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Abstract

The number of partitions of n into parts divisible by a or b equals the number of partitions of n in which
each part and each difference of two parts is expressible as a non-negative integer combination of a and b.
This generalizes identities of MacMahon and Andrews. The analogous identities for three or more integers
(in place of a, b) hold in certain cases.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A partition of n is an unordered multiset of positive integers (called parts) whose sum is n.
For positive integers a1, . . . , am we denote the set of non-negative integer combinations

S = S(a1, . . . , am) :=
{ m∑

i=1

xiai : x1, . . . , xm ∈ N0

}
,

where N0 := {0,1,2, . . .}.
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Theorem 1. For positive integers n, a1 and a2, the following are all equinumerous:

(i) partitions of n in which each part and each difference between two parts lies in S(a1, a2);
(ii) partitions of n in which each part appears with multiplicity lying in S(a1, a2);

(iii) partitions of n in which each part is divisible by a1 or a2.

For example, when (n, a1, a2) = (13,3,4), the three sets of partitions are:

(i) {(13), (10,3), (7,3,3)};
(ii) {(3,3,3,1,1,1,1), (2,2,2,1, . . . ,1), (1, . . . ,1)};

(iii) {(9,4), (6,4,3), (4,3,3,3)}.

We also establish the following partial extension to three or more integers a1, . . . , am. Let �
and � denote greatest common divisor and least common multiple respectively.

Theorem 2. For any positive integers n and a1, . . . , am, the following are equinumerous:

(i) partitions of n in which each part and each difference between two parts lies in
S(a1, . . . , am);

(ii) partitions of n in which each part appears with multiplicity lying in S(a1, . . . , am).

If a1, . . . , am can be ordered such that

∀i = 2, . . . ,m,∃j < i such that (a1 � · · · � ai−1) � ai = aj � ai, (∗)

then in addition the following are equinumerous with (i) and (ii):

(iii) partitions of n in which each part is divisible by some ai .

Note that (∗) holds automatically when m = 2, so Theorem 1 is a special case of Theorem 2.

2. Remarks

To avoid uninteresting cases, a1, . . . , am should be coprime, and none should be a multiple of
another. (Indeed, if the greatest common divisor is g > 1 then Theorem 2 reduces easily to the
case (n′, a′

1, . . . , a
′
m) = g−1(n, a1, . . . , am), while if aj is a multiple of ai then the statements of

the theorem are unchanged by removing aj from a1, . . . , am.)
The set S is sometimes interpreted as describing sums of money that can be formed using

coins of given denominations. When a1, . . . , am are coprime, the complement SC := N0 \ S is
finite; see e.g. [10]. The case m = 2 was studied by Sylvester [11], who proved for a1, a2 coprime
that |SC| = 1

2 (a1 − 1)(a2 − 1) and maxSC = (a1 − 1)(a2 − 1)− 1. The case m � 3 was proposed
by Frobenius, and is much less well understood in general. An exception is when a1, . . . , am

satisfy a certain condition which is implied by our condition (∗); see [9]. For more information
see [10].

When m = 2 we have for example S(2,3)C = {1}; S(3,4)C = {1,2,5}; S(2,5)C = {1,3};
S(3,5)C = {1,2,4,7}; S(4,5)C = {1,2,3,6,7,11}. Larger sets {a1, . . . , am} satisfying con-
dition (∗) include {4,6,9}; {6,8,9}; {6,9,10}; {pm−1,pm−2q, . . . , qm−1} for p,q coprime;



1098 A.E. Holroyd / Journal of Combinatorial Theory, Series A 115 (2008) 1096–1101
{π/p1, . . . , π/pm} for p1, . . . , pm pairwise coprime and π := ∏
i pi . We have for instance

S(4,6,9)C = {1,2,3,5,7,11}.
In the case {a1, a2} = {2,3}, the equality between (i) and (iii) in Theorem 1 gives the following

partition identity due to MacMahon [8, pp. 299–300] (see also [3, p. 14, Examples 9–10]).

The number of partitions of n into parts not congruent to ±1 modulo 6 equals the number of
partitions of n with no consecutive integers and no ones as parts.

The generalization to {a1, a2} = {2,2r + 1}, r ∈ N0, was proved (in a form similar to that above)
by Andrews [2]. The other cases of Theorems 1 and 2 appear to be new. Other recent work
related to MacMahon’s identity appears in [1,4,7]. Somewhat similar identities are proved in [5].
For more information on partitions and partition identities see e.g. [3].

Finally we note that the second assertion in Theorem 2 cannot hold for arbitrary a1, . . . , am

with m � 3. For example, it does not hold for {a1, a2, a3} = {2,3,5}: we have S(2,3,5) =
S(2,3), but allowing multiples of 5 in addition to multiples of 2 and 3 clearly increases the
number of partitions of type (iii) for some n.

3. Proofs

As remarked above, Theorem 1 is the m = 2 case of Theorem 2. We will prove the two
assertions of Theorem 2 separately. The proofs are simpler when m = 2, and the reader may find
it helpful to bear this case in mind throughout.

Proof of Theorem 2 (first equality). Fix a1, . . . , am, and let Fn and Mn be the sets of partitions
in (i) and (ii) respectively. We will show that |Fn| = |Mn|.

For a partition λ = (λ1, . . . , λr ) (where n = ∑
i λi and λ1 � · · · � λr ), the conjugate partition

λ′ = (λ′
1, . . . , λ

′
r ′) is defined as usual by r ′ = λ1 and λ′

i = max{j : λj � i}. Since the set S is
closed under addition, the condition that λ has all parts and differences between parts in S is
equivalent to the condition that each adjacent pair in the sequence λ1, λ2, . . . , λr ,0 differs by an
element of S. On the other hand, it is readily seen that the latter condition is equivalent to the
condition that λ′ has all multiplicities in S (indeed this holds for any set S). Hence conjugation
is a bijection between Fn and Mn. �

Our proof of the second assertion in Theorem 2 relies on the two simple lemmas below. Given
integers a1, . . . , am we write

�i := (a1 � · · · � ai−1) � ai.

Lemma 3. If a1, . . . , am satisfy condition (∗) then we have the formal power series identity

∑
k∈S(a1,...,am)

qk =
∏m

i=2(1 − q�i )∏m
i=1(1 − qai )

.

In the case when m = 2 and a1, a2 are coprime, the above expression has the appealing form
(1 − qa1a2)(1 − qa1)−1(1 − qa2)−1, as noted in [12]. Expressions for the left side for m = 3 and
arbitrary a1, a2, a3, are derived in [6,12].
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Proof of Lemma 3. We use induction on m. When m = 1 we have∑
k∈S(a1)

qk = 1 + qa1 + q2a1 + · · · = 1

1 − qa1

as required.
For m � 2, clearly any k ∈ S(a1, . . . , am) can be expressed as

k = xam + y, where x ∈ N0 and y ∈ S(a1, . . . , am−1). (1)

We claim that under condition (∗), each such k has a unique such representation subject to the
additional constraint

x < �m/am. (2)

Once this is proved we obtain∑
k∈S(a1,...,am)

qk = (
1 + qam + q2am + · · · + q�m−am

) ∑
k∈S(a1,...,am−1)

qk.

By the inductive hypothesis this equals

1 − q�m

1 − qam
×

∏m−1
i=2 (1 − q�i )∏m−1
i=1 (1 − qai )

,

which is the required expression.
To check the above claim, let j = j (m) be as in condition (∗), and write d = a1 � · · · � am−1,

so that �m = d � am = aj � am. Now note that any representation k = xam + y as in (1) that
violates (2) may be re-expressed as k = (x − �m/am)am + (y + �m), where x − �m/am ∈ N0,
and y + �m ∈ S(a1, . . . , am−1) (since �m is a multiple of aj ). By repeatedly applying this we
can reduce x until (2) is satisfied, as required. To check uniqueness, note that all elements of
S(a1, . . . , am−1) are divisible by d , while the �m/am quantities 0, am,2am, . . . , �m − am are all
distinct modulo d (since �m = d � am). Hence we see that no two distinct expressions xam + y

satisfying (1), (2) can be equal. �
Let 1[·] denote an indicator function and let | denote “divides.”

Lemma 4. If a1, . . . , am satisfy condition (∗) then for any positive integer k,

1[ai |k for some i] =
m∑

i=1

1[ai |k] −
m∑

i=2

1[�i |k].

When m = 2 and a1, a2 are coprime, the lemma is the familiar inclusion/exclusion formula
1[a1|k or a2|k] = 1[a1|k] + 1[a2|k] − 1[a1a2|k].

Proof of Lemma 4. We use induction on m. The case m = 1 is trivial. For m � 2 we have

1[ai |k for some i] = 1[am|k] + 1[ai |k for some i < m]
− 1[am|k, and ai |k for some i < m].

We claim that the last condition “am|k, and ai |k for some i < m” is equivalent to �m|k. Once
this is established, the result follows by substituting the inductive hypothesis and the claim into
the above equation.
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Turning to the proof of the claim, if the given condition holds then am|k and d|k, where
d = a1 � · · · � am−1. So k is divisible by am � d = �m. For the converse, recall from (∗) that
�m = am � aj for some j < m, so �m|k implies am|k and aj |k. �
Proof of Theorem 2 (second equality). Suppose (∗) holds, and let Mn and Dn denote the sets
of partitions in (ii) and (iii) respectively. We will show |Mn| = |Dn|.

Using Lemma 3, the generating function for |Mn| is

G(q) :=
∞∑

n=0

|Mn|qn =
∞∏
t=1

[∑
k∈S

qkt

]
=

∞∏
t=1

∏m
i=2(1 − q�i t )∏m
i=1(1 − qai t )

.

When the product over t is expanded, the factor (1 − q�i t ) contributes a factor (1 − qk) in the
numerator for each k that is a non-negative multiple of �i ; similarly for the factors in the denom-
inator. Thus

G(q) =
∞∏

k=1

(
1 − qk

)−∑m
i=1 1[ai |k]+∑m

i=2 1[�i |k]

=
∞∏

k=1

(
1 − qk

)−1[ai |k for some i] =
∏
k�1:

ai |k for some i

1

1 − qk
.

(In the second equality we have used Lemma 4.) But the last expression is the generating function
for |Dn|. �
4. Questions

Can Theorems 1 and 2 be given simple bijective proofs? Dan Romik has found an affirmative
answer for Theorem 1 (personal communication). Is condition (∗) necessary and sufficient for the
identity between (i) and (iii) in Theorem 2? For those a1, . . . , am not satisfying this identity, are
the partitions of type (i) or type (iii) equinumerous with partitions in some other natural classes?
Can condition (∗) be expressed in a more natural form?
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