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An introduction to volatility models with indices
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Abstract

This paper considers a class of volatility models generated by autoregressive (AR) type models with indices. Some results
associated with the autocorrelation function (acf) of this class are given and the spectral density is obtained in terms of the kurtosis
of the error distribution and model parameters.
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1. Introduction

It is well known that time series have their own frequency behaviour. This is a very common phenomenon in
practice, especially in financial time series data (see, for instance, [10,8,9] for details) and the series cannot be
identified using the existing standard time series techniques. In other words the acf, the pacf, and the spectrum are
similar for many series and one may propose the same classical model for all of these cases. Obviously, this may
produce poor forecast values leading to serious consequences in managerial decisions. One way of handling this
problem in practice is to introduce a new class of time series models with an additional parameter (or an index)
δ (>0). Therefore, this work considers a class of time series models satisfying

(I − αB)δXt = et ; −1 < α < 1; δ > 0, (1.1)

where et is a white noise sequence and B is the backshift operator such that B j Xt = Xt− j ; j ≥ 0 with B0 Xt = Xt .
This class of models covers the traditional AR(1) family when δ = 1. Peiris et al. [8,9] have discussed some useful

properties of (1.1). It is clear that when α = 1 and 0 < δ < 1
2 , (1.1) reduces to the well-known class of fractionally

integrated white noise processes (see, for example, [6,2,4,7] for details). Therefore, (1.1) constitutes a new family
of AR(1) type models and can be applied to many standard time series in practice. This class of time series models
generated by (1.1) is called ‘Power Integrated AR(1)’ or ‘PIAR(1)’.

This paper attempts to generalize the class in (1.1) to incorporate ARCH and GARCH type models. With that view
in mind, Section 2 reviews the class of the GARCH and gives some examples of calculating the kurtosis.
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2. GARCH (p, q) process

Consider the general class of GARCH (p, q) models for a time series yt satisfying

yt = √
ht Zt , (2.1)

ht = ω +
p∑

i=1

αi y2
t−i +

q∑
j=1

β j ht− j , (2.2)

where ω > 0; αi ≥ 0; β j ≥ 0 and Zt is a sequence of independent and identically distributed (iid) random variables
with zero mean and unit variance.

It is well known that ut = y2
t − ht is a martingale difference and (2.1) and (2.2) can be written as

φ(B)y2
t = ω + β(B)ut , (2.3)

where φ(B) = 1 − ∑r
i=1 φi Bi , φi = (αi + βi ), β(B) = 1 − ∑q

j=1 β j B j , r = max(p, q) and μ′ = E(y2
t ) =

ω
1−φ1−φ2−···−φr

.
Suppose that the following assumptions hold:

(A.1) All the zeros of the polynomial φ(B) lie outside of the unit circle.
(A.2) There exists a sequence of constants ψi such that

∑∞
i=0 ψ

2
i < ∞, where the ψ ′

i s are obtained from the relation
ψ(B) φ(B) = β(B) satisfying ψ(B) = 1 + ∑∞

i=1 ψi Bi .

Recall that the kurtosis, K (X), of any random variable X is given by

K (X) = E[(X − μ)4]
[Var(X)]2 ,

where μ = E(X).
Below we give two examples of calculating the kurtosis for two specific cases:

Example 2.1. For the GARCH (1,1) model (1 − φ1 B)y2
t = ω + (1 − β1 B)ut , (φ1 = α1 + β1) and ψ1 = α1,

ψ2 = α1(α1 + β1), ψ3 = α1(α1 + β1)
2, . . . , ψ j = α1(α1 + β1)

j−1. Clearly,
∑∞

j=1ψ
2
j = α2

1 + α2
1(α1 + β1)

2 + · · · =
α2

1
1−(α1+β1)

2 . The kurtosis K (y) of {yt } is

K (y) = 3

1 − 2
∞∑
j=1

ψ2
j

= 3

1 − 2α2
1

1−(α1+β1)
2

= 3[1 − (α1 + β1)
2]

1 − (α1 + β1)2 − 2α2
1

,

and it turns out to be the same as the one given in [3]. Moreover, σ 2
u = μ′2(K (y)−1)

1+ α2
1

1−(α1+β1)
2

, where σ 2
u = Var(ut ).

Example 2.2. For the ARCH (1) model of the form yt = √
ht Zt , ht = ω + αy2

t−1, K (y) can be obtained by setting

β1 = 0 in Example 2.1. The corresponding value is K (y) = 3(1−α2)

1−3α2 and σ 2
u = μ′2(K (y) − 1)(1 − α2).

Although ARCH and GARCH type models are very popular in volatility modelling in finance, we still have room
to accommodate additional components in modelling in order to explain the volatility process without violating the
principle of parsimony. With that view in mind, Section 3 introduces a class of volatility models with indices.

3. AR type volatility models with indices

Suppose that {y2
t } is an AR(p) process as in (2.3) with ht = ω + ∑p

i=1 αi y2
t−i , where p is a large positive integer.

In this case {y2
t } follows an AR(p) model of the form
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y2
t = ω +

p∑
i=1

αi y2
t−i + ut , (3.1)

where ut is as defined before.
Since the model (3.1) involves p number of parameters α1, α2, . . . , αp, we consider that the corresponding analog

of (1.1) for {y2
t } is given by

(I − αB)δ y2
t = ω + ut , (3.2)

where |α| < 1, δ > 0 and ut is a suitable martingale difference sequence.
Clearly when δ = 1, (3.2) reduces to (3.1) with p = 1. However, when δ > 0, Eq. (3.2) can be approximated by a

pth order polynomial.
Let

(I − αB)δ =
∞∑
j=0

π jα
j B j , (3.3)

where B0 = I, π0 = 1 and

π j = (−1) j
(
δ

j

)
= (−δ)(−δ + 1) · · · (−δ + j − 1)

j ! ; j ≥ 1.

Notes:

1. If δ is a positive integer, then π j = 0 for j ≥ δ + 1. For any non-integer δ > 0, it is known that

π j = Γ ( j − δ)

Γ ( j + 1)Γ (−δ), (3.4)

where Γ (·) is the gamma function.
2. The model in (3.2) can be thought of as a model incorporating all of the past volatilities in a parsimonious way

using only one additional parameter δ. This model can be used to forecast future volatilities using more of the
available information than any other ARCH model. In practice we may use the approximation

(I − αB)δ ≈
m∑

j=0

π jα
j B j ,

where m is a suitably chosen large integer.

It is easy to see that the series
∑∞

j=0 π jα
j converges for all δ since |α| < 1. Thus y2

t in (3.2) has a valid AR
representation of the form

∞∑
j=0

π jα
j y2

t− j = ω + ut (3.5)

with
∑ |π jα

j |2 < ∞. Now we state and prove the following theorem for a stationary solution of (3.2).

Theorem 3.1. For all δ > 0 and |α| < 1, the infinite series

y2
t − μ′ =

∞∑
j=0

Ψ jα
j ut− j (3.6)

converges absolutely with probability 1 provided E(u2
t ) < C,C > 0, where ψ j = Γ ( j+δ)

Γ ( j+1)Γ (δ) and μ′ = E(y2
t ).

Proof. Let (I − αB)−δ = ∑∞
j=0 Ψ jα

j B j , where

ψ j = (−1) j
(−δ

j

)
= Γ ( j + δ)

Γ ( j + 1)Γ (δ)
; j ≥ 0.

Now E
(∑∞

j=0 |Ψ jα
j ut− j |

)2 = ∑∞
j=0 |Ψ jα

j |2 E{|ut− j |2}. �
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Since
∑∞

j=0 |Ψ jα
j |2 < ∞, the result follows. Thus (3.6) gives a stationary solution for the process in (3.2). For

α = 1, (3.6) converges for all 0 < δ < 1/2.
Let γk = Cov(y2

t , y2
t−k) be the autocovariance function at lag k of {y2

t } satisfying the conditions of Theorem 3.1.
It is clear from (3.5) that the {γk} satisfy a Yule–Walker type of recursion

∞∑
j=0

π j α
j γk− j = 0; k > 0 (3.7)

and the corresponding autocorrelation function (acf), ρk , at lag k is given by

∞∑
j=0

π j α
jρk− j = 0; k > 0. (3.8)

It is interesting to note that ρk = αk is a solution of (3.8), since
∑∞

j=0 π j = 0 for any δ > 0. However, the general
solution for ρk may be expressed as

ρk = g(k, α, δ)αk ,

where g(.) is a suitably chosen function of k, α, and δ. To find this function g, we use the following approach:
The spectrum of {y2

t } in (3.2) is

fy2
t
(ω) = |1 − α e−iω|−2δ σ

2
u

2π
; −π ≤ ω ≤ π

= (1 − 2αCosω + α2)−δ σ
2
u

2π
. (3.9)

In a neighbourhood of ω = 0, f g
y2

t
∼ σ 2

u
2π (1 −α)−2δ, where g stands for generalized process in (3.2). Now the exact

form of γk(or ρk) can be obtained from

γk =
∫ π

−π
eikω fy2

t
(ω)dω

= σ 2
u

π

∫ π

0

Cos(kω)

(1 − 2αCosω + α2)δ
dω. (3.10)

In order to obtain the variance of the volatility process y2
t , we evaluate the integral in (3.10) for k = 0. Section 4

reports this result.

4. Main results

This section is devoted to reporting some results associated with the AR type process given in (3.2). Since the
variance plays a significant role in statistical modelling, the following theorem gives an expression for γk .

Theorem 4.1. For the process given in (3.2),

(a) the variance

γ0 = Var(y2
t ) = σ 2

u F(δ, δ; 1; α2), (4.1)

(b) the autocovariance function of y2
t is

γk = σ 2
u α

kΓ (k + δ) F(δ, k + δ; k + 1; α2)

Γ (δ)Γ (k + 1)
; k ≥ 0, (4.2)

where F(θ1, θ2; θ3; θ) = ∑∞
j=0

Γ (θ1+ j )Γ (θ2+ j )Γ (θ3)θ
j

Γ (θ1)Γ (θ2)Γ (θ3+ j )Γ ( j+1) is the hypogeometric function (see [5], p. 1039, for
details).
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Proof. We first evaluate (3.10) at k = 0 and then for any k. From [5] p. 384, we have

γ0 = σ 2
u

π

∫ π

0

dω

(1 − 2α Cosω + α2)δ
= B

(
1

2
,

1

2

)
F(δ, δ; 1; α2), (4.3)

where B(x, y) = Γ (x)Γ (y)
Γ (x+y) is the Beta function and B( 1

2 ,
1
2 ) = π , and hence (a) follows. (b) follows by writing

y2
t − μ′ = ∑∞

j=0ψ j α
j ut− j and using

γk = σ 2
u α

k
∞∑
j=0

ψ j ψ j+k α
2 j = σ 2

u α
k

∞∑
j=0

Γ ( j + δ)Γ ( j + k + δ)(α2) j

Γ 2(δ)Γ ( j + 1)Γ ( j + k + 1)
,

where μ′ = E(y2
t ) = ω

(1−α)δ . �

From p. 556 of [1], we have

∞∑
j=0

Γ (δ + j)Γ (k + δ + j)(α2) j

Γ (k + 1 + j)Γ ( j + 1)
= Γ (δ)Γ (k + δ) F(δ, k + δ; k + 1; α2)

Γ (k + 1)

and hence (4.2) follows.
Note: Using the properties of F(), it is easy to see that for δ = 1 one has F(1, 1; 1; α2) = (1 − α2)−1 (compare

with [5], p. 1040). That is, (4.1) turns out to be the variance of an ARCH(1) process:

γ0 = Var(y2
t ) = σ 2

u

1 − α2 for |α| < 1.

It is known that for θ3 − θ1 − θ2 > 0, F(θ1, θ2; θ3; 1) = Γ (θ3)Γ (θ3−θ1−θ2)
Γ (θ3−θ1)Γ (θ3−θ2)

and hence part (a) of the Theorem 4.1

reduces to the Var(y2
t ) for a fractionally differenced (long memory) volatility process satisfying (I − B)δy2

t = ut

when 0 < δ < 1
2 . That is, when α = 1 and 0 < δ < 1

2 , (4.1) gives γ0 = σ 2
u Γ (1−2δ1)

Γ 2(1−δ) .

5. Conclusions

We have introduced a new class of models for modelling volatility and obtained the autocorrelation function of the
underlying process. It is shown that the proposed class of models provides a novel way to incorporate additional
components in volatility modelling. The new results in Eqs. (4.1) and (4.2) are particularly useful in theoretical
developments of power integrated ARMA (PIARMA) and power integrated GARCH (PIGARCH) processes with
indices and these will be discussed in a future paper. Moreover, the forecasting with this type of volatility models will
be discussed in a forthcoming paper following [11].
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