

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 426 (2007) 368-370

www.elsevier.com/locate/laa

On a question by Grunenfelder, Omladič and Radjavi

Mikhail Chebotar *, Victor Lomonosov

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Received 12 April 2007; accepted 12 May 2007 Available online 24 May 2007 Submitted by C.-K. Li

Abstract

Let $n \ge 3$ be an odd number. If *S* is a Lie subalgebra of $gl_n(\mathbb{C})$ which acts transitively on \mathbb{C}^n , then either $S = gl_n(\mathbb{C})$ or $S = sl_n(\mathbb{C})$. This answers a question by Grunenfelder, Omladič and Radjavi. © 2007 Elsevier Inc. All rights reserved.

Keywords: Transitive action; 2-Transitive action; Lie algebra

A set S of operators *acts transitively* on a vector space V if for all pairs of vectors $x, y \in V$ with $x \neq 0$ there is an element $A \in S$ such that Ax = y. For a given positive integer k the set S *acts k-transitively* on V if for any linearly independent k vectors $\{x_1, x_2, ..., x_k\}$ and any k vectors $\{y_1, y_2, ..., y_k\}$ of V there is $A \in S$ such that $Ax_i = y_i, i = 1, ..., k$.

A classical theorem due to Burnside asserts that the only associative subalgebra of the full matrix algebra $gl_n(\mathbb{C})$ which acts transitively on \mathbb{C}^n is $gl_n(\mathbb{C})$ itself (see [6,7]). Recently, Grunenfelder et al. [4,5] initiated the study of nonassociative subalgebras of $gl_n(\mathbb{C})$ which act *k*-transitively on \mathbb{C}^n . In particular, they proved the following theorem:

Theorem 1 [5, Theorem 2.4]. If $n \ge 3$ and S is a Lie subalgebra of $gl_n(\mathbb{C})$ which acts 2-transitively on \mathbb{C}^n , then either $S = gl_n(\mathbb{C})$ or $S = sl_n(\mathbb{C})$.

Grunenfelder et al. [5, p. 92] noticed that in even dimensions n = 2m > 2 there are Lie algebras (to be precise, the symplectic Lie algebras $sp_n(\mathbb{C})$ in their example) which act transitively, but not 2-transitively. On the other hand they proved the following result.

0024-3795/\$ - see front matter $_{\odot}$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2007.05.010

^{*} Corresponding author. Tel.: +1 330 672 9080.

E-mail addresses: chebotar@math.kent.edu (M. Chebotar), lomonoso@math.kent.edu (V. Lomonosov).

Proposition 2 [5, Proposition 3.1]. If *S* is a Lie subalgebra of $gl_3(\mathbb{C})$ which acts transitively on \mathbb{C}^3 , then either $S = gl_3(\mathbb{C})$ or $S = sl_3(\mathbb{C})$.

In other words every Lie subalgebra of $gl_3(\mathbb{C})$ which acts transitively acts 2-transitively.

This observation was the reason for their question whether in odd dimensions transitive action of Lie subalgebras always implies 2-transitive action [5, p. 92]. We answer this question positively, namely we prove the following result.

Theorem 3. Let $n \ge 3$ be an odd number. If S is a Lie subalgebra of $gl_n(\mathbb{C})$ which acts transitively on \mathbb{C}^n , then either $S = gl_n(\mathbb{C})$ or $S = sl_n(\mathbb{C})$.

Throughout the paper V, V_i denotes finite-dimensional complex vector spaces and I denotes the identity matrix. Following the classical works by Dynkin [2,3] let us characterize a maximal Lie subalgebra h of $sl_n(\mathbb{C})$. Then only three following cases may occur:

1. *h* is reducible, i.e. it has an invariant subspace;

- 2. *h* is either skew-symmetric Lie algebra o(V) or symplectic Lie algebra sp(V);
- 3. $h = sl(V_1) \otimes sl(V_2)$ in $sl(V_1 \otimes V_2)$, provided that $\dim(V_2) \ge \dim(V_1) \ge 2$.

The last case needs more explanation. Recall that a representation φ of a Lie algebra g on a vector space V assigns to each $X \in g$ an operator $\varphi(X)$ on V. Let φ_1 and φ_2 be two representations. The tensor product $\varphi_1 \otimes \varphi_2$ on the tensor product $V_1 \otimes V_2$ is defined as

 $\varphi_1 \otimes \varphi_2(X)(v_1 \otimes v_2) = \varphi_1(X)(v_1) \otimes v_2 + v_1 \otimes \varphi_2(X)(v_2).$

In other words, $\varphi_1 \otimes \varphi_2(X)$ is not the tensor product of operators $\varphi_1(X)$ and $\varphi_2(X)$. As it is mentioned in [8, p. 13], it would be better to call it the infinitesimal tensor product or tensor sum.

Lemma 4. Let V_1 and V_2 be finite dimensional complex vector spaces with $\dim(V_1) = k \ge 2$ and $\dim(V_2) = l \ge 2$. Then $gl(V_1) \otimes gl(V_2)$ does not act transitively on $V_1 \otimes V_2$.

Proof. We may represent each vector x from $V_1 \otimes V_2$ as a rectangular $k \times l$ matrix with entries x_{ij} . For $A \in gl(V_1)$ and $B \in gl(V_2)$ the action of $A \otimes B$ on x is a sum of the action of A on rows and the action of B on columns of the matrix x.

Let $x = e_{11}$, that is, $x_{11} = 1$ and other entries equal 0. Then for any $A \in gl(V_1)$ and $B \in gl(V_2)$ put $y = A \otimes B(x)$. It is obvious that the lower rightmost entry of the matrix y, $y_{kl} = 0$, that yields $gl(V_1) \otimes gl(V_2)(x) \neq V_1 \otimes V_2$ and so $gl(V_1) \otimes gl(V_2)$ does not act transitively on $V_1 \otimes V_2$. \Box

Remark 5. Let us underline one more time that $gl(V_1) \otimes gl(V_2)$ is not a tensor product of matrix subspaces. In the recent paper by Davidson et al. [1] there are several interesting results on the tensor products of matrix subspaces. In particular, the tensor product of matrix subspaces $sl(V_1) \otimes gl(V_2)$ is $[\dim(V_1) - 1]$ -transitive according to [1, Example 3.10].

We are ready to prove Theorem 3.

Proof of Theorem 3. Suppose that *S* is a Lie subalgebra of $gl_n(\mathbb{C})$ which acts transitively on \mathbb{C}^n , and different from $gl_n(\mathbb{C})$ and $sl_n(\mathbb{C})$.

Let S_0 be a Lie subalgebra of $S + \mathbb{C} \cdot I$ consisting of matrices with zero trace. It is clear that $\dim(S_0) \leq \dim(S)$, so S_0 is also a proper Lie subalgebra of $\mathrm{sl}_n(\mathbb{C})$.

Embed S_0 in the maximal Lie subalgebra h of $sl_n(\mathbb{C})$. According to Dynkin's results mentioned above we have three possible cases. The first case when h is reducible cannot happen because $h + \mathbb{C} \cdot I$ then has an invariant subspace and so S does not act transitively.

Consider now the third case when $h = sl(V_1) \otimes sl(V_2)$. Clearly the identity operator belongs to $gl(V_1) \otimes gl(V_2)$ so the inclusion

 $S + \mathbb{C} \cdot I \subseteq \operatorname{gl}(V_1) \otimes \operatorname{gl}(V_2)$

holds. By Lemma 4 gl(V_1) \otimes gl(V_2) does not act transitively and so S does not act transitively.

Therefore, the only possible situation is the second case, when h is isomorphic either to o(V) or to sp(V).

Since *n* is odd we do not need to consider the case of $\operatorname{sp}(V)$. We have now that $S \subseteq o_n(\mathbb{C}) + \mathbb{C} \cdot I$, and so the Lie subalgebra $L = o_n(\mathbb{C}) + \mathbb{C} \cdot I$ acts transitively on *V*. However, it is not true. Indeed, let $u = (1, i, 0, \dots, 0)$ and $v = (-i, 1, 0, \dots, 0)$ with $i^2 = -1$. Then it is easy to see that for all $A \in L$ we have the inner product $Au \cdot v = 0$ and so $Lu \neq V$, a contradiction. Therefore *S* does not act transitively. \Box

Remark 6. The proof of Theorem 3 also shows the reason why for n = 2m there are transitive Lie subalgebras different from $gl_n(\mathbb{C})$ and $sl_n(\mathbb{C})$. In this case there is a maximal simple Lie subalgebra $sp_n(\mathbb{C})$ of $sl_n(\mathbb{C})$, which does not appear in the odd case.

Remark 7. Theorem 3 essentially means that if *S* is a Lie subalgebra of $gl_n(\mathbb{C})$ (with odd *n*) which acts transitively on \mathbb{C}^n , then it acts 2-transitively on \mathbb{C}^n . One may wonder whether this remains true if we replace \mathbb{C}^n with \mathbb{R}^n . The answer is: No.

Let *K* be the algebra of 3 by 3 skew-symmetric real matrices and $S = K + \mathbb{R} \cdot I$. It is straightforward to check that *S* acts transitively on \mathbb{R}^3 . If we take $T = e_{11} - e_{22}$, then *T* is of rank 2 and the trace of *TA* equals zero for all $A \in S$. According to [5, Proposition 1.1] we get that *S* does not act 2-transitively on \mathbb{R}^3 .

References

- K.R. Davidson, L.R. Marcoux, H. Radjavi, Transitive spaces of operators, Preprint. http://www.math.uwaterloo.ca/ krdavids/Preprints/DavMarRadTrans.pdf.
- [2] E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30 (72) (1952) 349–462 (in Russian).
- [3] E.B. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952) 39–166 (in Russian).
- [4] L. Grunenfelder, M. Omladič, H. Radjavi, Jordan analogs of the Burnside and Jacobson density theorems, Pacific J. Math. 161 (1993) 335–346.
- [5] L. Grunenfelder, M. Omladič, H. Radjavi, Transitive action of Lie algebras, J. Pure Appl. Algebra 199 (2005) 87-93.
- [6] N. Jacobson, Lectures in Abstract Algebra, vol. II, Van Nostrand, Princeton, NJ, 1953.
- [7] V. Lomonosov, P. Rosenthal, The simplest proof of Burnside's theorem on matrix algebras, Linear Algebra Appl. 383 (2004) 45–47.
- [8] H. Samelson, Notes on Lie Algebras, Springer-Verlag, 1990.

370