On a question by Grunenfelder, Omladič and Radjavi

Mikhail Chebotar *, Victor Lomonosov
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
Received 12 April 2007; accepted 12 May 2007
Available online 24 May 2007
Submitted by C.-K. Li

Abstract

Let $n \geqslant 3$ be an odd number. If S is a Lie subalgebra of $\mathrm{gl}_{n}(\mathbb{C})$ which acts transitively on \mathbb{C}^{n}, then either $S=\mathrm{gl}_{n}(\mathbb{C})$ or $S=\mathrm{sl}_{n}(\mathbb{C})$. This answers a question by Grunenfelder, Omladič and Radjavi. © 2007 Elsevier Inc. All rights reserved.

Keywords: Transitive action; 2-Transitive action; Lie algebra

A set S of operators acts transitively on a vector space V if for all pairs of vectors $x, y \in V$ with $x \neq 0$ there is an element $A \in S$ such that $A x=y$. For a given positive integer k the set S acts k-transitively on V if for any linearly independent k vectors $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and any k vectors $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ of V there is $A \in S$ such that $A x_{i}=y_{i}, i=1, \ldots, k$.

A classical theorem due to Burnside asserts that the only associative subalgebra of the full matrix algebra $\mathrm{gl}_{n}\left(\mathbb{C}\right.$) which acts transitively on \mathbb{C}^{n} is $\mathrm{gl}_{n}(\mathbb{C})$ itself (see [6,7]). Recently, Grunenfelder et al. $[4,5]$ initiated the study of nonassociative subalgebras of $\mathrm{gl}_{n}(\mathbb{C})$ which act k-transitively on \mathbb{C}^{n}. In particular, they proved the following theorem:

Theorem 1 [5, Theorem 2.4]. If $n \geqslant 3$ and S is a Lie subalgebra of $\mathrm{gl}_{n}(\mathbb{C})$ which acts 2 -transitively on \mathbb{C}^{n}, then either $S=\mathrm{gl}_{n}(\mathbb{C})$ or $S=\mathrm{sl}_{n}(\mathbb{C})$.

Grunenfelder et al. [5, p. 92] noticed that in even dimensions $n=2 m>2$ there are Lie algebras (to be precise, the symplectic Lie algebras $\mathrm{sp}_{n}(\mathbb{C})$ in their example) which act transitively, but not 2 -transitively. On the other hand they proved the following result.

[^0]Proposition 2 [5, Proposition 3.1]. If S is a Lie subalgebra of $\mathrm{gl}_{3}(\mathbb{C})$ which acts transitively on \mathbb{C}^{3}, then either $S=\mathrm{gl}_{3}(\mathbb{C})$ or $S=\mathrm{sl}_{3}(\mathbb{C})$.

In other words every Lie subalgebra of $\mathrm{gl}_{3}(\mathbb{C})$ which acts transitively acts 2-transitively.
This observation was the reason for their question whether in odd dimensions transitive action of Lie subalgebras always implies 2-transitive action [5, p. 92]. We answer this question positively, namely we prove the following result.

Theorem 3. Let $n \geqslant 3$ be an odd number. If S is a Lie subalgebra of $\mathrm{gl}_{n}(\mathbb{C})$ which acts transitively on \mathbb{C}^{n}, then either $S=\mathrm{gl}_{n}(\mathbb{C})$ or $S=\mathrm{sl}_{n}(\mathbb{C})$.

Throughout the paper V, V_{i} denotes finite-dimensional complex vector spaces and I denotes the identity matrix. Following the classical works by Dynkin [2,3] let us characterize a maximal Lie subalgebra h of $\operatorname{sl}_{n}(\mathbb{C})$. Then only three following cases may occur:

1. h is reducible, i.e. it has an invariant subspace;
2. h is either skew-symmetric Lie algebra $o(V)$ or symplectic Lie algebra $\operatorname{sp}(V)$;
3. $h=\operatorname{sl}\left(V_{1}\right) \otimes \operatorname{sl}\left(V_{2}\right)$ in $\operatorname{sl}\left(V_{1} \otimes V_{2}\right)$, provided that $\operatorname{dim}\left(V_{2}\right) \geqslant \operatorname{dim}\left(V_{1}\right) \geqslant 2$.

The last case needs more explanation. Recall that a representation φ of a Lie algebra g on a vector space V assigns to each $X \in g$ an operator $\varphi(X)$ on V. Let φ_{1} and φ_{2} be two representations. The tensor product $\varphi_{1} \otimes \varphi_{2}$ on the tensor product $V_{1} \otimes V_{2}$ is defined as

$$
\varphi_{1} \otimes \varphi_{2}(X)\left(v_{1} \otimes v_{2}\right)=\varphi_{1}(X)\left(v_{1}\right) \otimes v_{2}+v_{1} \otimes \varphi_{2}(X)\left(v_{2}\right) .
$$

In other words, $\varphi_{1} \otimes \varphi_{2}(X)$ is not the tensor product of operators $\varphi_{1}(X)$ and $\varphi_{2}(X)$. As it is mentioned in [8, p. 13], it would be better to call it the infinitesimal tensor product or tensor sum.

Lemma 4. Let V_{1} and V_{2} be finite dimensional complex vector spaces with $\operatorname{dim}\left(V_{1}\right)=k \geqslant 2$ and $\operatorname{dim}\left(V_{2}\right)=l \geqslant 2$. Then $\operatorname{gl}\left(V_{1}\right) \otimes \operatorname{gl}\left(V_{2}\right)$ does not act transitively on $V_{1} \otimes V_{2}$.

Proof. We may represent each vector x from $V_{1} \otimes V_{2}$ as a rectangular $k \times l$ matrix with entries $x_{i j}$. For $A \in \operatorname{gl}\left(V_{1}\right)$ and $B \in \operatorname{gl}\left(V_{2}\right)$ the action of $A \otimes B$ on x is a sum of the action of A on rows and the action of B on columns of the matrix x.

Let $x=e_{11}$, that is, $x_{11}=1$ and other entries equal 0 . Then for any $A \in \operatorname{gl}\left(V_{1}\right)$ and $B \in \operatorname{gl}\left(V_{2}\right)$ put $y=A \otimes B(x)$. It is obvious that the lower rightmost entry of the matrix $y, y_{k l}=0$, that yields $\operatorname{gl}\left(V_{1}\right) \otimes \operatorname{gl}\left(V_{2}\right)(x) \neq V_{1} \otimes V_{2}$ and so $\mathrm{gl}\left(V_{1}\right) \otimes \mathrm{gl}\left(V_{2}\right)$ does not act transitively on $V_{1} \otimes V_{2}$.

Remark 5. Let us underline one more time that $\mathrm{gl}\left(V_{1}\right) \otimes \mathrm{gl}\left(V_{2}\right)$ is not a tensor product of matrix subspaces. In the recent paper by Davidson et al. [1] there are several interesting results on the tensor products of matrix subspaces. In particular, the tensor product of matrix subspaces $\operatorname{sl}\left(V_{1}\right) \otimes \operatorname{gl}\left(V_{2}\right)$ is [dim $\left.\left(V_{1}\right)-1\right]$-transitive according to [1, Example 3.10].

We are ready to prove Theorem 3.
Proof of Theorem 3. Suppose that S is a Lie subalgebra of $\operatorname{gl}_{n}(\mathbb{C})$ which acts transitively on \mathbb{C}^{n}, and different from $\mathrm{gl}_{n}(\mathbb{C})$ and $\mathrm{sl}_{n}(\mathbb{C})$.

Let S_{0} be a Lie subalgebra of $S+\mathbb{C} \cdot I$ consisting of matrices with zero trace. It is clear that $\operatorname{dim}\left(S_{0}\right) \leqslant \operatorname{dim}(S)$, so S_{0} is also a proper Lie subalgebra of $\operatorname{sl}_{n}(\mathbb{C})$.

Embed S_{0} in the maximal Lie subalgebra h of $\operatorname{sl}_{n}(\mathbb{C})$. According to Dynkin's results mentioned above we have three possible cases. The first case when h is reducible cannot happen because $h+\mathbb{C} \cdot I$ then has an invariant subspace and so S does not act transitively.

Consider now the third case when $h=\operatorname{sl}\left(V_{1}\right) \otimes \operatorname{sl}\left(V_{2}\right)$. Clearly the identity operator belongs to $\mathrm{gl}\left(V_{1}\right) \otimes \mathrm{gl}\left(V_{2}\right)$ so the inclusion

$$
S+\mathbb{C} \cdot I \subseteq \operatorname{gl}\left(V_{1}\right) \otimes \operatorname{gl}\left(V_{2}\right)
$$

holds. By Lemma $4 \mathrm{gl}\left(V_{1}\right) \otimes \operatorname{gl}\left(V_{2}\right)$ does not act transitively and so S does not act transitively.
Therefore, the only possible situation is the second case, when h is isomorphic either to o (V) or to $\operatorname{sp}(V)$.

Since n is odd we do not need to consider the case of $\operatorname{sp}(V)$. We have now that $S \subseteq \mathrm{o}_{n}(\mathbb{C})+$ $\mathbb{C} \cdot I$, and so the Lie subalgebra $L=\mathrm{o}_{n}(\mathbb{C})+\mathbb{C} \cdot I$ acts transitively on V. However, it is not true. Indeed, let $u=(1, i, 0, \ldots, 0)$ and $v=(-i, 1,0, \ldots, 0)$ with $i^{2}=-1$. Then it is easy to see that for all $A \in L$ we have the inner product $A u \cdot v=0$ and so $L u \neq V$, a contradiction. Therefore S does not act transitively.

Remark 6. The proof of Theorem 3 also shows the reason why for $n=2 m$ there are transitive Lie subalgebras different from $\mathrm{gl}_{n}(\mathbb{C})$ and $\mathrm{sl}_{n}(\mathbb{C})$. In this case there is a maximal simple Lie subalgebra $\operatorname{sp}_{n}(\mathbb{C})$ of $\operatorname{sl}_{n}(\mathbb{C})$, which does not appear in the odd case.

Remark 7. Theorem 3 essentially means that if S is a Lie subalgebra of $\mathrm{gl}_{n}(\mathbb{C})$ (with odd n) which acts transitively on \mathbb{C}^{n}, then it acts 2 -transitively on \mathbb{C}^{n}. One may wonder whether this remains true if we replace \mathbb{C}^{n} with \mathbb{R}^{n}. The answer is: No.

Let K be the algebra of 3 by 3 skew-symmetric real matrices and $S=K+\mathbb{R} \cdot I$. It is straightforward to check that S acts transitively on \mathbb{R}^{3}. If we take $T=e_{11}-e_{22}$, then T is of rank 2 and the trace of $T A$ equals zero for all $A \in S$. According to [5, Proposition 1.1] we get that S does not act 2-transitively on \mathbb{R}^{3}.

References

[1] K.R. Davidson, L.R. Marcoux, H. Radjavi, Transitive spaces of operators, Preprint. http://www.math.uwaterloo.ca/ krdavids/Preprints/DavMarRadTrans.pdf.
[2] E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30 (72) (1952) 349-462 (in Russian).
[3] E.B. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952) 39-166 (in Russian).
[4] L. Grunenfelder, M. Omladič, H. Radjavi, Jordan analogs of the Burnside and Jacobson density theorems, Pacific J. Math. 161 (1993) 335-346.
[5] L. Grunenfelder, M. Omladič, H. Radjavi, Transitive action of Lie algebras, J. Pure Appl. Algebra 199 (2005) 87-93.
[6] N. Jacobson, Lectures in Abstract Algebra, vol. II, Van Nostrand, Princeton, NJ, 1953.
[7] V. Lomonosov, P. Rosenthal, The simplest proof of Burnside's theorem on matrix algebras, Linear Algebra Appl. 383 (2004) 45-47.
[8] H. Samelson, Notes on Lie Algebras, Springer-Verlag, 1990.

[^0]: * Corresponding author. Tel.: +1 3306729080.

 E-mail addresses: chebotar@math.kent.edu (M. Chebotar), lomonoso@math.kent.edu (V. Lomonosov).

