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I. A plane V1 moves with respect to the coinciding fixed plane V. 
If we consider five positions of V1 then an arbitrary point Q of V1 takes 
five positions Qi(i=O, 1, ... , 4) in V. 

A classical theorem of BuRMESTER states that there are four points in 
Vl (not necessarily real) such that the five positions of each of them are 
on a circle in V. We shall call the four points in Vl the Burmester points 
and the centres of the four circles the Burmester centres belonging to 
the five positions; the combination of a point and the corresponding 
centre shall be called a Burmester pair 1 ). 

A particular case is that of five infinitesimally separated positions; 
we are dealing then with instantaneous kinematics and a Burmester point 
is now a point of V1 the path of which in V has five coinciding points 
of intersection with its osculating circle at the moment under consideration; 
the Burmester centres are the centres of these circles. 

The determination of the Burmester points is an important problem 
of the synthesis of mechanisms for it enables the construction of a four
bar linkage the coupler plane of which coincides during its motion with 
five given positions. Until recently the methods used took place along 
the following lines. One considered first four given positions and derived 
the locus of the centres of those circles in V which pass through the four 
positions of a moving point. This locus, known as the centre-point curve, 
is a circular cubic. The Burmester centres are accordingly found as the 
intersections of two curves of this kind. Of the nine intersections five are 
parasites, slipped in by the imperfections of the procedure : two are the 
isotropic points of V, three others are relative centres of rotation of the 
given positions. The remaining ones are the Burmester centres proper. 
An excellent analytic treatment of this method was recently given by 
FREUDENSTEIN and SANDOR 2). Making use of a complex-number form 

1) The terminology is not uniform; Burmester points and Burmester centres 
in our sense are sometimes called circle-points and Burmester points re'lpectively. 

2) FREUDENSTEIN and SANDOR, On the Burmester points of a plane, Journal 
of Applied Mechanics, vol. 28, 1961, 41-49, where a bibliography on the subject 
is added. 
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of the centre-point curve they were able to derive a procedure to locate 
the Burmester points numerically by means of an automatic computer. 
Several examples are given and many special cases considered. For the 
points asked for they reduce the problem to an equation of the fifth 
degree and in view of this the uncertainty of an extra root has to be 
accepted. 

In the second part of their paper, however, the authors make a succesful 
direct attack on the problem and still making use of complex numbers 
they succeed in developing a method, again suitable for numerical applica
tions, by which the Burmester pairs are determined in such a way that 
no quasi solutions have to be rejected afterwards. 

In what follows we give also a direct analytic method to determine 
the Burmester pairs 1 ). From the start all five positions are considered 
simultaneously, so that the centre-point curve does not come into the 
picture. By introducing a set of new unknowns the procedure leads to 
a system of linear equations and moreover two quadratic equations and 
thus, speaking geometrically the Burmester points are found as the 
intersections of two conics. The method leads to an equation of the fourth 
(or, if wanted, of the third) degree and may be made fit to give numerical 
solutions by means of a computer. Special cases are dealt with in a simple 
way. The method may be used without modification for the instantaneous 
problem and for situations in which a mixture of distinct and instantaneous 
positions is given. 

It yields some general statements of which we mention a generalization 
of MuLLER's theorem on the collinearity of Burmester points. 

2. In the fixed plane V and in the moving plane V1 we take (for the 
time being arbitrarily) the cartesian frames OXY and oxy respectively. 
A position of Vl with respect to V is given analytically by 

(1) 
~X= x cos q;-y sin q;+a 

( Y = x sin q;+y cos q;+b 

and depends on the three numbers a, b and q;. This position will be 
denoted by D(a, b, q;). 

We consider now in Vl the point Q(xo, yo) and in V the circle [.} with 
the equation 

(2) 

1 ) The method developed het'e was given by the author in a series of lectures 
on the geometry of mechanisms, delivered in a scientific seminar at Yale University, 
July 1963. 

He was informed at that time by Prof. Freudenstein that some results given here 
viz. the extension of Mti"LLER:s theorem (§ 4) and the speci&l case of three parallel 
positions (§ 5) occur in a paper by FREUDENSTEIN, SANDOR and PRIMROSE, the 
manuscript of which was courteously shown to the author. The paper will be 
published in due course in the Journal of Applied Mechanics. 
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If Ao*O then Q has a finite radius and its centre is the point Xo=AI/Ao, 
Yo=A2/Ao. But in view of what follows we do not exclude Ao=O; in 
that case Q is a straight line and the centre is a point at infinity. 

We derive now the condition (which will be fundamental) that in the 
position D(a, b, q;) the point Q is on the circle Q. 

It follows easily from (1) and (2): 

(3) 
~ Ao{(xo cos q;-yo sin q;+a)2+(xo sin q;+yo cos q;+b)2} 

( -2AI(Xo cos q;-yo sin q;+a)-2A2(xo sin q;+yo cos q;+b)+As = 0 

or 

(4) + 2( -a sin q; + b cos q;)Aoyo+ 2(1-cos q;)(Aixo+A2yo) ) 
( a2 + b2)A0 - 2aAI- 2bA2 + 2( a cos q; + b sin q; )AoXo 

+ 2 sin q;(Aiyo- A2xo) + Ao(xo2 + yo2)- 2Aixo- 2A2yo +As = 0. 

We introduce the abbreviations 

(5) 
~ ai =-a cos q;-b sin q; 

~ bi =a sin q;-b cos q;. 

ai and bi have a simple geometrical meaning: from (1) it follows that 
they are the coordinates of the origin 0 in the system oxy, or in other 
words the inverse displacement of D(a, b, q;) is D(ai, bi, -q;). 

Furthermore we put 

(6) 
~ Zo = Ao, ZI =AI, z2 = A2, Za = AoXo, z4 = Aoyo, 

~ Zs=A1xo+A2yo, Z6=A1yo, ~7=Ao(Xo2 +yo2)- 2Aixo-2A2yo+Aa. 

Hence ( 4) reads 

This is a homogeneous linear relation between the quantities Z1 (which 
depend on the point Q and the circle Q), the coefficients of which are 
functions of the position parameters a, b and q;. 

Obviously two homogeneous relations exist between the Z1, for they 
are eight in number and they depend on Ao, A1, A2, Aa and on xo, Yo· 
Eliminating these from (6) we find 

(Sa) 

(8b) 

ZoZs = ZIZs + Z2Z4 

ZoZ6 = Z1Z4-Z2Za 

which are quadratic relations. 
We suppose now that five positions D(at, b1., q;,), i=O, 1, ... , 4, of VI 

are given which means that the (fifteen) numbers at, b,, q;1 are known. 
We ask for a point Q in VI and a circle Q in V such that in all five 

positions Q lies on Q; that means that the unknown numbers x0, y0, A 0, 

AI, A2 and As satisfy the five equations we obtain if in (4) we substitute 
at, b1,, qJt for a, b, q;. Or making use of the new unknowns Z we ask for a 
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set of numbers Z1(j = 0, 1, ... , 7}, not all being zero, which satisfy five 
linear equations (7}: 

(9} 
~ f(at2 +bt2)Zo-acZt-btZ2-at1Za~bt1Z4+ (~ -c:s q;c}Zs . _ 
( +sm q;cZ6+ 2Z7- 0 (t-0, 1, ... 4} 

and moreover the two equations (8). 
The seven homogeneous equations (8} and (9} have in general four 

solutions for the ratios of Z1• They can be all real or there may be one or 
two pairs of conjugate complex solutions. 

If, for a real solution, the condition Zo i= 0 is satisfied (which will be 
the general case}, we have Aoi=O which means that Q is a circle with a 
finite radius. From (6) it follows that the coordinates of the Burmester 
point are xo=Za/Zo, yo=Z4/Zo and those of the corresponding centre 
Xo=Z1/Zo, Yo=Z2/Zo. In the special case that that a real solution exists 
for which Zo=O, the conclusion is not valid. We have a singular situation 
which will be dealt with below. 

4. The method to determine the Burmester pairs has now essentially 
been given. For the application we are able to simplify it by making a 
suitable choice for the until now arbitrary cartesian frames in V and Vl. 
First of all we take OXY and oxy such that they coincide in the position 
i = 0; that means ao = bo = q;o = 0 and therefore ao1 = bo1 = 0. 

From the first equation (9) we draw the conclusion Z7 = 0, which is 
moreover obvious if we consider the definition of Z7 as given in (6). 

Hence the set of equations (9) reduces to 

(10) . ~ f(at2+bc2)Zo-atZ1 -btZ2-at1Za- bc1Z4+ (1-cos tpt)Zs +sin tptZ6 = 0 

(t=1, 2, 3, 4) 

which has to be combined with (8), which is unchanged because it does 
not contain the unknown Z7• Our problem is reduced now to the solution 
of a set of four linear and two quadratic equations for the seven homo
geneous unknowns Z1(j = 0, l, ... , 6). 

In this stage we want to give an extension to our definition of the 
variables Z1. The Burmester centres are denoted by their homogeneous 
coordinates (Ao, At, A2) but the Burmester points until now by (xo, yo). 
This imperfect dualism is removed by introducing .x0 , .xr, <X2 such that 
Xo=<Xt/<Xo, yo=.x2/.xo; the points Q are then given by the homogeneous 
co-ordinates (.xo, <Xt, .x2). 

We have now, in view of (6) the more symetric formulas: 

(11) ~ Zo = Ao.xo, Zt = At.xo, Z2 = A2.xo, Za = Ao.xt, Z4 = Ao.x2, 

Zs = A1.x1 + A2.x2, Z6 = A1.x2- A2.x1. 

If we consider the inverse motion, that is if we interchange the planes 
V and V1 then in (10) a, and a,1, be and bc1 are interchanged and tpt is 
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replaced by - cp,; furthermore a,2 + b,2 = a,12 + bt12, both sides being the 
square distance of 0 and o. Therefore in (10) the unknowns must be 
replaced respectively by Zo, Za, Z4, z~, Z2, Zs and -Z6, but in view of 
(11) this is the same thing as interchanging lXt and A 1• All this verifies 
that considering the inverse motion we have to interchange Burmester's 
points and Burmester's centres, a well-known fact. 

In order to determine the Burmester pairs by means of (8) and (10) 
we proceed as follows. From (10) we may in general solve the unknowns 
Z~, Z2, Zs and Z6 in terms of the remaining ones. Such a procedure is 
possible if the determinant 

(12) 

is not zero. 
We obtain in this case 

(13) )

zl = cuZo+c12Za+c1aZ4 
z2 = C21Zo + C22Za + C23z4 
Zs = ca1Zo + ca2Za + caaZ4 
z6 = C41Zo + C42Za + C4aZ4 

and if we substitute the result in (8) we have two homogeneous quadratic 
equations for Zo, Za and Z4. 

The trivial solution Zo=Za=Z4=0 leads to nothing because it would 
imply that Z1=0 for all values of the index. Therefore in view of (11) 
Ao#O and thus we have two homogeneous quadratic equations for 
cxo, lXl and cx2, or speaking geometrically, we find two conics K 1 and K 2 

in the moving plane V1 ; their intersections are the Burmester points. 
The configuration of these points depends on the way the two conics 
are situated one to the other and we may expect all kinds of cases: four 
distinct real points, two distinct real points, two coinciding and two 
distinct real points and so on. 

It may be that an intersection of K1 and K2 is at infinity. ·In that 
case we have a solution of our equations for which cx0 = 0, which implies 
Zo=Z1=Z2=0. But then as a consequence the determin~nt 

(14) 

must be zero. 
If on the other hand Lf2 # 0 we are able to solve from (10) the unknowns 

Za, Z4, Zs and Z6 in terms of the remaining ones: 

(15) 
) Za = duZo+d12Z1 +d1aZ2, 

( Z4 = d21Zo + d22Z1 + d2aZ2, etc. 

Then txo#O and we obtain two conics K11 and K21 in the fixed plane, 
the intersections of which are the Burmester centres, which are finite 
in _ _view of Lf1 # 0. 
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Hence the theorem: if L11 ,p 0, L12 ,p 0 all Burmester points and all 
Burmester centres are finite points. 

Moreover we have (in view of Aocxo,PO) from (13) and (15) for a 
Burmester point (x0 , yo) and the corresponding centre (Xo, Yo): 

(16} l Xo = cn + c12Xo + c1ayo, 
and 

xo = dn +d12Xo+d1aYo, 

from which it follows: the configuration of the Burmester points is related 
to that of the corresponding Burmester centres by a (non-singular) affinity. 
Therefore, for instance, if Q<l), Q<2), Q<3> and Q<4> are the (real and distinct) 
Burmester points and B1, B 2, Ba and B4 the corresponding centres, then 
the diagonals QU>Q<3) and Q<2>Q<4) divide one another in the same ratios 
as the diagonals B1Ba and B2B4. 

So much for the general case. Suppose now e.g. that L11 = 0, L12 ,p 0. 
Then Za, Z4, Z5, Z6 may be solved in terms of Zo, Z1, Z2 and hence the 
conics K11 and K 21 exist. In view of L11=0, however, one of their inter
sections, B1 say, is at infinity. The Burmester point QU> corresponding 
to this centre is such that its five positions Q1<1>(i=0, 1, ... , 4) are on a 
straight line. (Making use of the terminology introduced for instantaneous 
kinematics by VELDKAMP Q<1) has to be called a BALL point with exces 
one.) For the solution we have Ao=O and therefore Zo=Za=Z4=0. 
From L1 1 = 0 it follows that there are four coefficients At, not all zero, 
such that 

(17} E Atat = E Atbi = E At(1- cos cpt) = EAt sin IPt = 0 

and therefore all solutions of (10} satisfy 

iZoEAt(at2 +bt2 )+ZaEAtat1 +Z4EAtbt1 = 0. 

Hence for each solution different from Zo=Za=Z4=0: 

(18} 

but that means that the (three) non-singular Burmester points are on a 
straight line. We have proved the theorem: if for five distinct positions 
of a plane one Burmester point is such that the corresponding centre is at 
infinity, then the remaining Burmester points are collinear. The well-known 
theorem of MuLLER, valid for instantaneous kinematics, is therefore 
seen to be a· special case of a more general result. 

If L12 = 0 we have obviously a dual statement for the inverse motion. 
In the problem as considered until now twelve parameters appear: 

(i = 1, 2, 3, 4). 

In the set (10} all equations are of a similar type, which makes it suitable 
to be solved by a systematic procedure. But if we want to, we are able 
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to reduce our equations by a special choice ofOXY, which is still arbitrary. 
For instance we may take the relative rotation centre P01 as the origin 
and moreover the X-axis through the centre Po2 (if we suppose these 
centres to be finite points). 

Then we have a1=b1=b2=0 and there are only nine parameters, which 
is the minimum to describe five positions of the plane Vl. 

Until now a position of V has been given by a, b and g;. In view of 
the shape of equations (10) it may be convenient to make use of polar 
coordinates. Putting 

(19) 

the system ( 10) reads 

and there is a strong resemblance to the mathematical apparatus used 
by FREUDENSTEIN and SANDOR, who define the displacements by complex 
numbers. 

5. Numerical examples for the method developed here to determine 
Burmester pairs will be given elsewhere. But we want to consider the 
special case in which three of the five positions of Vl are parallel, viz. 
Do, D1 and D2. 

Then tp1=tp2=0 and the two first equations (10) read 

(21) (i = 1, 2) 

from which it follows 

(22) 

If we eliminate Z3 and Z4 from (22) and (8b) the result is 

Zo(Zs+d2Z1-d1Z2) = 0. 

Therefore two of our solutions satisfy Zo = 0, hence they do not correspond 
to finite Burmester centres. The other two are, in general, finite points. 
We give the following example: D1 = (p, 0, 0), D2 = (0, p, 0), D3 = (0, 0, n/2), 
D4=(q, 0, n/2). 

If we apply our method we find for the non-singular solutions: 

Zo = 4, Z1 = 2p+q ± w, Z2 = q =F w, Z3 = q ± w, z4 =- 2p+q =F w 

where w stands for (2p2-q2)Yz. Therefol'e there are two real Burmester 
centres if 2p2-q2>0 and no such centres if 2p2-q2<0. We have given 
this example because there has been some confusion about this particular 
problem. 
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6. Our analytical method may be applied if two of the five positions 
of the moving plane are infinitesimally separated. Many cases may be 
distinguished. Do and D1 may coincide, Da and D4 may coincide also, 
being distinct from Do and D1, Ds being distinct from the others, and so 
on. Of course if k positions coincide, this position must be given up to 
the kth order. We consider here only the extreme case that all five positions 
coincide, so that we deal with instantaneous kinematics. 

It is well-known that even in this case the Burmester points are found 
in the classical method by the insection of two cubic curves. 

In order to define an instantaneous position up to the fifth order we 
consider the displacement D(a, b, cp) as a function of a parameter which 
for the sake of simplicity we identify with the rotation angle cp. We take 
cp=O in the position under consideration and suppose that am=dma(O)jdcpm 
and bm=dmb(O)fdcpm (m=O, l, 2, 3, 4} are given. 

Furthermore we take the origin 0 at the pole and OX along the pole
tangent; hence ao=bo=a1=b1=a2=0. We meet again the equations (10} 
and the respective coefficients are found as the m-derivatives of the 
general equation. 

The derivatives of !(a2+b2) are a(dafdcp)+b(dbfdcp), a(d2a)fdcp2)+ 
+(dafdcp)2+b(d2b)f(dcp2)+(dbfdcp)2, and so on, and therefore if cp=O they 
are 0, 0, 0, 3b22. If we do the same thing for the coefficients a, b, al, bi, 
1-cos cp and sin cp we obtain a set of linear equations for Z1 the matrix 
of which is 

0 0 0 0 0 0 1 
0 0 -b2 0 b2 1 0 

(23) 
0 -aa -ba aa+3b2 ba 0 -1 

3b22 -a4 -b4 a4+4ba - 4aa- 6b2+b4 -1 0 

To determine the Burmester pairs we have to solve (23) and (8) and 
again we have to calculate the intersections of two conics. The case on 
hand is somewhat simpler than the general one, for we have always 
Z6 =0, with an obvious geometrical meaning. We remark that the 
determinant Lh, defined in (12} reads here -aab4+a4ba-aab2 and that 
L1 1 = 0 is indeed the condition in instantaneous kinematics that one of 
the Burmester centres is at infinity I). 

7. We finish this paper with two general remarks. It has given us a 
straightforward method to determine the Burmester pairs if five positions 
of the moving plane are given, but it does not contain a discussion about 
the number of real solutions of the problem. Such a discussion would 
not be very simple because a large variety of special cases must be 
considered. Speaking geometrically we deal with a problem in the six
dimensional space 86 of the homogeneous point coordinates Z1(j = 0, 1, ... , 6). 

1) VELDKAMP, Curvature theory in plane kinematics, T. H. Delft. Groningen, 
1963), p. 31. 
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In this space four five-dimensional linear spaces L, are given by the 
equations (10) and moreover two quadratic five-dimensional varieties 
Fa and Fb by the equations (Sa) and (8b). In the general case the spaces 
L, determine a plane which meets Fa and Fb in two conics the points 
of intersection of which give us the solutions. But the rank of the matrix 
of the linear equations may be less than four so that the intersection of 
L, has a dimension larger than two. Add to this that the spaces· L, are 
not general ·spaces: they belong to a certain set of linear spaces in Sa for 
the seven coefficients of their equations are functions of the three para
meters a, b and cp. On the other hand the problem is simplified by the 
fact that Fa and Fb are independent of the data of the given positions, 
but we must keep in mind that linear spaces lie on them so that the 
intersection of L, and Fa or F b may be not a mere conic but a plane. 

Our second remark deals with a comparison between the method 
developed here and the classical way to determine the Burmester pairs. 
The latter may be described in terms of the mathematical apparatus 
build up in this paper. We have four linear equations Lt and the two 
quadratic ones Fa and F1J. In the classical method they are combined 
as follows: (Lt, L2, Ls, Fa, Fb) and (L2, La, L4, Fa, Fb), which both give 
rise to a cubic equatic:m for two non-homogeneous unknowns. In this 
paper we choose (Lt, L2, La, L4, Fa) and (L~, L2, La, L4, Fb), so that the 
Burmester problem is reduced to the intersection of two conics. 

Technological University, Delft. 




