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The roles of epigenetic modulation of gene expression and protein functions in autosomal dominant
polycystic kidney disease (ADPKD) have recently become the focus of scientific investigation. Evidence
generated to date indicates that one of the epigenetic modifiers, histone deacetylases (HDACs), are
important regulators of ADPKD. HDACs are involved in regulating the expression of the Pkd1 gene and are
the target of fluid flow-induced calcium signal in kidney epithelial cells. Pharmacological inhibition of
HDAC activity has been found to reduce the progression of cyst formation and slow the decline of kidney
function in Pkd1 conditional knockoutmice and Pkd2 knockoutmice, respectively, implicating the potential
clinical application of HDAC inhibitors on ADPKD. Since the expression of HDAC6 is upregulated in cystic
epithelial cells, the potential roles of HDAC6 in regulating cilia resorption and epidermal growth factor
receptor (EGFR) trafficking through deacetylating α-tubulin and regulating Wnt signaling through
deacetylating β-catenin are also discussed. This article is part of a Special Issue entitled: Polycystic Kidney
Disease.
stic Kidney Disease.
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1. Introduction

ADPKD is one of the most common hereditary disorders in
humans, affecting 1/500 in the United States [1]. The hallmark of
the disease is the development of multiple bilateral renal cysts that
replace normal renal parenchyma, resulting in end-stage renal disease
(ESRD) in approximately 50% of the individuals with ADPKD by the
age of 50. Cyst formation is thought to start early in development and
to continue throughout the entire life of the affected individual. In
addition to renal manifestations, ADPKD patients also suffer from
various extra-renal manifestations including hepatic cysts, intracra-
nial aneurysms and cardiac vascular abnormalities. Most cases of
ADPKD are caused by mutations in one of two genes: PKD1,
accounting for 85–95% of the cases; and PKD2, accounting for most
of the remainder [2]. The gene product of PKD2, polycystin-2 (PC2),
either alone or in complex with the gene product of PKD1, polycystin-
1 (PC1), appears to function as a calcium-permeable cation channel
[3–6]. The unexpected association of the primary cilium with several
inherited cystic kidney diseases and localization of cystoproteins
including PC1 and PC2 to the cilia has led to the “primary cilia”
hypothesis. Simply stated, the hypothesis is that structural or
functional abnormalities in the primary apical cilia of tubular epithelia
play a role in renal cyst development and may represent a unifying
mechanism of cyst formation. Growing genetic evidence also suggests
that polycystin expression must be finely tuned in order to achieve
and maintain terminal epithelial differentiation to prevent cyst
formation and growth [7,8]. Elucidation of the complex pathways
that regulate the expression of polycystins or the signaling pathways
downstream of polycystin signaling are critical for achieving a full
understanding of ADPKD pathogenesis and for identification of crucial
regulatory or structural components that may be useful as therapeutic
targets.

Epigenetic modulation of gene expression is as an important
regulatory process in cell biology [9]. Developmental and regulatory
processes within the cell are strongly influenced by histone
modification, which includes acetylation, methylation, and phos-
phorylation [10]. These post-translational modifications increase
accessibility of transcription factors to gene promoter regions by
changing the secondary structure of the histone protein tails in
relation to the DNA strands within the nucleosome, composed of a
DNA strand wound around a core of eight histone proteins [11,12].
Deacetylation, demethylation, and dephosphorylation of histones
have the opposite effect of decreasing access of transcription factors
to promoter regions. Histone acetylation is mediated by histone
acetyl transferases [13,14], while acetyl groups are removed by
histone deacetylases (HDACs) [15]. This review will focus on the
functional roles of HDACs in regulating the cellular processes of renal
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epithelia and the potential of HDAC inhibitors for treatment of
ADPKD. Although histonemethylation [16] and phosphorylation [17]
are the subjects of intense research, there is little evidence to date
connecting these types of modifications to ADPKD; thus, theywill not
be discussed here.
2. Classification of HDACs

To date, eighteen mammalian HDACs have been identified and are
grouped into classes I–IV based on their homology to their respective
yeast orthologues [18–20]. Classes I, II, and IV consist of 11 family
members and all contain a zinc (Zn) molecule in their active site.
Classes I, II, and IV are referred to as “classical” HDACs and are
inhibited by the pan-HDAC inhibitor trichostatin A (TSA). Class I
HDACs (HDACs 1, 2, 3 and 8) show homology to the yeast HDAC, Rpd3,
are ubiquitously expressed and predominantly localized in the
nucleus [21,22]. Class II HDACs (HDACs 4, 5, 6, 7, 9 and 10) are
expressed in a tissue-specific manner and have a high degree of
homology with the yeast HDAC Hda-1 [23]. Class II HDACs are
expressed in both the nucleus and cytoplasm. The shuttling of class II
HDACs in and out of the nucleus is regulated by 14-3-3 proteins and is
a major mechanism by which their activity is regulated [23]. Class I
and II HDACs share significant homology at the deacetylase domain
but differ in their N-terminal sequence. Class IV HDAC only has one
member, HDAC11, which shares some homology to both class I and II
HDACs [24]. The seven different class III HDACs, also known as
sirtuins, are NAD+-dependent deacetylases (distinct from the zinc-
dependent class I and II HDACs) [25]. Sirtuins are homologous to the
yeast Sir2 gene, from which the family derives its name [26]. Class III
HDACs share little homology to the first two classes, and are not
inhibited by any known HDAC inhibitors [27].
3. Mechanisms of action of class I and II HDACs

HDACs regulate cellular functions through transcription-depen-
dent or transcription-independent mechanisms. In the transcription-
dependent mechanism, HDACs regulate gene expression through
deacetylation of either histones or non-histone transcriptional factors
[28,29]. First, upon recruitment by sequence-specific transcription
factors to specific gene promoters, HDACs deacetylate specific lysine
residues in the DNA-bound core histone proteins creating a positive
charge on histone proteins to enhance their affinity for negatively
charged DNA. This modification alters the conformation of the
nucleosome and reduces accessibility of the transcriptional regulatory
machinery to the DNA template repressing the transcription of
specific genes [28]. Second, HDACs deacetylate sequence-specific
transcription factors such as p53 [30], E2F [31], c-Myc [32], nuclear
factor-κB (NF-κB) [33], hypoxia-inducible factor 1α (HIF-1α) [34],
Sp1 and Sp3 [35,36], TFIIEβ and TFIIF [37], GATA-1 [38], TCF [39], and
HMG-1 [40], to decrease their DNA binding activity, and subsequently
repress transcription of specific genes [37]. Individual HDACs are
responsible for regulating different transcription factors, i.e., deace-
tylation of p53 by HDAC1 [41], deacetylation of glucocorticoid
receptor by HDAC2 [42], and deacetylation of myocyte enhancer
factor 2 (MEF2) by HDAC3 [43]. In the transcription-independent
mechanism, HDACs regulate specific cellular functions through
deacetylation of a number of cytoplasmic proteins, such as tubulin
[44] and HSP90 [45], which are the substrates of HDAC6. HDAC6
mediated deacetylation of α-tubulin helps to regulate protein
trafficking [46], cell motility [47] and the cilia disassembly during
the cycle [48]. HDAC6-mediated deacetylation of HSP90 enhances its
chaperone function [49]. The potential contribution of transcription-
dependent versus independentmechanisms of HDACs in regulation of
cystic epithelial cell biology is discussed below.
4. Function of class I and II HDACs in ADPKD

4.1. HDACs are involved in p53-mediated repression of the PKD1 gene
expression

The growing genetic evidence suggests that polycystin expression
must be finely tuned in order to achieve and maintain terminal
epithelial differentiation and to prevent cyst formation [7,8].
Increased Pkd1 expression can be achieved from enhanced expression
of transcriptional activators. Decrease Pkd1 expression has been found
to be regulated through p53-mediated repression of the PKD1
promoter, and HDACs as the negative regulators are involved in this
process [50]. The PKD1 gene promoter which contains a hybrid p53-
Sp1-binding motif has been shown to bind p53 in vivo. However, the
interaction between p53 and Sp1 does not fully account for p53-
induced repression of PKD1 since a pan-HDACs inhibitor TSA further
attenuated p53-induced repression of the PKD1 promoter. This
evidence together with the finding that p53 is downregulated in
Pkd1 mutant kidney epithelial cells suggest a model in which
polycystin signaling activates p53, which in turn, in cooperation
with HDACs, controls PKD1 gene expression. However, which HDAC
(s) is involved in p53-mediated repression of Pkd1 gene expression is
unknown. Since HDAC1 is able to deacetylate p53 [41] and has been
found to bind with Sp1 [51], it may be directly involved in p53-
mediated repression of the PKD1 gene expression. Using siRNA to
knockdown HDAC1 may clarify its function in this process.

4.2. HDAC5 is the target of fluid flow-induced calcium signal in kidney
epithelial cells

To identify downstream targets regulated by the mechanosensory
function of the polycystins, we performed an expression microarray
analysis designed to detect genes that are differentially expressed in
response to fluid flow shear stress in a PC1-dependent manner in
polarized renal epithelial cells. This analysis identified HDAC5 and
myocyte enhancer factor 2C (MEF2C), two key regulators of cardiac
hypertrophy, as targets of polycystin-dependent fluid stress sensing
in renal epithelial cells [52]. We demonstrated that fluid flow
stimulation of polarized epithelial monolayers results in increased
PC2 calcium channel activity and results in calcium influx into the
cells. Increasing intracellular calcium activates protein kinase C (PKC),
which then directly or indirectly phosphorylates HDAC5 at two 14-3-
3 binding sites, an event that leads to disruption of HDAC5–MEF2C
interaction and translocation of HDAC5 from the nucleus to the
cytosol [53]. Nuclear export of HDAC5 releases its inhibition on
MEF2C-based transcription. MEF2 targets include not only structural
proteins important for cardiac muscle differentiation, but also
members of the MEF2 and class II HDAC families through positive
feedback loops [54,55]. A recent study demonstrated that fluid shear
stress-induced HDAC5 phosphorylation and nuclear export also
occurred in endothelial cells [56]. Thus, HDAC5 may be a common
target of multiple mechanosensory pathways that respond to fluid
flow or other mechanical stresses. However, the details of this fluid
flow sensing pathway in renal epithelial cells remain to be elucidated.

To determine if Mef2C-based transcription is an important factor
in the regulation of renal epithelial cell function, we disrupted Mef2C
in the kidney through crossing a Mef2C conditional knockout mice
[57] with Sglt2 promoter-driven Cre mice [58], which results in
decreased expression in renal tubules and glomeruli. In 5-month or
older Mef2Cflox/flox:Sglt2-Cre mutant mice renal abnormalities includ-
ing broadly distributed dilated tubules, and small bilateral cysts with
flat lining cells were observed in 9 out of 12 mice, [52].

To test if loss-of-function mutations in HDAC5 alleviate cyst
formation in Pkd2−/− mice, we crossed pairs of Pkd2+/−Hdac5+/−

double mutant mice, and embryonic kidneys were analyzed at 18.5
dpc. Pkd2−/− embryos die before or immediately after birthwithmany
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large renal cysts [59]. We found that kidneys of Pkd2−/−Hdac5+/−

embryos (n=7) exhibited noticeably reduced cyst formation, com-
pared toPkd2−/−Hdac5+/+kidneys fromembryos ofPkd2+/−Hdac5+/+

parents of the same genetic background [52]. This data suggests that
Hdac5 heterozygosity reduces cyst formation in Pkd2−/− mouse
embryos and inhibition of HDAC5 with HDAC inhibitor may prevent
cyst formation.

To test the possibility that reduced activity of HDAC5 would
suppress cystogenesis in Pkd2−/− mice, TSA was administered to
pregnant Pkd2+/− female mice (mated with Pkd2+/− males) from
embryonic day (E) 10.5 through E17.5 and embryonic kidneys were
analyzed at 18.5 dpc. In all Pkd2−/− embryos (n=7) from TSA-
injected mothers, kidney cyst formation was drastically reduced
compared to those from control DMSO-injected mothers. This finding
suggests that HDACs are the potential therapeutic targets for the
treatment of ADPKD [52].

Although the reduction in cyst severity in Pkd2−/− embryonic
kidneys caused by Hdac5 heterozygosity or inhibition of HDAC5
activity with TSA is consistent with our proposed epistatic relation-
ship between Pkd2 and HDAC5 [52], this result does not rule out
possible regulation by other members of the class II HDAC family.
Furthermore, since HDAC5 lacks intrinsic enzymatic activity and
requires to form a complex with HDAC3, a class I HDAC that is also
sensitive to TSA, for their transcriptional repression activity [60], the
reduction in cyst severity in Pkd2−/− embryonic kidneys caused by
TSA also does not rule out possible regulation by class I HDACs. In
supporting that cystogenesis might also be regulated by class I HDACs
and HDACs are the potential therapeutic targets for the treatment of
ADPKD, Cao et al. [61] reported that valproic acid (VPA), a class I HDAC
specific inhibitor, was able to reduce the progression of cyst formation
and slow the decline of kidney function in another mouse ADPKD
model.

5. Other potential functions of HDACs in PKD

5.1. HDAC6 regulates cilia disassembly during the normal cell cycle

Renal epithelial cells possess a single non-motile hair-like
structure called the primary cilium, which functions as a mechan-
osensor detecting fluid flow through the renal tubule. Cilia consist of a
microtubule-based axoneme covered by a specialized plasma mem-
brane. The ciliary axoneme is built from one of the two basal bodies
(centrioles) that form the core of the centrosome [62]. The
centrosome directs assembly of the bipolar spindle during mitosis.
Thus, cilia have also been suggested to passively affect the cell cycle
for their requirement for one of the centrioles of the centrosome.
Since the membrane of primary cilia is attached to the distal end of
one of the centriole, it is necessary to disassemble the primary cilium
to liberate the captive centriole for cell division [63]. It has been
demonstrated that HDAC6 regulates the stability of microtubules
through deacetylation of α-tubulin and regulates cilia disassembly
during the normal cell cycle [48]. HDAC6 specific inhibitor, tubacin,
stabilizes cilia from regulated resorption cues. We have found that
HDAC6 is upregulated in the Pkd1 mutant mouse embryonic renal
epithelial cells (unpublished data). These data demonstrate that the
functional role of HDAC6 in ciliogenesis and cyst formation warrants
further investigation.

5.2. HDAC6 regulates β-catenin nuclear translocation and EGFR trafficking

In normal tissues, the primary cilium coordinates a complex
series of signal transduction pathways, including Hedgehog, Wnt,
and integrin signaling [64]. Abnormal activation of the Wnt/beta-
catenin-dependent pathway resulting in nuclear translocation of β-
catenin is characteristic of ADPKD [65–67]. In addition to the
canonical Wnt pathway ligands, growth factors such as epidermal
growth factor (EGF) also induce β-catenin dissociation from the
adherens junction complex, translocation into the nucleus, and
activation of target genes such as c-myc [68]. Published reports
demonstrate that EGF-induced nuclear localization of β-catenin is
regulated by HDAC6-dependent deacetylation of β-catenin at lysine
49 [69], a site often mutated in cancers [70]. This modification
inhibits β-catenin phosphorylation at serine 45. The authors further
show that inhibition of HDAC6 blocks EGF-induced β-catenin
nuclear localization and decreases c-Myc expression, leading to
inhibition of epithelial cell proliferation. These results together with
the increased expression of HDAC6 in Pkd1 mutant cystic epithelia
suggest that HDAC6 regulates Wnt signaling through deacetylating
β-catenin.

EGF has a documented role in the expansion of renal cysts. Cystic
epithelial cells from patients with ARPKD or ADPKD are unusually
susceptible to the proliferative stimulus of EGF [71]. EGFR has been
demonstrated to promote epithelial hyperplasia in cystic epithelia,
resulting in renal cyst formation and progressive enlargement in
murine PKD and human ADPKD and ARPKD [72–77]. In all animal
models studied to date, abnormal expression and localization of
members of the EGFR have been reported [71]. HDAC6 has recently
been found to negatively regulate EGFR endocytosis and degradation
by controlling the acetylation status of α-tubulin and, subsequently,
receptor trafficking along microtubules [46]. In addition, a negative
feedback loop existed between HDAC6 and EGFR in that EGFR-
mediated phosphorylation of HDAC6 resulted in reduced deacetylase
activity and increased acetylation of α-tubulin. It has also been shown
that stable knockdown expression of HDAC6 causes a decrease in the
steady-state level of EGFR in A549 lung cancer cells [78]. The
decreased levels of EGFR in HDAC6-knockdown cells correlated with
increased acetylation of microtubules, resulting in increased turnover
of EGFR protein. These studies imply a connection between HDAC6,
EGFR activity and cyst formation.

6. The potential clinical implications of HDAC inhibitors on ADPKD

To date, an array of drugs with HDAC inhibitory effects have been
described and more than 15 HDAC inhibitors are currently being
tested in clinical trials for a number of disease states [79]. However,
the Federal Drug Enforcement Agency (FDA) approved only one
HDAC inhibitor, vorinostat (also known as SAHA), for treatment of
cutaneous T-cell lymphoma.We and others have reported that class I
HDAC inhibitor, VPA, and class II HDAC inhibitor, TSA, reduce the
progression of cyst formation and slow the decline of kidney function
in Pkd1 conditional knockout mice and Pkd2 knockout mice,
respectively [52,61]. VPA belongs to the short-chain fatty acids
derived HDAC inhibitors, which also includes sodium phenylbuty-
rate and sodium butyrate. TSA belongs to the hydroxamic acids
derived HDAC inhibitors, which also includes vorinostat (SAHA),
panobinostat, and belinostat. Before considering potential implica-
tions of HDAC inhibitors in human ADPKD, studies of other members
of these two classes of HDAC inhibitors, especially SAHA, in
preventing cyst formation in animal models of ADPKD would be
extremely useful.

Recent studies demonstrate that HDAC6-knockdown cells are
more sensitive than control cells to the MEK inhibitor U0126 [78].
MEK inhibition has been suggested as a possible therapy to prevent
cyst formation in Pkd animal model [80]. These data and studies in
cancer biology suggest that a combination of HDAC inhibitors along
with the inhibitors of growth factor signalingmay provide an effective
therapy for prevention of cyst formation.

7. Conclusions

The roles of epigenetic modulation of gene expression and protein
functions in ADPKD have recently become the focus of scientific



Fig. 1. Actions of HDACs in kidney epithelial cells. In this schematic diagram, we have depicted the function of HDACs in ADPKD and the potential roles of HDAC6 in ADPKD/PKD. The
functions of HDACs in ADPKD include: i) HDACs together with p53 repress Pkd1 gene expression; ii) HDAC5 is the target of fluid flow-induced calcium signal in kidney epithelial cells.
The potential roles of HDAC6 in ADPKD/PKD include: i) HDAC6 regulates cilia disassembly through deacetylation ofα-tubulin during the normal cell cycle; ii) HDAC6 regulates EGFR
trafficking through deacetylation of α-tubulin; iii) HDAC6 either alone or with EGF regulates β-catenin nuclear translocation.
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investigation. Evidence generated to date indicate that HDACs are
involved in regulating the expression of the Pkd1 gene and HDAC5 is
the target of fluid flow-induced calcium signal in renal epithelia
(summarized in Fig. 1). HDACs may also be involved in regulating
ciliogenesis and EGFR trafficking through deacetylatingα-tubulin and
regulating Wnt signaling through deacetylating β-catenin (Fig. 1).
Consistent with such a role, pharmacological inhibition of HDAC
activity has been found to reduce the progression of cyst formation
and slow the decline of kidney function in Pkd1 conditional knockout
mice and Pkd2 knockout mice, respectively. To date, only a single
HDAC inhibitor, SAHA, has been approved by FDA for the treatment of
cutaneous T-cell lymphoma. Preclinical trials examining the utility of
SAHA in preventing cyst formation and growth in animal models of
ADPKD may offer an exciting and novel therapeutic target for the
treatment of ADPKD.
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