Sufficient conditions for super k-restricted edge connectivity in graphs of diameter 2^{*}

Shiying Wang ${ }^{\text {a,* }}$, Shangwei Lin ${ }^{\text {a }}$, Chunfang Li ${ }^{\text {b }}$
${ }^{a}$ School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
${ }^{\mathrm{b}}$ Department of Mathematics, Jinzhong University, Jinzhong, Shanxi, 030600, People's Republic of China

Received 14 June 2007; received in revised form 16 January 2008; accepted 20 January 2008
Available online 3 March 2008

Abstract

For a connected graph $G=(V, E)$, an edge set $S \subseteq E$ is a k-restricted edge cut if $G-S$ is disconnected and every component of $G-S$ has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_{k}(G)$, is defined as the cardinality of a minimum k-restricted edge cut. Let $\xi_{k}(G)=\min \{|[X, \bar{X}]|:|X|=k, G[X]$ is connected $\}$. G is λ_{k}-optimal if $\lambda_{k}(G)=\xi_{k}(G)$. Moreover, G is super $-\lambda_{k}$ if every minimum k-restricted edge cut of G isolates one connected subgraph of order k. In this paper, we prove that if $\left|N_{G}(u) \cap N_{G}(v)\right| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices, then G is λ_{k}-optimal; and if $\left|N_{G}(u) \cap N_{G}(v)\right| \geq 2 k$ for all pairs u, v of nonadjacent vertices, then G is either super- λ_{k} or in a special class of graphs. In addition, for k-isoperimetric edge connectivity, which is closely related with the concept of k-restricted edge connectivity, we show similar results.

(c) 2008 Elsevier B.V. All rights reserved.

Keywords: Restricted edge connectivity; Isoperimetric edge connectivity; λ_{k}-optimality; Diameter

1. Terminology and introduction

For graph-theoretical terminology and notation not defined here we follow [4]. We consider finite, undirected and simple graphs G with the vertex set $V(G)$ and the edge set $E(G)$. For any vertex v in G, we define the neighbour set of v in G to be the set of all vertices adjacent to v; this set is denoted by $N(v)=N_{G}(v)$. If G^{\prime} is a subgraph of G and v is a vertex of G^{\prime}, we define $N_{G^{\prime}}(v)=N_{G}(v) \cap V\left(G^{\prime}\right)$. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ equals the number of vertices in $N_{G}(v)$. Let $\delta(G)$ denote the minimum degree in G. For $U \subseteq V(G)$ let $G[U]$ be the subgraph induced by U. For subsets U and U^{\prime} of $V(G)$, we denote by [U, U^{\prime}] the set of edges with one end in U and the other in U^{\prime}. If vertices u and v are connected in G, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest path from u to v in G; if there is no path connecting u and v we define $d_{G}(u, v)$ to be infinite. The diameter of G, denoted by $D(G)$, is the maximum distance between two vertices of G. Let G_{1} and G_{2} be two graphs. The union $G_{1} \cup G_{2}$ of G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

The edge connectivity $\lambda(G)$ of a graph G is the minimum cardinality of an edge cut of G. It is well known that $\lambda(G) \leq \delta(G)$. A graph G is λ-optimal if $\lambda(G)=\delta(G)$. Furthermore, G is super- λ if every minimum edge cut consists

[^0]of edges adjacent to a vertex of minimum degree. As a more refined index than the edge connectivity, restricted edge connectivity was proposed by Esfahanian and Hakimi [6]. A set of edges S in a connected graph G is called a restricted edge cut if $G-S$ is disconnected and contains no isolated vertex. If such an edge cut exists, then the restricted edge connectivity of G, denoted by $\lambda^{\prime}(G)$, is defined to be the minimum number of edges over all restricted edge cuts of G. A graph is called λ^{\prime}-connected if it contains restricted edge cuts. Esfahanian and Hakimi [6] showed that each connected graph G of order $\nu(G) \geq 4$ except a star $K_{1, v-1}$ is λ^{\prime}-connected and satisfies $\lambda(G) \leq \lambda^{\prime}(G) \leq \xi(G)$, where $\xi(G)=\min \left\{d_{G}(u)+d_{G}(v)-2: u v \in E(G)\right\}$ is the minimum edge degree of G. A graph G is λ^{\prime}-optimal if $\lambda^{\prime}(G)=\xi(G)$. Moreover, G is super- λ^{\prime} if every minimum restricted edge cut of G isolates one edge, that is, every minimum restricted edge cut of G is a set of edges adjacent to a certain edge with minimum edge degree in G. There has been much research on λ-optimal graphs, super- λ graphs, λ^{\prime}-optimal graphs and super- λ^{\prime} graphs (cf. e.g. $[1-3,6$, 7,9-12,16-19]).

Generally, for a connected graph G, an edge set $S \subseteq E(G)$ is called a k-restricted edge cut of G if $G-S$ is disconnected and every component of $G-S$ has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_{k}(G)$, is defined as the cardinality of a minimum k-restricted edge cut. A minimum k-restricted edge cut is called a λ_{k}-cut. By definition, if S is a λ_{k}-cut, then $|S|=\lambda_{k}(G)$. It should be pointed out that not all connected graphs have k-restricted edge cuts. A connected graph G is called λ_{k}-connected if $\lambda_{k}(G)$ exists. It is easy to see that if G is λ_{k}-connected for $k \geq 2$, then G is also λ_{k-1}-connected and $\lambda_{k-1}(G) \leq \lambda_{k}(G)$. Sufficient conditions for graphs to be λ_{k}-connected were given by several authors [5,6,15,20]. In view of recent studies on k-restricted edge connectivity, it seems that the larger $\lambda_{k}(G)$ is, the more reliable the network is [13,14,18]. So, we expect $\lambda_{k}(G)$ to be as large as possible. Clearly, the optimization of $\lambda_{k}(G)$ requires an upper bound first. For any positive integer k, let

$$
\xi_{k}(G)=\min \{|[X, \bar{X}]|:|X|=k, G[X] \text { is connected }\} .
$$

It has been shown that $\lambda_{k}(G) \leq \xi_{k}(G)$ holds for many graphs [5,15,20]. A connected graph G is called a λ_{k}-optimal graph if $\lambda_{k}(G)=\xi_{k}(G)$. Furthermore, G is called a super k-restricted edge-connected graph, in short, a super- λ_{k} graph, if every λ_{k}-cut of G isolates one connected subgraph of order k, that is, every λ_{k}-cut of G is a set of edges adjacent to a certain connected subgraph of order k. Clearly, $\lambda_{1}(G)=\lambda(G), \lambda_{2}(G)=\lambda^{\prime}(G), \xi_{1}(G)=\delta(G)$ and $\xi_{2}(G)=\xi(G)$. Moreover, λ-optimality, super- λ property, λ^{\prime}-optimality and super- λ^{\prime} property are λ_{1}-optimality, superλ_{1} property, λ_{2}-optimality and super- λ_{2} property, respectively. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$. By definition, if G is a super $-\lambda_{k}$ graph, then G must be a λ_{k}-optimal graph. However, the converse is not true. For example, a cycle of length $\nu(\nu \geq 2 k+2)$ is a λ_{k}-optimal graph that is not super $-\lambda_{k}$.

In Section 3, first, we prove that G is λ_{k}-optimal if $\left|N_{G}(u) \cap N_{G}(v)\right| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices, and G is super- λ_{k} if G is not in a special class of graphs and $\left|N_{G}(u) \cap N_{G}(v)\right| \geq 2 k$ for all pairs u, v of nonadjacent vertices. Next, we show that some known results are consequences of our results and give examples to show that our results are best possible in some sense.

In Section 4, we turn our attention to the analogous concept of k-isoperimetric edge connectivity. The k isoperimetric edge connectivity of G is defined as

$$
\gamma_{k}(G)=\min \{|[X, \bar{X}]|: X \subseteq V(G),|X| \geq k,|\bar{X}| \geq k\} .
$$

Clearly, $\gamma_{k}(G)$ exists for any positive integer $k \leq|V(G)| / 2$. An edge cut $S=[X, \bar{X}]$ is called a γ_{k}-cut if $|S|=\gamma_{k}(G)$ and $X \subseteq V(G),|X| \geq k,|\bar{X}| \geq k$. Let

$$
\beta_{k}(G)=\min \{|[X, \bar{X}]|: X \subseteq V(G),|X|=k\} .
$$

Then, it is obvious that $\gamma_{k}(G) \leq \beta_{k}(G)$. A graph G is called a γ_{k}-optimal graph if $\gamma_{k}(G)=\beta_{k}(G)$. Moreover, G is called a super- γ_{k} graph if every γ_{k}-cut $S=[X, \bar{X}]$ of G has the property that either $|X|=k$ or $|\bar{X}|=k$. It is easy to see that a super- γ_{k} graph must be a γ_{k}-optimal graph, but the converse is not true. Several researchers [8,21] have studied γ_{k}-optimal graphs. In Section 4, we will give some conditions, which are similar to those given in Section 3, for graphs to be γ_{k}-optimal or super- γ_{k}.

2. Preliminaries

We start with a simple but useful observation.

Observation 2.1 ([9]). Let G be a graph of order $v \geq 2$. Then each pair u, v of nonadjacent vertices satisfies $|N(u) \cap N(v)| \geq 1$ if and only if $D(G) \leq 2$.

Proposition 2.1. Let k be a positive integer and let G be a graph with at least one pair of nonadjacent vertices. If

$$
|N(u) \cap N(v)| \geq 2 k-1
$$

for each pair u, v of nonadjacent vertices, then G is λ_{k}-connected and $\lambda_{k}(G) \leq \xi_{k}(G)$.
Proof. Clearly, $|V(G)| \geq 2 k+1$. By Observation 2.1, $D(G) \leq 2$ and hence G is connected. The case $k=1$ is trivial, so we only consider the case $k \geq 2$. Since G is connected and $|V(G)| \geq 2 k+1, \xi_{k}(G)$ exists. Let U be a subset of $V(G)$ such that $|U|=k, G[U]$ is connected and $\xi_{k}(G)=|[U, \bar{U}]|$. If u, v are two nonadjacent vertices in \bar{U}, then $|N(u) \cap N(v)| \geq 2 k-1$. Since $|N(u) \cap N(v) \cap U| \leq|U|=k$ and $k \geq 2$, we have $|N(u) \cap N(v) \cap \bar{U}| \geq k-1>0$. Therefore, $G[\bar{U}]$ is connected and thus $[U, \bar{U}]$ is a k-restricted edge cut, which implies that G is λ_{k}-connected and $\lambda_{k}(G) \leq|[U, \bar{U}]|=\xi_{k}(G)$. The proof is complete.

Let G be a λ_{k}-connected graph and let S be a λ_{k}-cut of G. By the minimality of S, the graph $G-S$ consists of exactly two components, say G_{1} and G_{2}. Let $X=V\left(G_{1}\right)$. Then $\bar{X}=V\left(G_{2}\right)$ and $S=[X, \bar{X}]$. Denote $X^{0}=\{x \in X:|N(x) \cap \bar{X}| \leq k-1\}, \bar{X}^{0}=\{y \in \bar{X}:|N(y) \cap X| \leq k-1\}$. Without loss of generality, assume

$$
\begin{equation*}
\min \{|N(x) \cap \bar{X}|: x \in X\} \geq \min \{|N(y) \cap X|: y \in \bar{X}\} \tag{1}
\end{equation*}
$$

We will use such notation and this assumption in this section and next section.
The main goal of this section is to give some useful properties of $G[X]$ and $G[\bar{X}]$. By reason of symmetry we only discuss $G[X]$.

Lemma 2.1. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$ and let $S=[X, \bar{X}]$ be a λ_{k}-cut of G.
(i) If there exists a connected subgraph H of order k in $G[X]$ with the property that

$$
\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X \backslash V(H)}|N(v) \cap \bar{X}|,
$$

then G is λ_{k}-optimal.
(ii) There exists no connected subgraph H of order k in $G[X]$ with the property that

$$
\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)|<\sum_{v \in X \backslash V(H)}|N(v) \cap \bar{X}| .
$$

Proof. The hypotheses of Lemma 2.1(i) imply

$$
\begin{aligned}
\xi_{k}(G) & \leq|[V(H), \overline{V(H)}]| \\
& =|[V(H), X \backslash V(H)]|+|[V(H), \bar{X}]| \\
& =\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)|+|[V(H), \bar{X}]| \\
& \leq \sum_{v \in X \backslash V(H)}|N(v) \cap \bar{X}|+|[V(H), \bar{X}]| \\
& =|[X \backslash V(H), \bar{X}]|+|[V(H), \bar{X}]| \\
& =|[X, \bar{X}]|=|S|=\lambda_{k}(G) .
\end{aligned}
$$

Since $\lambda_{k}(G) \leq \xi_{k}(G)$, we deduce that $\lambda_{k}(G)=\xi_{k}(G)$ and hence G is λ_{k}-optimal. The proof of (i) is complete. (ii) can be easily seen from the proof of (i).

Corollary 2.1. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$ and let $S=[X, \bar{X}]$ be a λ_{k}-cut. If there exists a vertex x^{*} in X such that $\left|N\left(x^{*}\right) \cap \bar{X}\right| \geq k+1$, then there exists no connected subgraph H of order k in $G[X]-x^{*}$
with the property that

$$
\sum_{v \in X \backslash\left(V(H) \cup\left\{x^{*}\right\}\right)}|N(v) \cap V(H)| \leq \sum_{v \in X \backslash\left(V(H) \cup\left\{x^{*}\right\}\right)}|N(v) \cap \bar{X}| .
$$

Proof. Suppose, on the contrary, that there exists such a subgraph H. Since $\left|N\left(x^{*}\right) \cap \bar{X}\right| \geq k+1>k=$ $|V(H)| \geq\left|N\left(x^{*}\right) \cap V(H)\right|$, it follows that $\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)|<\sum_{v \in X \backslash V(H)}|N(v) \cap \bar{X}|$, contrary to Lemma 2.1 (ii).

Lemma 2.2. Suppose that G is a λ_{k}-connected graph and $S=[X, \bar{X}]$ is a λ_{k}-cut of G. Let X^{*} be a subset of X such that $\left|X^{*}\right| \geq k, X^{0} \subseteq X^{*}$ and $G\left[X^{*}\right]$ is connected. If there exists a connected subgraph H^{\prime} of $G\left[X^{*}\right]$ such that $\left|V\left(H^{\prime}\right)\right| \leq k$ and $X^{0} \subseteq \bar{V}\left(H^{\prime}\right)$, then there exists a connected subgraph H of order k in $G\left[X^{*}\right]$ such that

$$
\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}| .
$$

Proof. If there exists such a subgraph H^{\prime}, then, by the connectedness of $G\left[X^{*}\right]$, there exists a connected subgraph H of $G\left[X^{*}\right]$ such that $|V(H)|=k, X^{0} \subseteq V\left(H^{\prime}\right) \subseteq V(H)$ and hence $X^{*} \backslash V(H) \subseteq X^{*} \backslash X^{0}$. By the definition of $X^{0},|N(v) \cap \bar{X}| \geq k$ for any $v \in X^{*} \backslash V(H)$. It follows that $\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X^{*} \backslash V(H)}|V(H)|=$ $k\left|X^{*} \backslash V(H)\right| \leq \sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}|$.

Combining Lemmas 2.1(i) and 2.2, we get the following corollary.
Corollary 2.2. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$ and let $S=[X, \bar{X}]$ be a λ_{k}-cut. If there exists a connected subgraph H of $G[X]$ such that $|V(H)| \leq k$ and $X^{0} \subseteq V(H)$, then G is λ_{k}-optimal. In particular, if $X^{0}=\emptyset$, then G is λ_{k}-optimal.

Lemma 2.3. Let X^{*} be a subset of X such that $\left|X^{*}\right| \geq k, X^{0} \subseteq X^{*}$ and $G\left[X^{*}\right]$ is connected and let $G^{*}=G\left[X^{*} \cup \bar{X}\right]$. If $X^{0} \neq \emptyset, \bar{X}^{0} \neq \emptyset$ and $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v)\right| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices in G^{*}, then there exists a connected subgraph H of order k in $G\left[X^{*}\right]$ such that

$$
\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}| .
$$

Proof. Suppose, on the contrary, that $G\left[X^{*}\right]$ contains no connected subgraph H of order k in $G\left[X^{*}\right]$ such that $\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}|$. Then we have the following nine claims.

Claim 1. $x y \in E\left(G^{*}\right)$ for any $x \in X^{0}, y \in \bar{X}^{0}$.
By contradiction. Suppose that there exist $x \in X^{0}$ and $y \in \bar{X}^{0}$ such that $x y \notin E\left(G^{*}\right)$. Then $2 k-1 \leq$ $\left|N_{G^{*}}(x) \cap N_{G^{*}}(y)\right|=\left|N_{G^{*}}(x) \cap N_{G^{*}}(y) \cap X^{*}\right|+\left|N_{G^{*}}(x) \cap N_{G^{*}}(y) \cap \bar{X}\right| \leq\left|N_{G^{*}}(y) \cap X^{*}\right|+\left|N_{G^{*}}(x) \cap \bar{X}\right| \leq$ $|N(y) \cap X|+|N(x) \cap \bar{X}| \leq 2(k-1)=2 k-2$, a contradiction.

Claim 2. $1 \leq\left|X^{0}\right| \leq k-1$ and $1 \leq\left|\bar{X}^{0}\right| \leq k-1$ (and therefore $k \geq 2$).
Since $X^{0} \neq \emptyset$ and $\bar{X}^{0} \neq \emptyset$, we have $1 \leq\left|X^{0}\right|$ and $1 \leq\left|\bar{X}^{0}\right|$. Let y be a vertex in \bar{X}^{0}. Then, by Claim 1, $X^{0} \subseteq N_{G^{*}}(y)$ and hence $X^{0} \subseteq N_{G^{*}}(y) \cap X^{*}$. It follows that $\left|\overline{X^{0}}\right| \leq\left|N_{G^{*}}(y) \cap X^{*}\right| \leq|N(y) \cap X| \leq k-1$. Similarly, we also have $\left|\bar{X}^{0}\right| \leq k-1$.

Claim 3. $\left|X^{0}\right|^{>}>\left\lceil\frac{k}{2}\right\rceil$ and there exists a connected subgraph H^{\prime} of order at most k in $G\left[X^{*}\right]$ such that $\left|V\left(H^{\prime}\right) \cap X^{0}\right| \geq\left\lceil\frac{k}{2}\right\rceil$.

Let $t=\left\lceil\frac{k}{2}\right\rceil$ and let $U=\left\{x_{1}, \ldots, x_{t}\right\}$ be a subset of X^{*} such that U contains as many vertices in X^{0} as possible. Clearly, $X^{0} \cap U \neq \emptyset$, and if $\left|X^{0}\right| \leq\left\lceil\frac{k}{2}\right\rceil$, then $X^{0} \subseteq U$; if $\left|X^{0}\right|>\left\lceil\frac{k}{2}\right\rceil$, then $U \subseteq X^{0}$. Without loss of generality, assume that $x_{1} \in X^{0}$.

By Claim 2, we have $k \geq 2$. If $k=2$, then let H^{\prime} be the graph with vertex set $\left\{x_{1}\right\}$. It is easy to see that H^{\prime} is a connected subgraph of $G\left[X^{*}\right],\left|V\left(H^{\prime}\right)\right| \leq k$ and $U=\left\{x_{1}\right\}=V\left(H^{\prime}\right)$. If $k \geq 3$, then $t \geq 2$. For any $i=2, \ldots, t$, if $x_{1} x_{i} \in E\left(G^{*}\right)$, then let $u_{i}=x_{i}$. If $x_{1} x_{i} \notin E\left(G^{*}\right)$, then, since $\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{i}\right)\right| \geq 2 k-1$ and
$\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{i}\right) \cap \bar{X}\right| \leq\left|N\left(x_{1}\right) \cap \bar{X}\right| \leq k-1$, we have $\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{i}\right) \cap X^{*}\right| \geq k>0$ and hence we may let u_{i} be a vertex in $N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{i}\right) \cap X^{*}$. Let $U^{*}=U \cup\left\{u_{2}, \ldots, u_{t}\right\}$ and let $H^{\prime}=G\left[U^{*}\right]$. Then H^{\prime} is a connected subgraph of $G\left[X^{*}\right],\left|V\left(H^{\prime}\right)\right|=\left|U^{*}\right| \leq t+(t-1) \leq k$ and $U \subseteq V\left(H^{\prime}\right)$.

Suppose that $\left|X^{0}\right| \leq\left\lceil\frac{k}{2}\right\rceil$. Then $X^{0} \subseteq U \subseteq V\left(H^{\prime}\right)$. By Lemma 2.2, there exists a connected subgraph H of order k in $G\left[X^{*}\right]$ such that $\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}|$, contrary to the initial assumption. Therefore, $\left|X^{0}\right|>\left\lceil\frac{k}{2}\right\rceil$ and hence $U \subseteq X^{0}$. This implies that $\left|V\left(H^{\prime}\right) \cap X^{0}\right| \geq|U|=t=\left\lceil\frac{k}{2}\right\rceil$. The proof of Claim 3 is complete.

Denote $\left|X^{0}\right|=k-s$. Then, by Claims 2 and $3,1 \leq s<\left\lfloor\frac{k}{2}\right\rfloor$.
Claim 4. $|N(x) \cap \bar{X}| \geq k-s$ for any $x \in X^{0}$.
Let $y^{\prime} \in \bar{X}$ be a vertex such that $\left|N\left(y^{\prime}\right) \cap X\right|=\min \{|N(y) \cap X|: y \in \bar{X}\}$. Clearly, $y^{\prime} \in \bar{X}^{0}$. By Claim 1, $X^{0} \subseteq N_{G^{*}}\left(y^{\prime}\right) \cap X^{*}$ and hence $k-s=\left|X^{0}\right| \leq\left|N_{G^{*}}\left(y^{\prime}\right) \cap X^{*}\right| \leq\left|N\left(y^{\prime}\right) \cap X\right|$. By the assumption (1), we have $|N(x) \cap \bar{X}| \geq \min \{|N(y) \cap X|: y \in \bar{X}\}=\left|N\left(y^{\prime}\right) \cap X\right|$ and thus $|N(x) \cap \bar{X}| \geq k-s$ for any $x \in X^{0}$.

Claim 5. $\left|X^{*}\right| \geq 2 k-s$.
If $G\left[X^{0}\right]$ is connected, then let $H^{\prime}=G\left[X^{0}\right]$. By Lemma 2.2, a contradiction to the initial assumption is obtained. Therefore, $G\left[X^{0}\right]$ is not connected. Let x_{1}, x_{2} be two vertices in two different components of $G\left[X^{0}\right]$. Then $\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{2}\right)\right| \geq 2 k-1,\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{2}\right) \cap X^{0}\right|=0$ and $\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{2}\right) \cap \bar{X}\right| \leq\left|N\left(x_{1}\right) \cap \bar{X}\right| \leq k-1$. It follows that $\left|N_{G^{*}}\left(x_{1}\right) \cap N_{G^{*}}\left(x_{2}\right) \cap\left(X^{*} \backslash X^{0}\right)\right| \geq k$ and hence $\left|X^{*} \backslash X^{0}\right| \geq k$. Consequently, $\left|X^{*}\right|=\left|X^{0}\right|+\left|X^{*} \backslash X^{0}\right| \geq$ $2 k-s$.

Claim 6. $\left|N(v) \cap X^{0}\right| \leq k-2 s$ for any $v \in X^{*} \backslash X^{0}$.
By contradiction. Suppose that there exists a vertex $v \in X^{*} \backslash X^{0}$ such that $\left|N(v) \cap X^{0}\right| \geq k-2 s+1$. Then $\left|N_{G^{*}}(v) \cap X^{0}\right| \geq k-2 s+1$. Let $U_{1}=N_{G^{*}}(v) \cap X^{0}, U_{2}=X^{0} \backslash U_{1}=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$. Then $t=\left|U_{2}\right|=$ $k-s-\left|U_{1}\right| \leq s-1$. For any $i=1,2, \ldots, t$, since $v x_{i} \notin E\left(G^{*}\right)$, we have $\left|N_{G^{*}}(v) \cap N_{G^{*}}\left(x_{i}\right)\right| \geq 2 k-1$. Combining this with $\left|N_{G^{*}}(v) \cap N_{G^{*}}\left(x_{i}\right) \cap \bar{X}\right| \leq\left|N\left(x_{i}\right) \cap \bar{X}\right| \leq k-1$, we have $\left|N_{G^{*}}(v) \cap N_{G^{*}}\left(x_{i}\right) \cap X^{*}\right| \geq k$ and hence we may pick a vertex u_{i} in $N_{G^{*}}(v) \cap N_{G^{*}}\left(x_{i}\right) \cap X^{*}$. Let $U=U_{1} \cup U_{2} \cup\left\{u_{1}, \ldots, u_{t}\right\} \cup\{v\}$. Then $X^{0} \subseteq U$. Clearly, $G^{*}[U]$ is connected and $|U| \leq\left|U_{1} \cup U_{2}\right|+t+1 \leq(k-s)+(s-1)+1=k$. By Lemma 2.2, a contradiction to the initial assumption is obtained. The proof of Claim 6 is then complete.

Let $X^{1}=\left\{x \in X^{*} \backslash X^{0}: x y \in E\left(G^{*}\right)\right.$ for any $\left.y \in \bar{X}^{0}\right\}$ and let $X^{2}=X^{*} \backslash\left(X^{0} \cup X^{1}\right)$.
Claim 7. $\left|X^{1}\right| \leq s-1$.
By Claim 1 and the definitions of X^{0} and X^{1}, for any $y \in \bar{X}^{0}, k-s+\left|X^{1}\right|=\left|X^{0}\right|+\left|X^{1}\right|=\left|X^{0} \cup X^{1}\right|=$ $\left|N(y) \cap\left(X^{0} \cup X^{1}\right)\right| \leq|N(y) \cap X| \leq k-1$. Therefore, $\left|X^{1}\right| \leq s-1$.

Claim 8. $|N(x) \cap \bar{X}| \geq k+s$ for any $x \in X^{2}$.
For any $x \in X^{2}$, by definition, there exists a vertex $y \in \bar{X}^{0}$ such that $x y \notin E\left(G^{*}\right)$. By Claim 1 and the choice of $y,\left|N(y) \cap\left(X^{*} \backslash X^{0}\right)\right|=\left|N(y) \cap X^{*}\right|-\left|N(y) \cap X^{0}\right|=\left|N(y) \cap X^{*}\right|-\left|X^{0}\right| \leq(k-1)-(k-s)=s-1$. By Claim $6,\left|N(x) \cap X^{0}\right| \leq k-2 s$. Therefore, we have

$$
\begin{aligned}
2 k-1 & \leq\left|N_{G^{*}}(x) \cap N_{G^{*}}(y)\right| \\
& =\left|N_{G^{*}}(x) \cap N_{G^{*}}(y) \cap \bar{X}\right|+\left|N_{G^{*}}(x) \cap N_{G^{*}}(y) \cap X^{0}\right|+\left|N_{G^{*}}(x) \cap N_{G^{*}}(y) \cap\left(X^{*} \backslash X^{0}\right)\right| \\
& \leq\left|N_{G^{*}}(x) \cap \bar{X}\right|+\left|N_{G^{*}}(x) \cap X^{0}\right|+\left|N_{G^{*}}(y) \cap\left(X^{*} \backslash X^{0}\right)\right| \\
& \leq|N(x) \cap \bar{X}|+\left|N(x) \cap X^{0}\right|+\left|N(y) \cap\left(X^{*} \backslash X^{0}\right)\right| \\
& \leq|N(x) \cap \bar{X}|+(k-2 s)+(s-1) .
\end{aligned}
$$

This implies that $|N(x) \cap \bar{X}| \geq k+s$.
Claim 9. $|N(x) \cap \bar{X}| \geq k$ for any $x \in X^{1}$.
Since $X^{1} \cap X^{0}=\emptyset$, Claim 9 follows from the definition of X^{0}.
We continue now with the proof of this lemma. By Claim 3, there exists a connected subgraph H^{\prime} of order at most k in $G\left[X^{*}\right]$ such that $\left|V\left(H^{\prime}\right) \cap X^{0}\right| \geq\left\lceil\frac{k}{2}\right\rceil$. By the connectedness of $G\left[X^{*}\right]$, there exists a connected subgraph H of $G\left[X^{*}\right]$ such that $|V(H)|=k$ and $V\left(H^{\prime}\right) \subseteq V(H)$. It follows that $\left|V(H) \cap X^{0}\right| \geq\left\lceil\frac{k}{2}\right\rceil$.

Let $t_{0}=\left|\left(X^{*} \backslash V(H)\right) \cap X^{0}\right|, t_{1}=\left|\left(X^{*} \backslash V(H)\right) \cap X^{1}\right|$ and $t_{2}=\left|\left(X^{*} \backslash V(H)\right) \cap X^{2}\right|$. Then $t_{0}=$ $\left|X^{0}\right|-\left|V(H) \cap X^{0}\right|=(k-s)-\left|V(H) \cap X^{0}\right| \leq\left\lfloor\frac{k}{2}\right\rfloor-s$. Combining this with Claims 5 and 7, we have $t_{2}=\left|X^{*}\right|-|V(H)|-t_{1}-t_{0} \geq\left|X^{*}\right|-|V(H)|-\left|X^{1}\right|-t_{0} \geq(2 k-s)-k-(s-1)-\left(\left\lfloor\frac{k}{2}\right\rfloor-s\right)=\left\lceil\frac{k}{2}\right\rceil-s+1>t_{0}$.

Combining this with Claims 4,8 and 9 , we have

$$
\begin{aligned}
\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}| & =\sum_{i=0}^{2} \sum_{v \in\left(X^{*} \backslash V(H)\right) \cap X^{i}}|N(v) \cap \bar{X}| \\
& \geq(k-s) t_{0}+k t_{1}+(k+s) t_{2} \\
& >k\left(t_{2}+t_{1}+t_{0}\right) \\
& =k\left|X^{*} \backslash V(H)\right| \\
& \geq \sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| .
\end{aligned}
$$

This is contrary to the initial assumption. The proof is then complete.

3. Sufficient conditions for $\lambda_{\boldsymbol{k}}$-optimality or super- $\boldsymbol{\lambda}_{\boldsymbol{k}}$ property

We start with a simple result.
Proposition 3.1. Let k be a positive integer. If G is a complete graph with order at least $2 k$, then G is super- λ_{k}.
Proof. It is easy to verify that G is λ_{k}-connected and $\lambda_{k}(G) \leq \xi_{k}(G)$. Suppose, on the contrary, that G is not super- λ_{k}. Then there exists a λ_{k}-cut $S=[X, \bar{X}]$ such that $|X| \geq k+1$ and $|\bar{X}| \geq k+1$. Let U be a subset of X such that $|U|=k$ and let $H=G[U]$. Then H is connected and $\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)|=k|X \backslash V(H)|<(k+1)|X \backslash V(H)| \leq$ $\sum_{v \in X \backslash V(H)}|N(v) \cap \bar{X}|$, a contradiction to Lemma 2.1(ii).

Theorem 3.1. Let k be a positive integer and let G be a graph with order at least $2 k$. If

$$
|N(u) \cap N(v)| \geq 2 k-1
$$

for all pairs u, v of nonadjacent vertices, then G is λ_{k}-optimal.
Proof. If G contains no nonadjacent vertices, then G is a complete graph with order at least $2 k$. By Proposition 3.1, G is super $-\lambda_{k}$ and so G is λ_{k}-optimal. Therefore, we only consider the case that there exist nonadjacent vertices in G below. By Proposition $2.1, G$ is λ_{k}-connected and $\lambda_{k}(G) \leq \xi_{k}(G)$. Let $S=[X, \bar{X}]$ be an arbitrary λ_{k}-cut of G. By definition, $|X| \geq k,|\bar{X}| \geq k$.

If $X^{0}=\emptyset$ or $\bar{X}^{0}=\emptyset$, then, by Corollary 2.2, G is λ_{k}-optimal. Suppose that both $X^{0} \neq \emptyset$ and $\bar{X}^{0} \neq \emptyset$. By Lemma 2.3 (regarding X as the X^{*} in Lemma 2.3), there exists a connected subgraph H of order k in $G[X]$ such that $\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X \backslash V(H)}|N(v) \cap \bar{X}|$. By Lemma 2.1(i), G is λ_{k}-optimal.

Recalling that $\lambda_{1}(G)=\lambda(G)$ and $\xi_{1}(G)=\delta(G)$, Corollary 3.1 follows from Observation 2.1 and Theorem 3.1.
Corollary 3.1 (Plesnik [16] 1975). If G is a graph of diameter $D(G) \leq 2$, then $\lambda(G)=\delta(G)$.
Recalling that $\lambda^{\prime}(G)=\lambda_{2}(G)$ and λ^{\prime}-optimality is λ_{2}-optimality, we have the following corollary.
Corollary 3.2 (Hellwig and Volkmann [9] 2004). Let G be a λ^{\prime}-connected graph. If

$$
|N(u) \cap N(v)| \geq 3
$$

for all pairs u, v of nonadjacent vertices, then G is λ^{\prime}-optimal.
Observation 3.1. Let G be a graph of order v and let $u, v \in V(G)$ be a pair of nonadjacent vertices. For any integer $l \geq-1$, if $d_{G}(u)+d_{G}(v) \geq v+l$, then $|N(u) \cap N(v)| \geq l+2$.

Corollary 3.3 (Zhang and Yuan [21] 2007). Let k be a positive integer, and G a connected graph on $v \geq 2 k$ vertices. Suppose that $d_{G}(u)+d_{G}(v) \geq v+2 k-3$, for every pair of nonadjacent vertices u and v in G. Then G is λ_{k}-optimal.

Next we introduce a class of graphs $W(p, k)$ that will show that Theorem 3.1 is an improvement of Corollary 3.3.

Fig. 1. The graph $W(3,2)$.

Fig. 2. A graph in $L_{2}(4,1)$.
Example 3.1. Let k and p be fixed positive integers with $p \geq 3$; let $C=\left\{x_{1}, x_{2}, \ldots, x_{2 k-1}\right\}, I=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$; and define $W(p, k)$ as follows. The vertices of $W(k, p)$ are $x_{1}, x_{2}, \ldots, x_{2 k-1}, y_{1}, y_{2}, \ldots, y_{p}$, where two vertices u and v are adjacent if at least one of u and v is in C. The graph $W(3,2)$ is shown in Fig. 1. If u, v is a pair of nonadjacent vertices in $W(k, p)$, then $u, v \in I$. It is easy to see that $|N(u) \cap N(v)|=|C|=2 k-1$ and $d_{G}(u)+d_{G}(v)=2(2 k-1)=4 k-2$. By Theorem 3.1, G is λ_{k}-optimal. But, since $p \geq 3$, we have $d_{G}(u)+d_{G}(v)=4 k-2<(2 k-1+3)+(2 k-3) \leq(|C|+|I|)+(2 k-3)=|V|+2 k-3$ and hence Corollary 3.3 does not show that G is λ_{k}-optimal.

The next example shows that Theorem 3.1 is best possible in the sense that the condition $|N(u) \cap N(v)| \geq 2 k-2$ for all pairs u, v of nonadjacent vertices does not imply λ_{k}-optimality. Before giving the example, we introduce another class of graphs.

Given two integers $p>k>0$, let H_{1} and H_{2} be two disjoint complete graphs with $V\left(H_{1}\right)=\left\{x_{1}, \ldots, x_{p}\right\}$ and $V\left(H_{2}\right)=\left\{y_{1}, \ldots, y_{p}\right\}$, respectively. Let F_{k} be the set of all k-regular bipartite graphs with bipartition $\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$, and let the graph class $L_{2}(p, k)=\left\{H_{1} \cup H_{2} \cup H_{3}: H_{3} \in F_{k}\right\}$. A graph in $L_{2}(4,1)$ is shown in Fig. 2.

Example 3.2. Let $G=H_{1} \cup H_{2} \cup H_{3}$ be a graph in $L_{2}(p, k-1)$, where $p>k$. Then $|N(u) \cap N(v)|=2 k-2$ for all pairs u, v of nonadjacent vertices in G. Let U be a subset of $V(G)$ such that $|U|=k$. Denote $t=\left|U \cap V\left(H_{1}\right)\right|$, $s=\left|U \cap V\left(H_{2}\right)\right|$. Then $t+s=k$ and $|[U, \bar{U}]|=\left|\left[U \cap V\left(H_{1}\right), \bar{U} \cap V\left(H_{1}\right)\right]\right|+\left|\left[U \cap V\left(H_{1}\right), \bar{U} \cap V\left(H_{2}\right)\right]\right|+\mid[U \cap$ $\left.V\left(H_{2}\right), \bar{U} \cap V\left(H_{1}\right)\right]\left|+\left|\left[U \cap V\left(H_{2}\right), \bar{U} \cap V\left(H_{2}\right)\right]\right| \geq t(p-t)+t((k-1)-s)+s((k-1)-t)+s(p-s)=k(p-1)\right.$. If $U \subseteq V\left(H_{1}\right)$, then $G[U]$ is connected and $|[U, \bar{U}]|=\left|\left[U, V\left(H_{1}\right) \backslash U\right]\right|+\left|\left[U, V\left(H_{2}\right)\right]\right|=k(p-k)+k(k-1)=$ $k(p-1)$. Therefore, $\xi_{k}(G)=k(p-1)$. Clearly, $E\left(H_{3}\right)=\left[V\left(H_{1}\right), V\left(H_{2}\right)\right]$ is a k-restricted edge cut and hence $\lambda_{k}(G) \leq\left|E\left(H_{3}\right)\right|=p(k-1)$. It follows that $\lambda_{k}(G)<\xi_{k}(G)$ from $p>k$. Therefore, G is not λ_{k}-optimal.

Theorem 3.1 shows that the condition $|N(u) \cap N(v)| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices guarantees the graph G is λ_{k}-optimal, but even a stronger condition that $|N(u) \cap N(v)| \geq 2 k$ for all pairs u, v of nonadjacent vertices cannot guarantee G is super $-\lambda_{k}$. We give such an example below.

Example 3.3. Let $G \in L_{2}(p, k)$, where $p>k$. By a similar method as in the above example, we have $\xi_{k}(G)=k p$ and $|N(u) \cap N(v)|=2 k$ for all pairs u, v of nonadjacent vertices. By Theorem 3.1, G is λ_{k}-optimal and hence $\lambda_{k}(G)=\xi_{k}(G)=k p$. We also have $\left|E\left(H_{3}\right)\right|=\left|\left[V\left(H_{1}\right), V\left(H_{2}\right)\right]\right|=k p$, which implies that $\left[V\left(H_{1}\right), V\left(H_{2}\right)\right]$ is a λ_{k}-cut. Combining this with $\left|V\left(H_{1}\right)\right|=\left|V\left(H_{2}\right)\right|=p>k$, we conclude that G is not super- λ_{k}.

Theorem 3.2. Let k be a positive integer and let G be a graph with order at least $2 k$. If

$$
|N(u) \cap N(v)| \geq 2 k
$$

for all pairs u, v of nonadjacent vertices, then G either is super- λ_{k} or is in $L_{2}\left(\frac{v}{2}, k\right)$.
Proof. If G contains no nonadjacent vertices, then, by Proposition 3.1, we are done. Therefore, we only consider the case that there exist nonadjacent vertices in G below. By Theorem 3.1, G is λ_{k}-optimal. That is, $\lambda_{k}(G)=\xi_{k}(G)$. Suppose that G is not super $-\lambda_{k}$. Then there exists a λ_{k}-cut $S=[X, \bar{X}]$ such that $|X| \geq k+1$ and $|\bar{X}| \geq k+1$.

Claim 1. $X^{0}=\emptyset$ or $\bar{X}^{0}=\emptyset$.
By contradiction. Suppose that both $X^{0} \neq \emptyset$ and $\bar{X}^{0} \neq \emptyset$. Similar to the proof of Claim 1 in Lemma 2.3, we have $x y \in E(G)$ for any $x \in X^{0}, y \in \bar{X}^{0}$.

Since $|X| \geq k+1$ and $|N(y) \cap X| \leq k-1$ for any $y \in \bar{X}^{0}$, there exist $x^{*} \in X$ and $y^{*} \in \bar{X}^{0}$ such that $x^{*} y^{*} \notin E(G)$. Combining this with the fact that $x y \in E(G)$ for any $x \in X^{0}, y \in \bar{X}^{0}$, we have $x^{*} \in X \backslash X^{0}$. Since $\left|N\left(x^{*}\right) \cap N\left(y^{*}\right)\right| \geq 2 k$ and $\left|N\left(x^{*}\right) \cap N\left(y^{*}\right) \cap X\right| \leq\left|N\left(y^{*}\right) \cap X\right| \leq k-1$, it follows that $\left|N\left(x^{*}\right) \cap \bar{X}\right| \geq k+1$. Let $X^{*}=X-x^{*}, G^{*}=G\left[X^{*} \cup \bar{X}\right]$. Then $G^{*}=G-x^{*}$. Clearly, $X^{0} \subseteq X^{*}$ and $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v)\right| \geq 2 k-1$ for any pair u, v of nonadjacent vertices in G^{*}.

We will show that $G\left[X^{*}\right]$ is connected. Suppose that $G\left[X^{*}\right]$ is not connected and let $u \in X^{0} \subseteq X^{*}$. Then we may choose a vertex $v \in X^{*}$ such that u, v are in different components of $G\left[X^{*}\right]$. Since $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v)\right| \geq 2 k-1$ and $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v) \cap \bar{X}\right| \leq|N(u) \cap \bar{X}| \leq k-1$, we have $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v) \cap X^{*}\right| \geq k>0$ and hence u, v are connected in $G\left[X^{*}\right]$, which contradicts the choice of v. Therefore, $G\left[X^{*}\right]$ is connected.

By Lemma 2.3, there exists a connected subgraph H of order k in $G\left[X^{*}\right]$ such that $\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap V(H)| \leq$ $\sum_{v \in X^{*} \backslash V(H)}|N(v) \cap \bar{X}|$. Recalling $\left|N\left(x^{*}\right) \cap \bar{X}\right| \geq k+1$ and $X^{*}=X-x^{*}$, we obtain a contradiction to Corollary 2.1. The proof of Claim 1 is complete.

By Claim 1, without loss of generality, we may assume that $X^{0}=\emptyset$. That is, $|N(x) \cap \bar{X}| \geq k$ for any $x \in X$.
Claim 2. $|N(x) \cap \bar{X}|=k$ for any $x \in X$.
By contradiction. Suppose that there is a vertex u in X such that $|N(u) \cap \bar{X}|>k$. If $G[X]-u$ is connected or $k=1$, then there exists a connected subgraph H of $G[X]-u$ such that $|V(H)|=k$. Since $|N(v) \cap V(H)| \leq|V(H)|=k \leq$ $|N(v) \cap \bar{X}|$ for any $v \in X \backslash(V(H) \cup\{u\})$, it follows that $\sum_{v \in X \backslash(V(H) \cup\{u\})}|N(v) \cap V(H)| \leq k|X \backslash(V(H) \cup\{u\})| \leq$ $\sum_{v \in X \backslash(V(H) \cup\{u\})}|N(v) \cap \bar{X}|$, contrary to Corollary 2.1. Therefore, $G[X]-u$ is not connected and $k \geq 2$.

For any $x \in X-u$, we may choose a vertex $x^{\prime} \in X-u$ such that x, x^{\prime} are in different components of $G[X]-u$. So $\left|N(x) \cap N\left(x^{\prime}\right)\right| \geq 2 k$ and $N(x) \cap N\left(x^{\prime}\right) \cap X \subseteq\{u\}$, which implies that $\left|N(x) \cap N\left(x^{\prime}\right) \cap \bar{X}\right| \geq 2 k-1$ and hence $|N(x) \cap \bar{X}| \geq 2 k-1$. Let H be a connected subgraph of $G[X]$ such that $|V(H)|=k$ and $u \in V(H)$. It follows that $\sum_{x \in X \backslash V(H)}|N(x) \cap V(H)| \leq k|X \backslash V(H)|<(2 k-1)|X \backslash V(H)| \leq \sum_{x \in X \backslash V(H)}|N(x) \cap \bar{X}|$. This is contrary to Lemma 2.1(ii). Therefore, $|N(x) \cap \bar{X}|=k$ for any $x \in X$.

Claim 3. $\bar{X}^{0}=\emptyset$.
By contradiction. Suppose that there exists $y \in \bar{X}^{0}$. Then, since $|X|>k$ and $|N(y) \cap X| \leq k-1$, there exists $x \in X$ such that $x y \notin E(G)$. By Claim $2,|N(x) \cap \bar{X}|=k$. It follows that $2 k \leq|N(x) \cap N(y)|=$ $|N(x) \cap N(y) \cap X|+|N(x) \cap N(y) \cap \bar{X}| \leq|N(y) \cap X|+|N(x) \cap \bar{X}| \leq(k-1)+k=2 k-1$, a contradiction.

Similar to Claim 2, we have:
Claim 4. $|N(y) \cap X|=k$ for any $y \in \bar{X}$.
Claim 5. $G[X]$ is complete.
Let u, v be two arbitrary vertices in X. First, we will show $G[X]-u$ is connected. For any $x_{1}, x_{2} \in X-u$, if $x_{1} x_{2} \notin E(G)$, then $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right| \geq 2 k$. Suppose that $k=1$. By Claim $4,|N(y) \cap X|=k=1$ for any $y \in \bar{X}$, which implies that $N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap \bar{X}=\emptyset$. It follows that $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap(X-u)\right| \geq 2 k-1>0$. Therefore, $G[X]-u$ is connected. Suppose that $k \geq 2$. Then, by Claim $2,\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap \bar{X}\right| \leq\left|N\left(x_{1}\right) \cap \bar{X}\right|=k$. It follows that $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap(X-u)\right| \geq k-1>0$. Therefore, $G[X]-u$ is connected. Clearly, there exists a connected subgraph H of $G[X]-u$ of order k such that $v \in V(H)$. It follows that $\sum_{w \in X \backslash V(H)}|N(w) \cap V(H)| \leq \sum_{w \in X \backslash V(H)}|V(H)|=$ $k|X \backslash V(H)|=\sum_{w \in X \backslash V(H)}|N(w) \cap \bar{X}|$. Combining this with Lemma 2.1(ii), we have $\sum_{w \in X \backslash V(H)} \mid N(w) \cap$ $V(H)\left|=\sum_{w \in X \backslash V(H)}\right| N(w) \cap \bar{X} \mid$ and hence $\sum_{w \in X \backslash V(H)}|N(w) \cap V(H)|=\sum_{w \in X \backslash V(H)}|V(H)|$. It follows that
$|N(w) \cap V(H)|=|V(H)|$ and so $w z \in E(G)$ for any $w \in X \backslash V(H), z \in V(H)$. In particular, $u v \in E(G)$. By the arbitrariness of u, v, we conclude that $G[X]$ is complete.

Similar to Claim 5, we have:
Claim 6. $G[\bar{X}]$ is complete.
By Claims $2,4,5$ and 6 , it follows that v is even and G is a graph in $L_{2}\left(\frac{v}{2}, k\right)$ and $\frac{v}{2}=|X| \geq k+1$. The proof is complete.

Recalling that for any $G \in L_{2}\left(\frac{v}{2}, k\right),|N(u) \cap N(v)|=2 k$ holds for every pair u, v of nonadjacent vertices. Therefore, we have the following corollary.

Corollary 3.4. Let k be a positive integer and let G be a graph with order at least $2 k$. If

$$
|N(u) \cap N(v)| \geq 2 k+1
$$

for all pairs u, v of nonadjacent vertices, then G is super- λ_{k}.
By Observation 3.1 and Theorem 3.2, we have the following corollary.
Corollary 3.5. Let k be a positive integer and let G be a graph with order $v \geq 2 k$. If

$$
d_{G}(u)+d_{G}(v) \geq v+2 k-2
$$

for all pairs u, v of nonadjacent vertices, then G either is super $-\lambda_{k}$ or is in $L_{2}\left(\frac{v}{2}, k\right)$.
By Observation 3.1 and Corollary 3.4, we have the following corollary.
Corollary 3.6. Let k be a positive integer and let G be a graph with order $v \geq 2 k$. If

$$
d_{G}(u)+d_{G}(v) \geq v+2 k-1
$$

for all pairs u, v of nonadjacent vertices, then G is super $-\lambda_{k}$.
Recalling that super- λ property is super $-\lambda_{1}$ property, we have the following corollary.
Corollary 3.7 (Lesniak [11] 1974). Let G be a connected graph of order v. If $d_{G}(u)+d_{G}(v) \geq v+1$ for all pairs u, v of nonadjacent vertices, then G is super $-\lambda$.

The conditions that G is not in $L_{2}\left(\frac{v}{2}, k\right)$ and $|N(u) \cap N(v)| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices cannot guarantee G is super $-\lambda_{k}$, which is shown by the next example. In this sense, Theorem 3.2 is best possible.

Example 3.4. Given two integers $k \geq 2, p \geq 3$, let H_{1} and H_{2} be two disjoint complete graphs with $V\left(H_{1}\right)=\left\{x_{1}, \ldots, x_{p k}\right\}$ and $V\left(H_{2}\right)=\left\{y_{1}, \ldots, y_{p(k-1)}\right\}$, respectively. Let H_{3} be a bipartite graph with bipartition $\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$ such that $\left|N\left(x_{i}\right) \cap V\left(H_{2}\right)\right|=k-1,\left|N\left(y_{j}\right) \cap V\left(H_{1}\right)\right|=k$ for any $i=1, \ldots, p k ; j=1, \ldots, p(k-1)$. Let $G=H_{1} \cup H_{2} \cup H_{3}$. Then $|N(u) \cap N(v)|=2 k-1$ for all pairs u, v of nonadjacent vertices. Let U be an arbitrary subset of $V(G)$ such that $|U|=k$ and let $t=\left|U \cap V\left(H_{1}\right)\right|$. By a similar method as in Example 3.2, we have $|[U, \bar{U}]| \geq t(p-1)+p k(k-1) \geq p k(k-1)$. Clearly, if $U \subseteq V\left(H_{2}\right)$, then $G[U]$ is connected and $|[U, \bar{U}]|=p k(k-1)$. So, $\xi_{k}(G)=p k(k-1)$. By Theorem 3.1, G is λ_{k}-optimal. That is, $\lambda_{k}(G)=\xi_{k}(G)=p k(k-1)$. Clearly, $\left|E\left(H_{3}\right)\right|=\left|\left[V\left(H_{1}\right), V\left(H_{2}\right)\right]\right|=p k(k-1)$, and H_{1}, H_{2} are connected. It follows that $\left[V\left(H_{1}\right), V\left(H_{2}\right)\right]$ is a λ_{k}-cut. Since $\left|V\left(H_{1}\right)\right|>k,\left|V\left(H_{2}\right)\right|>k$, we conclude that G is not super $-\lambda_{k}$.

4. Sufficient conditions for γ_{k}-optimality or super- γ_{k} property

Suppose that G is a graph of order $v \geq 2 k$ and $S=[X, \bar{X}]$ is a γ_{k}-cut of G. Denote $X^{0}=\{x \in X$: $|N(x) \cap \bar{X}| \leq k-1\}, \bar{X}^{0}=\{y \in \bar{X}:|N(y) \cap X| \leq k-1\}$. Without loss of generality, assume that $\min \{|N(x) \cap \overline{\bar{X}}|: x \in X\} \geq \min \{|N(y) \cap X|: y \in \bar{X}\}$. We will use this assumption and such notation in this section.

By a similar method as in Section 2, the following results can be shown.
Lemma 4.1. Let G be a graph of order $v \geq 2 k$ and let $S=[X, \bar{X}]$ be a γ_{k}-cut of G.
(i) If there exists a subset U of X such that $|U|=k$ and

$$
\sum_{v \in X \backslash U}|N(v) \cap U| \leq \sum_{v \in X \backslash U}|N(v) \cap \bar{X}|,
$$

then G is γ_{k}-optimal.
(ii) There exists no subset U of X such that $|U|=k$ and

$$
\sum_{v \in X \backslash U}|N(v) \cap U|<\sum_{v \in X \backslash U}|N(v) \cap \bar{X}| .
$$

Corollary 4.1. Let G be a graph of order $v \geq 2 k$ and let $S=[X, \bar{X}]$ be a γ_{k}-cut of G. If there exists a vertex x^{*} in X such that $\left|N\left(x^{*}\right) \cap \bar{X}\right| \geq k+1$, then there exists no subset U of $X-x^{*}$ such that $|U|=k$ and

$$
\sum_{v \in X \backslash\left(U \cup\left\{x^{*}\right\}\right)}|N(v) \cap U| \leq \sum_{v \in X \backslash\left(U \cup\left\{x^{*}\right\}\right)}|N(v) \cap \bar{X}| .
$$

Lemma 4.2. Let X^{*} be a subset of X such that $\left|X^{*}\right| \geq k$ and $X^{0} \subseteq X^{*}$, and let $G^{*}=G\left[X^{*} \cup \bar{X}\right]$. If $X^{0} \neq \emptyset$, $\bar{X}^{0} \neq \emptyset$ and $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v)\right| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices in G^{*}, then there exists a subset U of X^{*} such that $|U|=k$ and

$$
\sum_{v \in X^{*} \backslash U}|N(v) \cap U| \leq \sum_{v \in X^{*} \backslash U}|N(v) \cap \bar{X}| .
$$

Proof. Similar to the proof of Claim 2 in Lemma 2.3, we have $1 \leq\left|X^{0}\right| \leq k-1$. Since $\left|X^{*}\right| \geq k$ and $X^{0} \subseteq X^{*}$, there exists a subset U of X^{*} such that $X^{0} \subseteq U$ and $|U|=k$. By the definition of $X^{0},|N(v) \cap \bar{X}| \geq k$ for any $v \in X^{*} \backslash U$. It follows that $\sum_{v \in X^{*} \backslash U}|N(v) \cap U| \leq \sum_{v \in X^{*} \backslash U}|U|=k\left|X^{*} \backslash U\right| \leq \sum_{v \in X^{*} \backslash U}|N(v) \cap \bar{X}|$. The proof is complete.

Similar to Proposition 3.1, we have the following result.
Proposition 4.1. Let k be a positive integer. If G is a complete graph with order at least $2 k$, then G is super $-\gamma_{k}$.
Theorem 4.1. Let k be a positive integer and let G be a graph with order at least $2 k$. If

$$
|N(u) \cap N(v)| \geq 2 k-1
$$

for all pairs u, v of nonadjacent vertices, then G is γ_{k}-optimal.
Proof. By Proposition 4.1, we only consider the case that G is not a complete graph. Let $S=[X, \bar{X}]$ be an arbitrary γ_{k}-cut. By definition, $|X| \geq k,|\bar{X}| \geq k$. Suppose that $X^{0}=\emptyset$ or $\bar{X}^{0}=\emptyset$. Without loss of generality, assume that $X^{0}=\emptyset$. Then $|N(x) \cap \bar{X}| \geq k$ for any $x \in X$. Let U be a subset of X such that $|U|=k$. It follows that $\sum_{v \in X \backslash U}|N(v) \cap U| \leq \sum_{v \in X \backslash U}|\bar{U}|=k|X \backslash U| \leq \sum_{v \in X \backslash U}|N(v) \cap \bar{X}|$. By Lemma 4.1(i), G is γ_{k}-optimal. Suppose that both $X^{0} \neq \emptyset$ and $\bar{X}^{0} \neq \emptyset$. Then, by Lemmas 4.1(i) and 4.2, G is γ_{k}-optimal. The proof is complete.

Corollary 4.2 (Zhang and Yuan [21] 2007). Let G be a connected graph on $v \geq 2 k$ vertices. Suppose that

$$
d_{G}(u)+d_{G}(v) \geq v+2 k-3
$$

for every pair of nonadjacent vertices u and v in G. Then G is γ_{k}-optimal.
Example 3.1 also shows that Theorem 4.1 is an improvement of Corollary 4.2.

Similar to Theorem 3.2, we have the following theorem.
Theorem 4.2. Let k be a positive integer and let G be a graph with order at least $2 k$. If

$$
|N(u) \cap N(v)| \geq 2 k
$$

for all pairs u, v of nonadjacent vertices, then G either is super $-\gamma_{k}$ or is in $L_{2}\left(\frac{v}{2}, k\right)$.
Proof. By Proposition 4.1, we only consider the case that G is not a complete graph. By Theorem 4.1, G is γ_{k}-optimal. That is, $\gamma_{k}(G)=\beta_{k}(G)$. Suppose that G is not super γ_{k}. Then there exists a γ_{k}-cut $S=[X, \bar{X}]$ such that $|X| \geq k+1$ and $|\bar{X}| \geq k+1$.

Claim 1. $X^{0}=\emptyset$ or $\bar{X}^{0}=\emptyset$.
By contradiction. Suppose that both $X^{0} \neq \emptyset$ and $\bar{X}^{0} \neq \emptyset$. Then, similar to the proof in Theorem 3.2, there exists $x^{*} \in X$ such that $\left|N\left(x^{*}\right) \cap \bar{X}\right| \geq k+1$. Let $X^{*}=X-x^{*}, G^{*}=G\left[X^{*} \cup \bar{X}\right]$. Then $G^{*}=G-x^{*}$. Clearly, $X^{0} \subseteq X^{*}$ and $\left|N_{G^{*}}(u) \cap N_{G^{*}}(v)\right| \geq 2 k-1$ for all pairs u, v of nonadjacent vertices in G^{*}. By Lemma 4.2, there exists a subset U of X^{*} such that $|U|=k$ and $\sum_{v \in X^{*} \backslash U}|N(v) \cap U| \leq \sum_{v \in X^{*} \backslash U}|N(v) \cap \bar{X}|$. This is contrary to Corollary 4.1. The proof of Claim 1 is complete.

By Claim 1, without loss of generality, we may assume that $X^{0}=\emptyset$. Then $|N(x) \cap \bar{X}| \geq k$ for any $x \in X$.
Claim 2. $|N(x) \cap \bar{X}|=k$ for any $x \in X$.
By contradiction. Suppose that there is a vertex u in X such that $|N(u) \cap \bar{X}|>k$. Then, since $|X| \geq k+1$, there exists a subset U of $X^{*}=X-u$ such that $|U|=k$. It follows that $\sum_{v \in X^{*} \backslash U}|N(v) \cap U| \leq \sum_{v \in X^{*} \backslash U}|U|=$ $k\left|X^{*} \backslash U\right| \leq \sum_{v \in X^{*} \backslash U}|N(v) \cap \bar{X}|$. This is contrary to Corollary 4.1.

Claim 3. $G[X]$ is complete.
Let u, v be two arbitrary vertices in X and let U be an arbitrary subset of $X-u$ such that $|U|=k$ and $v \in U$. It follows that $\sum_{w \in X \backslash U}|N(w) \cap U| \leq \sum_{w \in X \backslash U}|U|=k|X \backslash U|=\sum_{w \in X \backslash U}|N(w) \cap \bar{X}|$. Combining this with Lemma 4.1(ii), we have $\sum_{w \in X \backslash U}|N(w) \cap U|=\sum_{w \in X \backslash U}|N(w) \cap \bar{X}|$ and hence $\sum_{w \in X \backslash U}|N(w) \cap U|=$ $\sum_{w \in X \backslash U}|U|$. It follows that $|N(w) \cap U|=|U|$ and hence $w z \in E(G)$ for any $w \in X \backslash U, z \in U$. In particular, $u v \in E(G)$. By the arbitrariness of u, v, we conclude that $G[X]$ is complete.

Claim 4. $\bar{X}^{0}=\emptyset$.
By contradiction. Suppose that there exists $y \in \bar{X}^{0}$. Then, since $|X|>k$ and $|N(y) \cap X| \leq k-1$, there exists $x \in X$ such that $x y \notin E(G)$. By Claim $2,|N(x) \cap \bar{X}|=k$. It follows that $2 k \leq|N(x) \cap N(y)|=$ $|N(x) \cap N(y) \cap X|+|N(x) \cap N(y) \cap \bar{X}| \leq|N(y) \cap X|+|N(x) \cap \bar{X}| \leq(k-1)+k=2 k-1$, a contradiction.

Similar to Claims 2 and 3, we have $|N(y) \cap X|=k$ for any $y \in \bar{X}$ and $G[\bar{X}]$ is complete. It follows that v is even and $G \in L_{2}\left(\frac{\nu}{2}, k\right)$. The proof is complete.

Similarly, it can been shown that Theorems 4.1 and 4.2 are best possible in some sense by Examples 3.2 and 3.4.

References

[1] C. Balbuena, A. Carmona, J. Fàbrega, M.A. Fiol, Superconnectivity of bipartite digraphs and graphs, Discrete Math. 197-198 (1999) 61-75.
[2] C. Balbuena, X. Marcote, P. García-Vázquez, On restricted connectivities of permutation graphs, Networks 45 (2005) 113-118.
[3] C. Balbuena, P. García-Vázquez, X. Marcote, Sufficient conditions for λ^{\prime}-optimality in graphs with girth g, J. Graph Theory 52 (2006) $73-86$.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd, New York, 1976.
[5] P. Bonsma, N. Ueffing, L. Volkmann, Edge-cuts leaving components of order at least three, Discrete Math. 256 (2002) 431-439.
[6] A.H. Esfahanian, S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) $195-199$.
[7] J. Fàbrega, M.A. Fiol, On the extraconnectivity of graphs, Discrete Math. 155 (1996) 49-57.
[8] Y.O. Hamidoune, A.S. Lladó, O. Serra, R. Tindell, On isoperimetric connectivity in vertex-transitive graphs, SIAM J. Discrete Math. 13 (2000) 139-144.
[9] A. Hellwig, L. Volkmann, Sufficient conditions for λ^{\prime}-optimality in graphs of diameter 2, Discrete Math. 283 (2004) 113-120.
[10] A. Hellwig, L. Volkmann, Sufficient conditions for graphs to be λ^{\prime}-optimal, super-edge-connected, and maximally edge-connected, J. Graph Theory 48 (2005) 228-246.
[11] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974) 351-354.
[12] Q.L. Li, Q. Li, Reliability analysis of circulant graphs, Networks 31 (1998) 61-65.
[13] J.X. Meng, Optimally super-edge-connected transitive graphs, Discrete Math. 260 (2003) 239-248.
[14] J.X. Meng, Y.H. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193.
[15] J.P. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005) 365-371.
[16] J. Plesnik, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Commenian Math. 30 (1975) 71-93.
[17] T. Soneoka, H. Nakada, M. Imase, C. Peyrat, Sufficient conditions for maximally connected dense graphs, Discrete Math. 63 (1987) 53-66.
[18] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparison and transitivity of graphs, Discrete Math. 258 (2002) 205-214.
[19] J.M. Xu, K.L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (2002) 291-298.
[20] Z. Zhang, J.J. Yuan, A proof of an inequality concerning k-restricted edge connectivity, Discrete Math. 304 (2005) 128-134.
[21] Z. Zhang, J.J. Yuan, Degree conditions for restricted-edge connectivity and isoperimetric-edge-connectivity to be optimal, Discrete Math. 307 (2007) 293-298.

[^0]: ${ }^{*}$ This work is supported by the National Natural Science Foundation of China (10471081, 60773131).

 * Corresponding author.

 E-mail address: shiying@sxu.edu.cn (S. Wang).

