. Since ca is small, and locally small, there is 
a infinite small cardinal K which is a bound for the cardinality of  all sets Ca(A, X). 
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The key remark is then that O~.s(X) is a directed colimR of finite objects over a 
system of  cardinality <~K. 

Indeed, by definition, ~-(X) is a sup of  finite subobjects of  F~X) over a family 
of  cardinality <~g. By taking the directed family of  finite sups of this family, we 
see that ¢ (X)  gs ~ directed sup of  finite subobjects of  F ( X )  over a family of  
cardinality legs ~han K. Since ~ has filtered colimits, and pull-backs that commute 
with filtered colimits, this entails that ~F.s(X) is a filtered colimit of  finite objects 
over a family of  cardinality less than K. Thus the functor ~F.s ~ends an object in 

into the essentially small set ~ e f  filtered co~imits of  finite objects of  ~ over a 
family ~,f cardinality at most K. ~ i s  shows that there are only (up to isomorphisms) 
a small number  of functors like ~F.S, and so. a small number  of  finite functors. O 

Corollary 3.7. The category of  categories of  embeddings, with continuous functors as 
morphisms, is a cartesian closed category. 

In the case where all sets ~(A, B) are finite, we can be more precise: OF.s(X) is 
a 0irected colimit of  finite objects over a finite system, hence every cP~.s(X) is finite. 
We have then that a finite functor sends a finite object to a finite object. 

But there is more, if ~ and ~ have the property t~at each horn-set between finite 
objects is a finite ~et, then the exponential category. ~--> ~ still has this property. 
Indeed, a morpbism from @F.S to G determines a set of morphisms from dora(f)  
into G(A) for each ( A , f )  ~ $, and is completely determined by ~his data. Since we 
know that G sends a finite object to a finite object, we see that there are only finitely 
many morphisms from F to G. 

If  we restrict ourselves to posets, we get a cartesian closed category of  domains 
that properly contains the category of Scott domains (the domains are not con- 
sistently complete any more in general). Note that this category is not included in 
the category of  SFP, though this category is known as the largest cartesian closed 
category of  domains [21][ This is because we do not insist that the basis of  our 
domains is countable. If  one wants a cartesian closed category where ali domains 
are countably based, then one has to consider the intersection of  the present category 
of  posers with the collection of  profinite domains. This cartesian closed category 
of domains was already known and is presented in [7] (the corresponding stable 
category, however, seems new). 

Proposition 3.8. The category of posets, closed by directed sups, and such that any 
element dominates a complete algebraic lattice, with continuous functions as morphisms, 
is a cartesian closed category 

In this case, the proof of  "cartesian closedness" is considerably simplified, since 
there are no problems of  size any more, and t|,~ theorem that we obtain a cartesian 
closed category of  domains may be seen as a nice application of  the proposition 
that a dependent  product of  a family of domains over a poset is a domain (exercise 
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of [16]). Indeed, let D~ and De two such domains. Then D~--> D2 is closed by 
nonempty directed sups, since they are computed pointwise. If f ~  D~--,/92, then 
Sub(f) = / / (Sub  o f )  where Sub: D2--> Dora is the continuous fu~lctor Sub(x) = {y 
D2ly<~ x}. Thus, Sub(f) is a dependent product of a family cf complete algebraic 
lattice, and so is a complete algebraic lattice. 

3.1. Reformulatim~ with stable functors 

If we want to work with stable functors as in [6], then the previous results hold 
almost without change. We take now for Dora the category of complete dI-domains, 
with rigid embeddings as morphisms. One can take the category of complete coherent 
spaces of Girard [6], with rigid embeddings as morphisms, that is complete atomic 
boolean algebras as an alternative. The fact that there is no cartesian closed 
categorical structure on this collection of objects does not matter here. 

We call a category o f  events a category that is small, where all morphisms are 
monomorphisms, and each slice category is a finite distributive lattice. The poset 
of finite elements of a dl-domain is a particular instance of this concept. 

Definition 3.9. A stable category of  embeddings is the ind-completion of a category 
of events. 

Equivalently, one can state the following. 

Proposition 3.10. Let ~ be a category. Then that ~ is a stable category of  embeddings 
if  and only if  ~ is an algebraic category such tha: 
• all morphisms are monomorphisms, 
• <¢ has allfiltered (or directed, since all morphisms are monomorphisms) colimits, 
• for any object A, Sub(A) (which is the slice category over A) is a complete dl-domain. 

Or else, the following proposition holds. 

Proposition 3.11. Let ~ be a category. Then ~ is a stable category of  embeddings if 
and only if  c¢ is such that 
• all morphisms are monomorphisms, 
• ~ has allfiltered (or directed, since all morphisms are monomorphisms) colimits, 
• for any object A, Sub(A) (which is the slice category over A) is a complete dI-domain, 
• by the previous conditions, ~ has pull-backs, and we ask that the pull-backfunctors 

f * :  Sub(B) -> Sub(A), for any f ~ ~(A,  B), preserves directed colimits, 
• the last condition entails that to be finite has an intrinsic meaning, and we ask that 

the set o f  finite objects is essentially small. 

All these definitions are equivalent. We now have the very strong properties of 
finite elements as follows. 
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Proposition 3.12. Let ~ be a stable category of embeddings. Then A is a finite object 
of C~ if and only if Sub(A) is finite, as a set. 

We have the stability and continuity of  Sub, as in the extensional case. 

Proposition 3.13. The application Sub: ~o--> Domo is the object part of a continuous 
and stable functor Sub: cg __> Dora, where Sub( f )  t" is the composition withfand Sub( f )  R 

the pull-back with f 

We will need the following characterisation of  Sub(F).  

Lemma 3.14. Let ~ be a stable category of embedding, s, c~ a small category with 
pull-backs, and F a stable functor of Cg --> ~. The subobjects o fF  are precisely the stable 
sections of  the functor Sub o F that are less than (for the ~table ordering,) the "top'" 
section of  Sub o F. 

And we can now state the following. 

Theorem 3.15. The category of stable and continuous functors between two stable 
categories of embedding,s, with as morphisms the cartesian natural transformation, is 
a stable category of embedding,s. 

Corollary 3.16. The category of stable categories of embedding,s, with stable and 
continuous functor as morphisms, is a cartesian closed category. 

Since a category of embeddings is an ind-completion, this reduces to showing 
that c¢_> ~,  the category of stable functors and cartesian natural transformations, 
is a category of  embeddings if ~ is small and has pull-backs, and ~ is a category 
of embeddings. As in the extensional case, we are reduced to proving that for any 
functor F in the category ~--> ~ the poset Sub(F)  is a complete dI-domain,  and 
that there are only a small number of  finite objects. It is a complete dI-domain by 
the last lemma and the previous section. 

The fact that there are only a small number  of  finite elements goes through in 
the same way as in the extensional case. 

In ti~e ca~e where each bare-sets is fi~lite in the category cg, then a finite functor 
sends every object to a finite element of c¢. As in the extensional case, if c8 and 
have the property that each horn-set between finite objects is finite, then c8 ~ ~ has 
this property. 

If  we restrict ourselves to posets, we obtain a new notion of  domains that form 
a cartesian closed category (yet another one!), which contains the category of  
dI-domains [1,22], and that satisfy the strong condition that a finite element 
dominates only a finite number  of elements. 

If  we want a category where all domains are countably based, we must impose 
two further conditions on our domains: that they are countably based, and that 
there are profinite (or alternatively, that any finite set has a finite collection of  
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minimal upper bounds, that are pairwise incompatible), This is the stable analogue 
of the notion of short domains presented in [7]. This category is a new extension 
of the category of dI-dor~aains. 

Proposition 3.17. The cr~egory o f  posets that are closed by nonempty directed sups, 
and such that any element dominates a complete dI-domain ( resp. a complete atomic 
boolean algebra), with continuous stable functions as morphisms, is a cartesian closed 
category. Any finite element dominates only a finite number of  elements. The full 
subcategory o f  profinite such domainz~ alternatively domains such that any finite subset 
as a finite collection o f  minimal upper bounds, is a cartesian closed category. 

4. Application to the semantics of Fo, 

In [3], a general framework has been given for building models of polymorphism, 
that shows that Girard's ideas may apply as well on other notions of domains than 
qualitative domains used in [6]. We show here how to extend these models to 
models of Fo,. 

The main remark is simply that since we have a cartesian closed category of 
categories of embeddings, we can interpret the ordinary typed A-calculus, where 
types become categories of embeddings. But here, this cartesian closed category is 
used to interpret the orders (see [20]) of F,o. Intuitively speaking, F,, is a two-level 
system, and the first level (the level of orders) is like simply typed A-calculus, and 
is interpreted by the cartesian closed category of categories of embeddings. Now, 
we have to find a suitable interpretation of the order of truth values O (with the 
notation of [20]). Following the "'Curry-Howard" analogy between propositions 
and types, we take for it any category of domains, with embedding-projection pair 
as morphisms. This shows that we obtain a wide range of models of F,o since we 
can use almost any category of domains for this, for instance complete algebraic 
lattices, or Scott domains (we still do not know, however, if it is possible to use the 
category of SFP domains). The fact that the posers of sections form a domain shows 
that we do have an interpretation of the universal quantification. 

To check the details, a possibility is to use the work of [4], which shows in a 
concrete example how to build a model of F,, (by using ideas from [20]). Actually, 
all we need to say is that we can use this construction, by replacing everywhere Ifp 
categories by categories of embeddings (resp. stable categories of embeddings, and 
continuous functors by stable and continuous functors), and the category of complete 
algebraic lattices with left adjoints becomes the category of Scott domains with 
embeddings (resp. category of dI-domains with rigid embeddings, resp. category of 
atomic dI-domains with rigid embeddings, resp. category of coherent spaces with 
rigid embeddings). 

Let us so outline only the extensional case. We interpret /~, the objects of 
truth-values of higher-order logic, as being the category of Scott domains with 
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embedding-projection pairs as morphisms. We know that this is a category of 
embeddings, and we know [3], that for any category of embeddings ~, one can 
define a continuous functor H :  (cg ~ g~) _~ O. This will be the interpretation of the 
universal quantification. For the interpretation of the implication, we take :::~:Dom-~ 
Dom ~ Dom, where D~:=>/92 is the poset of  continuous functions from D~ to /92 
(see [17]). The rest is only a matter of  checking some equations~ as in [4]. The 
formal structur~: is the same in all these models. 

Notice that we cannot include the notion of Ifp categories as a special case of 
the concept of  categories of embeddings, because of  our restriction on morphisms 
to be monomorphisms. It would be interesting to generalise the definition of category 
of embeddings so that it includes this case (that is associated with the problem of 
removing the condition that all morphisms are monomorphisms). 

These models are actually models of a richer type system than F,~ since ~ is 
actually in this model a full subcategory of the category of types. 

5. Conclusion 

We have proposed two possible axiomatisations of  the notion of category of 
structure, so that any structure is the directed colimit of its finite substructures, and 
we have shown that these notions are preserved by (suitable) exponentiation. Our 
work may so be seen as a step towards the categorical generalisation of the notion 
of domain. Two questions (at least) seem interesting in that respect: what is the 
categorical analogue to the notion of profinite domains (directed colimit of finite 
posers), and what is the connection of the notion of category of structure described 
here with the categorical version of the notion of models of  a theory, such as points 
of a topos. This is known for lfp categories, since, if c¢ is a category with finite 
colimits, the category ind(C¢) is (equivalent to) the category of points of  the topos 
of  pre-sheaves over c~op. It would be interesting to generalise this property. One 
very promising research direction is to connect the present notions with the work 
of Lamarche (see [12, 13]), who was inspired by the work of Diers (see for instance 
[5]), in order to generalise Girard's model. As poLated out by Lamarche, it is not 
the case that all category of embeddings is a Diers category: the category of 
algebraically closed fields is a category of embedding, but has no multi-initial fam;ly. 
It is actually possible to generalise the notion of Diers category in order to subsume 
the case of  category of embeddings [14]. 
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