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Abstract

For a connected graph G = (V, E), an edge set S ⊆ E is a k-restricted edge cut if G−S is disconnected and every component of
G− S has at least k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum
k-restricted edge cut. Let ξk(G) = min{|[X, X ]| : |X | = k,G[X ] is connected}. G is λk -optimal if λk(G) = ξk(G). Moreover, G
is super-λk if every minimum k-restricted edge cut of G isolates one connected subgraph of order k. In this paper, we prove that
if |NG(u) ∩ NG(v)| ≥ 2k − 1 for all pairs u, v of nonadjacent vertices, then G is λk -optimal; and if |NG(u) ∩ NG(v)| ≥ 2k for
all pairs u, v of nonadjacent vertices, then G is either super-λk or in a special class of graphs. In addition, for k-isoperimetric edge
connectivity, which is closely related with the concept of k-restricted edge connectivity, we show similar results.
c© 2008 Elsevier B.V. All rights reserved.
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1. Terminology and introduction

For graph-theoretical terminology and notation not defined here we follow [4]. We consider finite, undirected and
simple graphs G with the vertex set V (G) and the edge set E(G). For any vertex v in G, we define the neighbour set
of v in G to be the set of all vertices adjacent to v; this set is denoted by N (v) = NG(v). If G ′ is a subgraph of G and
v is a vertex of G ′, we define NG ′(v) = NG(v) ∩ V (G ′). The degree dG(v) of a vertex v ∈ V (G) equals the number
of vertices in NG(v). Let δ(G) denote the minimum degree in G. For U ⊆ V (G) let G[U ] be the subgraph induced
by U . For subsets U and U ′ of V (G), we denote by [U,U ′] the set of edges with one end in U and the other in U ′.
If vertices u and v are connected in G, the distance between u and v in G, denoted by dG(u, v), is the length of a
shortest path from u to v in G; if there is no path connecting u and v we define dG(u, v) to be infinite. The diameter of
G, denoted by D(G), is the maximum distance between two vertices of G. Let G1 and G2 be two graphs. The union
G1 ∪ G2 of G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).

The edge connectivity λ(G) of a graph G is the minimum cardinality of an edge cut of G. It is well known that
λ(G) ≤ δ(G). A graph G is λ-optimal if λ(G) = δ(G). Furthermore, G is super-λ if every minimum edge cut consists
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of edges adjacent to a vertex of minimum degree. As a more refined index than the edge connectivity, restricted edge
connectivity was proposed by Esfahanian and Hakimi [6]. A set of edges S in a connected graph G is called a restricted
edge cut if G − S is disconnected and contains no isolated vertex. If such an edge cut exists, then the restricted edge
connectivity of G, denoted by λ′(G), is defined to be the minimum number of edges over all restricted edge cuts of
G. A graph is called λ′-connected if it contains restricted edge cuts. Esfahanian and Hakimi [6] showed that each
connected graph G of order ν(G) ≥ 4 except a star K1,ν−1 is λ′-connected and satisfies λ(G) ≤ λ′(G) ≤ ξ(G),
where ξ(G) = min{dG(u) + dG(v) − 2 : uv ∈ E(G)} is the minimum edge degree of G. A graph G is λ′-optimal
if λ′(G) = ξ(G). Moreover, G is super-λ′ if every minimum restricted edge cut of G isolates one edge, that is, every
minimum restricted edge cut of G is a set of edges adjacent to a certain edge with minimum edge degree in G. There
has been much research on λ-optimal graphs, super-λ graphs, λ′-optimal graphs and super-λ′ graphs (cf. e.g. [1–3,6,
7,9–12,16–19]).

Generally, for a connected graph G, an edge set S ⊆ E(G) is called a k-restricted edge cut of G if G − S is
disconnected and every component of G − S has at least k vertices. The k-restricted edge connectivity of G, denoted
by λk(G), is defined as the cardinality of a minimum k-restricted edge cut. A minimum k-restricted edge cut is called
a λk-cut. By definition, if S is a λk-cut, then |S| = λk(G). It should be pointed out that not all connected graphs
have k-restricted edge cuts. A connected graph G is called λk-connected if λk(G) exists. It is easy to see that if G is
λk-connected for k ≥ 2, then G is also λk−1-connected and λk−1(G) ≤ λk(G). Sufficient conditions for graphs to be
λk-connected were given by several authors [5,6,15,20]. In view of recent studies on k-restricted edge connectivity,
it seems that the larger λk(G) is, the more reliable the network is [13,14,18]. So, we expect λk(G) to be as large as
possible. Clearly, the optimization of λk(G) requires an upper bound first. For any positive integer k, let

ξk(G) = min{|[X, X ]| : |X | = k,G[X ] is connected}.

It has been shown that λk(G) ≤ ξk(G) holds for many graphs [5,15,20]. A connected graph G is called a λk-optimal
graph if λk(G) = ξk(G). Furthermore, G is called a super k-restricted edge-connected graph, in short, a super-λk
graph, if every λk-cut of G isolates one connected subgraph of order k, that is, every λk-cut of G is a set of edges
adjacent to a certain connected subgraph of order k. Clearly, λ1(G) = λ(G), λ2(G) = λ′(G), ξ1(G) = δ(G) and
ξ2(G) = ξ(G). Moreover, λ-optimality, super-λ property, λ′-optimality and super-λ′ property are λ1-optimality, super-
λ1 property, λ2-optimality and super-λ2 property, respectively. Let G be a λk-connected graph with λk(G) ≤ ξk(G).
By definition, if G is a super-λk graph, then G must be a λk-optimal graph. However, the converse is not true. For
example, a cycle of length ν(ν ≥ 2k + 2) is a λk-optimal graph that is not super-λk .

In Section 3, first, we prove that G is λk-optimal if |NG(u) ∩ NG(v)| ≥ 2k − 1 for all pairs u, v of nonadjacent
vertices, and G is super-λk if G is not in a special class of graphs and |NG(u) ∩ NG(v)| ≥ 2k for all pairs u, v of
nonadjacent vertices. Next, we show that some known results are consequences of our results and give examples to
show that our results are best possible in some sense.

In Section 4, we turn our attention to the analogous concept of k-isoperimetric edge connectivity. The k-
isoperimetric edge connectivity of G is defined as

γk(G) = min{|[X, X ]| : X ⊆ V (G), |X | ≥ k, |X | ≥ k}.

Clearly, γk(G) exists for any positive integer k ≤ |V (G)|/2. An edge cut S = [X, X ] is called a γk-cut if |S| = γk(G)
and X ⊆ V (G), |X | ≥ k, |X | ≥ k. Let

βk(G) = min{|[X, X ]| : X ⊆ V (G), |X | = k}.

Then, it is obvious that γk(G) ≤ βk(G). A graph G is called a γk-optimal graph if γk(G) = βk(G). Moreover, G is
called a super-γk graph if every γk-cut S = [X, X ] of G has the property that either |X | = k or |X | = k. It is easy
to see that a super-γk graph must be a γk-optimal graph, but the converse is not true. Several researchers [8,21] have
studied γk-optimal graphs. In Section 4, we will give some conditions, which are similar to those given in Section 3,
for graphs to be γk-optimal or super-γk .

2. Preliminaries

We start with a simple but useful observation.
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Observation 2.1 ([9]). Let G be a graph of order ν ≥ 2. Then each pair u, v of nonadjacent vertices satisfies
|N (u) ∩ N (v)| ≥ 1 if and only if D(G) ≤ 2.

Proposition 2.1. Let k be a positive integer and let G be a graph with at least one pair of nonadjacent vertices. If

|N (u) ∩ N (v)| ≥ 2k − 1

for each pair u, v of nonadjacent vertices, then G is λk-connected and λk(G) ≤ ξk(G).

Proof. Clearly, |V (G)| ≥ 2k+1. By Observation 2.1, D(G) ≤ 2 and hence G is connected. The case k = 1 is trivial,
so we only consider the case k ≥ 2. Since G is connected and |V (G)| ≥ 2k + 1, ξk(G) exists. Let U be a subset of
V (G) such that |U | = k, G[U ] is connected and ξk(G) = |[U,U ]|. If u, v are two nonadjacent vertices in U , then
|N (u)∩ N (v)| ≥ 2k − 1. Since |N (u)∩ N (v)∩U | ≤ |U | = k and k ≥ 2, we have |N (u)∩ N (v)∩U | ≥ k − 1 > 0.
Therefore, G[U ] is connected and thus [U,U ] is a k-restricted edge cut, which implies that G is λk-connected and
λk(G) ≤ |[U,U ]| = ξk(G). The proof is complete. �

Let G be a λk-connected graph and let S be a λk-cut of G. By the minimality of S, the graph G − S consists
of exactly two components, say G1 and G2. Let X = V (G1). Then X = V (G2) and S = [X, X ]. Denote

X0
= {x ∈ X : |N (x) ∩ X | ≤ k − 1}, X

0
= {y ∈ X : |N (y) ∩ X | ≤ k − 1}. Without loss of generality,

assume

min{|N (x) ∩ X | : x ∈ X} ≥ min{|N (y) ∩ X | : y ∈ X}. (1)

We will use such notation and this assumption in this section and next section.
The main goal of this section is to give some useful properties of G[X ] and G[X ]. By reason of symmetry we only

discuss G[X ].

Lemma 2.1. Let G be a λk-connected graph with λk(G) ≤ ξk(G) and let S = [X, X ] be a λk-cut of G.
(i) If there exists a connected subgraph H of order k in G[X ] with the property that∑

v∈X\V (H)

|N (v) ∩ V (H)| ≤
∑

v∈X\V (H)

|N (v) ∩ X |,

then G is λk-optimal.
(ii) There exists no connected subgraph H of order k in G[X ] with the property that∑

v∈X\V (H)

|N (v) ∩ V (H)| <
∑

v∈X\V (H)

|N (v) ∩ X |.

Proof. The hypotheses of Lemma 2.1(i) imply

ξk(G) ≤ |[V (H), V (H)]|

= |[V (H), X \ V (H)]| + |[V (H), X ]|

=

∑
v∈X\V (H)

|N (v) ∩ V (H)| + |[V (H), X ]|

≤

∑
v∈X\V (H)

|N (v) ∩ X | + |[V (H), X ]|

= |[X \ V (H), X ]| + |[V (H), X ]|

= |[X, X ]| = |S| = λk(G).

Since λk(G) ≤ ξk(G), we deduce that λk(G) = ξk(G) and hence G is λk-optimal. The proof of (i) is complete. (ii)
can be easily seen from the proof of (i). �

Corollary 2.1. Let G be a λk-connected graph with λk(G) ≤ ξk(G) and let S = [X, X ] be a λk-cut. If there exists a
vertex x∗ in X such that |N (x∗) ∩ X | ≥ k + 1, then there exists no connected subgraph H of order k in G[X ] − x∗
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with the property that∑
v∈X\(V (H)∪{x∗})

|N (v) ∩ V (H)| ≤
∑

v∈X\(V (H)∪{x∗})

|N (v) ∩ X |.

Proof. Suppose, on the contrary, that there exists such a subgraph H . Since |N (x∗) ∩ X | ≥ k + 1 > k =
|V (H)| ≥ |N (x∗) ∩ V (H)|, it follows that

∑
v∈X\V (H) |N (v) ∩ V (H)| <

∑
v∈X\V (H) |N (v) ∩ X |, contrary to

Lemma 2.1 (ii). �

Lemma 2.2. Suppose that G is a λk-connected graph and S = [X, X ] is a λk-cut of G. Let X∗ be a subset of X
such that |X∗| ≥ k, X0

⊆ X∗ and G[X∗] is connected. If there exists a connected subgraph H ′ of G[X∗] such that
|V (H ′)| ≤ k and X0

⊆ V (H ′), then there exists a connected subgraph H of order k in G[X∗] such that∑
v∈X∗\V (H)

|N (v) ∩ V (H)| ≤
∑

v∈X∗\V (H)

|N (v) ∩ X |.

Proof. If there exists such a subgraph H ′, then, by the connectedness of G[X∗], there exists a connected subgraph
H of G[X∗] such that |V (H)| = k, X0

⊆ V (H ′) ⊆ V (H) and hence X∗ \ V (H) ⊆ X∗ \ X0. By the definition of
X0, |N (v) ∩ X | ≥ k for any v ∈ X∗ \ V (H). It follows that

∑
v∈X∗\V (H) |N (v) ∩ V (H)| ≤

∑
v∈X∗\V (H) |V (H)| =

k|X∗ \ V (H)| ≤
∑
v∈X∗\V (H) |N (v) ∩ X |. �

Combining Lemmas 2.1(i) and 2.2, we get the following corollary.

Corollary 2.2. Let G be a λk-connected graph with λk(G) ≤ ξk(G) and let S = [X, X ] be a λk-cut. If there exists
a connected subgraph H of G[X ] such that |V (H)| ≤ k and X0

⊆ V (H), then G is λk-optimal. In particular, if
X0
= ∅, then G is λk-optimal.

Lemma 2.3. Let X∗ be a subset of X such that |X∗| ≥ k, X0
⊆ X∗ and G[X∗] is connected and let G∗ = G[X∗∪X ].

If X0
6= ∅, X

0
6= ∅ and |NG∗(u)∩ NG∗(v)| ≥ 2k−1 for all pairs u, v of nonadjacent vertices in G∗, then there exists

a connected subgraph H of order k in G[X∗] such that∑
v∈X∗\V (H)

|N (v) ∩ V (H)| ≤
∑

v∈X∗\V (H)

|N (v) ∩ X |.

Proof. Suppose, on the contrary, that G[X∗] contains no connected subgraph H of order k in G[X∗] such that∑
v∈X∗\V (H) |N (v) ∩ V (H)| ≤

∑
v∈X∗\V (H) |N (v) ∩ X |. Then we have the following nine claims.

Claim 1. xy ∈ E(G∗) for any x ∈ X0, y ∈ X
0
.

By contradiction. Suppose that there exist x ∈ X0 and y ∈ X
0

such that xy 6∈ E(G∗). Then 2k − 1 ≤
|NG∗(x) ∩ NG∗(y)| = |NG∗(x) ∩ NG∗(y) ∩ X∗| + |NG∗(x) ∩ NG∗(y) ∩ X | ≤ |NG∗(y) ∩ X∗| + |NG∗(x) ∩ X | ≤
|N (y) ∩ X | + |N (x) ∩ X | ≤ 2(k − 1) = 2k − 2, a contradiction.

Claim 2. 1 ≤ |X0
| ≤ k − 1 and 1 ≤ |X

0
| ≤ k − 1 (and therefore k ≥ 2).

Since X0
6= ∅ and X

0
6= ∅, we have 1 ≤ |X0

| and 1 ≤ |X
0
|. Let y be a vertex in X

0
. Then, by Claim 1,

X0
⊆ NG∗(y) and hence X0

⊆ NG∗(y)∩ X∗. It follows that |X0
| ≤ |NG∗(y)∩ X∗| ≤ |N (y)∩ X | ≤ k− 1. Similarly,

we also have |X
0
| ≤ k − 1.

Claim 3. |X0
| > d k

2e and there exists a connected subgraph H ′ of order at most k in G[X∗] such that
|V (H ′) ∩ X0

| ≥ d
k
2e.

Let t = d k
2e and let U = {x1, . . . , xt } be a subset of X∗ such that U contains as many vertices in X0 as possible.

Clearly, X0
∩ U 6= ∅, and if |X0

| ≤ d
k
2e, then X0

⊆ U ; if |X0
| > d k

2e, then U ⊆ X0. Without loss of generality,
assume that x1 ∈ X0.

By Claim 2, we have k ≥ 2. If k = 2, then let H ′ be the graph with vertex set {x1}. It is easy to see that
H ′ is a connected subgraph of G[X∗], |V (H ′)| ≤ k and U = {x1} = V (H ′). If k ≥ 3, then t ≥ 2. For any
i = 2, . . . , t , if x1xi ∈ E(G∗), then let ui = xi . If x1xi 6∈ E(G∗), then, since |NG∗(x1) ∩ NG∗(xi )| ≥ 2k − 1 and
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|NG∗(x1)∩ NG∗(xi )∩ X | ≤ |N (x1)∩ X | ≤ k− 1, we have |NG∗(x1)∩ NG∗(xi )∩ X∗| ≥ k > 0 and hence we may let
ui be a vertex in NG∗(x1) ∩ NG∗(xi ) ∩ X∗. Let U∗ = U ∪ {u2, . . . , ut } and let H ′ = G[U∗]. Then H ′ is a connected
subgraph of G[X∗], |V (H ′)| = |U∗| ≤ t + (t − 1) ≤ k and U ⊆ V (H ′).

Suppose that |X0
| ≤ d

k
2e. Then X0

⊆ U ⊆ V (H ′). By Lemma 2.2, there exists a connected subgraph H of order
k in G[X∗] such that

∑
v∈X∗\V (H) |N (v) ∩ V (H)| ≤

∑
v∈X∗\V (H) |N (v) ∩ X |, contrary to the initial assumption.

Therefore, |X0
| > d k

2e and hence U ⊆ X0. This implies that |V (H ′) ∩ X0
| ≥ |U | = t = d k

2e. The proof of Claim 3
is complete.

Denote |X0
| = k − s. Then, by Claims 2 and 3, 1 ≤ s < b k

2c.
Claim 4. |N (x) ∩ X | ≥ k − s for any x ∈ X0.

Let y′ ∈ X be a vertex such that |N (y′) ∩ X | = min{|N (y) ∩ X | : y ∈ X}. Clearly, y′ ∈ X
0
. By Claim 1,

X0
⊆ NG∗(y′) ∩ X∗ and hence k − s = |X0

| ≤ |NG∗(y′) ∩ X∗| ≤ |N (y′) ∩ X |. By the assumption (1), we have
|N (x) ∩ X | ≥ min{|N (y) ∩ X | : y ∈ X} = |N (y′) ∩ X | and thus |N (x) ∩ X | ≥ k − s for any x ∈ X0.

Claim 5. |X∗| ≥ 2k − s.
If G[X0

] is connected, then let H ′ = G[X0
]. By Lemma 2.2, a contradiction to the initial assumption is

obtained. Therefore, G[X0
] is not connected. Let x1, x2 be two vertices in two different components of G[X0

]. Then
|NG∗(x1)∩NG∗(x2)| ≥ 2k−1, |NG∗(x1)∩NG∗(x2)∩X0

| = 0 and |NG∗(x1)∩NG∗(x2)∩X | ≤ |N (x1)∩X | ≤ k−1. It
follows that |NG∗(x1)∩NG∗(x2)∩(X∗ \X0)| ≥ k and hence |X∗ \X0

| ≥ k. Consequently, |X∗| = |X0
|+|X∗ \X0

| ≥

2k − s.
Claim 6. |N (v) ∩ X0

| ≤ k − 2s for any v ∈ X∗ \ X0.
By contradiction. Suppose that there exists a vertex v ∈ X∗ \ X0 such that |N (v) ∩ X0

| ≥ k − 2s + 1. Then
|NG∗(v) ∩ X0

| ≥ k − 2s + 1. Let U1 = NG∗(v) ∩ X0,U2 = X0
\ U1 = {x1, x2, . . . , xt }. Then t = |U2| =

k− s− |U1| ≤ s− 1. For any i = 1, 2, . . . , t , since vxi 6∈ E(G∗), we have |NG∗(v)∩ NG∗(xi )| ≥ 2k− 1. Combining
this with |NG∗(v)∩ NG∗(xi )∩ X | ≤ |N (xi )∩ X | ≤ k − 1, we have |NG∗(v)∩ NG∗(xi )∩ X∗| ≥ k and hence we may
pick a vertex ui in NG∗(v) ∩ NG∗(xi ) ∩ X∗. Let U = U1 ∪ U2 ∪ {u1, . . . , ut } ∪ {v}. Then X0

⊆ U . Clearly, G∗[U ]
is connected and |U | ≤ |U1 ∪U2| + t + 1 ≤ (k − s)+ (s − 1)+ 1 = k. By Lemma 2.2, a contradiction to the initial
assumption is obtained. The proof of Claim 6 is then complete.

Let X1
= {x ∈ X∗ \ X0

: xy ∈ E(G∗) for any y ∈ X
0
} and let X2

= X∗ \ (X0
∪ X1).

Claim 7. |X1
| ≤ s − 1.

By Claim 1 and the definitions of X0 and X1, for any y ∈ X
0
, k − s + |X1

| = |X0
| + |X1

| = |X0
∪ X1
| =

|N (y) ∩ (X0
∪ X1)| ≤ |N (y) ∩ X | ≤ k − 1. Therefore, |X1

| ≤ s − 1.
Claim 8. |N (x) ∩ X | ≥ k + s for any x ∈ X2.

For any x ∈ X2, by definition, there exists a vertex y ∈ X
0

such that xy 6∈ E(G∗). By Claim 1 and the choice of
y, |N (y)∩ (X∗ \ X0)| = |N (y)∩ X∗| − |N (y)∩ X0

| = |N (y)∩ X∗| − |X0
| ≤ (k − 1)− (k − s) = s − 1. By Claim

6, |N (x) ∩ X0
| ≤ k − 2s. Therefore, we have

2k − 1 ≤ |NG∗(x) ∩ NG∗(y)|

= |NG∗(x) ∩ NG∗(y) ∩ X | + |NG∗(x) ∩ NG∗(y) ∩ X0
| + |NG∗(x) ∩ NG∗(y) ∩ (X

∗
\ X0)|

≤ |NG∗(x) ∩ X | + |NG∗(x) ∩ X0
| + |NG∗(y) ∩ (X

∗
\ X0)|

≤ |N (x) ∩ X | + |N (x) ∩ X0
| + |N (y) ∩ (X∗ \ X0)|

≤ |N (x) ∩ X | + (k − 2s)+ (s − 1).

This implies that |N (x) ∩ X | ≥ k + s.
Claim 9. |N (x) ∩ X | ≥ k for any x ∈ X1.
Since X1

∩ X0
= ∅, Claim 9 follows from the definition of X0.

We continue now with the proof of this lemma. By Claim 3, there exists a connected subgraph H ′ of order at most
k in G[X∗] such that |V (H ′) ∩ X0

| ≥ d
k
2e. By the connectedness of G[X∗], there exists a connected subgraph H of

G[X∗] such that |V (H)| = k and V (H ′) ⊆ V (H). It follows that |V (H) ∩ X0
| ≥ d

k
2e.

Let t0 = |(X∗ \ V (H)) ∩ X0
|, t1 = |(X∗ \ V (H)) ∩ X1

| and t2 = |(X∗ \ V (H)) ∩ X2
|. Then t0 =

|X0
| − |V (H) ∩ X0

| = (k − s) − |V (H) ∩ X0
| ≤ b

k
2c − s. Combining this with Claims 5 and 7, we have

t2 = |X∗|− |V (H)|− t1− t0 ≥ |X∗|− |V (H)|− |X1
|− t0 ≥ (2k− s)− k− (s− 1)− (b k

2c− s) = d k
2e− s+ 1 > t0.
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Combining this with Claims 4, 8 and 9, we have∑
v∈X∗\V (H)

|N (v) ∩ X | =
2∑

i=0

∑
v∈(X∗\V (H))∩X i

|N (v) ∩ X |

≥ (k − s)t0 + kt1 + (k + s)t2
> k(t2 + t1 + t0)

= k|X∗ \ V (H)|

≥

∑
v∈X∗\V (H)

|N (v) ∩ V (H)|.

This is contrary to the initial assumption. The proof is then complete. �

3. Sufficient conditions for λk-optimality or super-λk property

We start with a simple result.

Proposition 3.1. Let k be a positive integer. If G is a complete graph with order at least 2k, then G is super-λk .

Proof. It is easy to verify that G is λk-connected and λk(G) ≤ ξk(G). Suppose, on the contrary, that G is not super-λk .
Then there exists a λk-cut S = [X, X ] such that |X | ≥ k+1 and |X | ≥ k+1. Let U be a subset of X such that |U | = k
and let H = G[U ]. Then H is connected and

∑
v∈X\V (H) |N (v) ∩ V (H)| = k|X \ V (H)| < (k + 1)|X \ V (H)| ≤∑

v∈X\V (H) |N (v) ∩ X |, a contradiction to Lemma 2.1(ii). �

Theorem 3.1. Let k be a positive integer and let G be a graph with order at least 2k. If

|N (u) ∩ N (v)| ≥ 2k − 1

for all pairs u, v of nonadjacent vertices, then G is λk-optimal.

Proof. If G contains no nonadjacent vertices, then G is a complete graph with order at least 2k. By Proposition 3.1,
G is super-λk and so G is λk-optimal. Therefore, we only consider the case that there exist nonadjacent vertices in G
below. By Proposition 2.1, G is λk-connected and λk(G) ≤ ξk(G). Let S = [X, X ] be an arbitrary λk-cut of G. By
definition, |X | ≥ k, |X | ≥ k.

If X0
= ∅ or X

0
= ∅, then, by Corollary 2.2, G is λk-optimal. Suppose that both X0

6= ∅ and X
0
6= ∅. By

Lemma 2.3 (regarding X as the X∗ in Lemma 2.3), there exists a connected subgraph H of order k in G[X ] such that∑
v∈X\V (H) |N (v) ∩ V (H)| ≤

∑
v∈X\V (H) |N (v) ∩ X |. By Lemma 2.1(i), G is λk-optimal. �

Recalling that λ1(G) = λ(G) and ξ1(G) = δ(G), Corollary 3.1 follows from Observation 2.1 and Theorem 3.1.

Corollary 3.1 (Plesnik [16] 1975). If G is a graph of diameter D(G) ≤ 2, then λ(G) = δ(G).

Recalling that λ′(G) = λ2(G) and λ′-optimality is λ2-optimality, we have the following corollary.

Corollary 3.2 (Hellwig and Volkmann [9] 2004). Let G be a λ′-connected graph. If

|N (u) ∩ N (v)| ≥ 3

for all pairs u, v of nonadjacent vertices, then G is λ′-optimal.

Observation 3.1. Let G be a graph of order ν and let u, v ∈ V (G) be a pair of nonadjacent vertices. For any integer
l ≥ −1, if dG(u)+ dG(v) ≥ ν + l, then |N (u) ∩ N (v)| ≥ l + 2.

Corollary 3.3 (Zhang and Yuan [21] 2007). Let k be a positive integer, and G a connected graph on ν ≥ 2k vertices.
Suppose that dG(u)+dG(v) ≥ ν+2k−3, for every pair of nonadjacent vertices u and v in G. Then G is λk-optimal.

Next we introduce a class of graphs W (p, k) that will show that Theorem 3.1 is an improvement of Corollary 3.3.



914 S. Wang et al. / Discrete Mathematics 309 (2009) 908–919

Fig. 1. The graph W (3, 2).

Fig. 2. A graph in L2(4, 1).

Example 3.1. Let k and p be fixed positive integers with p ≥ 3; let C = {x1, x2, . . . , x2k−1}, I = {y1, y2, . . . , yp};
and define W (p, k) as follows. The vertices of W (k, p) are x1, x2, . . . , x2k−1, y1, y2, . . . , yp, where two vertices
u and v are adjacent if at least one of u and v is in C . The graph W (3, 2) is shown in Fig. 1. If u, v is a
pair of nonadjacent vertices in W (k, p), then u, v ∈ I . It is easy to see that |N (u) ∩ N (v)| = |C | = 2k − 1
and dG(u) + dG(v) = 2(2k − 1) = 4k − 2. By Theorem 3.1, G is λk-optimal. But, since p ≥ 3, we have
dG(u) + dG(v) = 4k − 2 < (2k − 1 + 3) + (2k − 3) ≤ (|C | + |I |) + (2k − 3) = |V | + 2k − 3 and hence
Corollary 3.3 does not show that G is λk-optimal.

The next example shows that Theorem 3.1 is best possible in the sense that the condition |N (u)∩N (v)| ≥ 2k−2 for
all pairs u, v of nonadjacent vertices does not imply λk-optimality. Before giving the example, we introduce another
class of graphs.

Given two integers p > k > 0, let H1 and H2 be two disjoint complete graphs with V (H1) = {x1, . . . , x p}

and V (H2) = {y1, . . . , yp}, respectively. Let Fk be the set of all k-regular bipartite graphs with bipartition
(V (H1), V (H2)), and let the graph class L2(p, k) = {H1 ∪ H2 ∪ H3 : H3 ∈ Fk}. A graph in L2(4, 1) is shown
in Fig. 2.

Example 3.2. Let G = H1 ∪ H2 ∪ H3 be a graph in L2(p, k − 1), where p > k. Then |N (u) ∩ N (v)| = 2k − 2 for
all pairs u, v of nonadjacent vertices in G. Let U be a subset of V (G) such that |U | = k. Denote t = |U ∩ V (H1)|,
s = |U ∩ V (H2)|. Then t + s = k and |[U,U ]| = |[U ∩ V (H1),U ∩ V (H1)]| + |[U ∩ V (H1),U ∩ V (H2)]| + |[U ∩
V (H2),U ∩V (H1)]|+ |[U ∩V (H2),U ∩V (H2)]| ≥ t (p− t)+ t ((k−1)− s)+ s((k−1)− t)+ s(p− s) = k(p−1).
If U ⊆ V (H1), then G[U ] is connected and |[U,U ]| = |[U, V (H1) \U ]| + |[U, V (H2)]| = k(p − k)+ k(k − 1) =
k(p − 1). Therefore, ξk(G) = k(p − 1). Clearly, E(H3) = [V (H1), V (H2)] is a k-restricted edge cut and hence
λk(G) ≤ |E(H3)| = p(k − 1). It follows that λk(G) < ξk(G) from p > k. Therefore, G is not λk-optimal.

Theorem 3.1 shows that the condition |N (u)∩ N (v)| ≥ 2k− 1 for all pairs u, v of nonadjacent vertices guarantees
the graph G is λk-optimal, but even a stronger condition that |N (u) ∩ N (v)| ≥ 2k for all pairs u, v of nonadjacent
vertices cannot guarantee G is super-λk . We give such an example below.

Example 3.3. Let G ∈ L2(p, k), where p > k. By a similar method as in the above example, we have ξk(G) = kp
and |N (u) ∩ N (v)| = 2k for all pairs u, v of nonadjacent vertices. By Theorem 3.1, G is λk-optimal and hence
λk(G) = ξk(G) = kp. We also have |E(H3)| = |[V (H1), V (H2)]| = kp, which implies that [V (H1), V (H2)] is a
λk-cut. Combining this with |V (H1)| = |V (H2)| = p > k, we conclude that G is not super-λk .



S. Wang et al. / Discrete Mathematics 309 (2009) 908–919 915

Theorem 3.2. Let k be a positive integer and let G be a graph with order at least 2k. If

|N (u) ∩ N (v)| ≥ 2k

for all pairs u, v of nonadjacent vertices, then G either is super-λk or is in L2(
ν
2 , k).

Proof. If G contains no nonadjacent vertices, then, by Proposition 3.1, we are done. Therefore, we only consider the
case that there exist nonadjacent vertices in G below. By Theorem 3.1, G is λk-optimal. That is, λk(G) = ξk(G).
Suppose that G is not super-λk . Then there exists a λk-cut S = [X, X ] such that |X | ≥ k + 1 and |X | ≥ k + 1.

Claim 1. X0
= ∅ or X

0
= ∅.

By contradiction. Suppose that both X0
6= ∅ and X

0
6= ∅. Similar to the proof of Claim 1 in Lemma 2.3, we have

xy ∈ E(G) for any x ∈ X0, y ∈ X
0
.

Since |X | ≥ k + 1 and |N (y) ∩ X | ≤ k − 1 for any y ∈ X
0
, there exist x∗ ∈ X and y∗ ∈ X

0
such that

x∗y∗ 6∈ E(G). Combining this with the fact that xy ∈ E(G) for any x ∈ X0, y ∈ X
0
, we have x∗ ∈ X \ X0. Since

|N (x∗) ∩ N (y∗)| ≥ 2k and |N (x∗) ∩ N (y∗) ∩ X | ≤ |N (y∗) ∩ X | ≤ k − 1, it follows that |N (x∗) ∩ X | ≥ k + 1. Let
X∗ = X − x∗, G∗ = G[X∗ ∪ X ]. Then G∗ = G − x∗. Clearly, X0

⊆ X∗ and |NG∗(u) ∩ NG∗(v)| ≥ 2k − 1 for any
pair u, v of nonadjacent vertices in G∗.

We will show that G[X∗] is connected. Suppose that G[X∗] is not connected and let u ∈ X0
⊆ X∗. Then we may

choose a vertex v ∈ X∗ such that u, v are in different components of G[X∗]. Since |NG∗(u) ∩ NG∗(v)| ≥ 2k − 1
and |NG∗(u) ∩ NG∗(v) ∩ X | ≤ |N (u) ∩ X | ≤ k − 1, we have |NG∗(u) ∩ NG∗(v) ∩ X∗| ≥ k > 0 and hence u, v are
connected in G[X∗], which contradicts the choice of v. Therefore, G[X∗] is connected.

By Lemma 2.3, there exists a connected subgraph H of order k in G[X∗] such that
∑
v∈X∗\V (H) |N (v)∩ V (H)| ≤∑

v∈X∗\V (H) |N (v)∩X |. Recalling |N (x∗)∩X | ≥ k+1 and X∗ = X−x∗, we obtain a contradiction to Corollary 2.1.
The proof of Claim 1 is complete.

By Claim 1, without loss of generality, we may assume that X0
= ∅. That is, |N (x) ∩ X | ≥ k for any x ∈ X .

Claim 2. |N (x) ∩ X | = k for any x ∈ X .
By contradiction. Suppose that there is a vertex u in X such that |N (u)∩X | > k. If G[X ]−u is connected or k = 1,

then there exists a connected subgraph H of G[X ]− u such that |V (H)| = k. Since |N (v)∩ V (H)| ≤ |V (H)| = k ≤
|N (v)∩ X | for any v ∈ X \ (V (H)∪ {u}), it follows that

∑
v∈X\(V (H)∪{u}) |N (v)∩ V (H)| ≤ k|X \ (V (H)∪ {u})| ≤∑

v∈X\(V (H)∪{u}) |N (v) ∩ X |, contrary to Corollary 2.1. Therefore, G[X ] − u is not connected and k ≥ 2.
For any x ∈ X − u, we may choose a vertex x ′ ∈ X − u such that x, x ′ are in different components of G[X ] − u.

So |N (x) ∩ N (x ′)| ≥ 2k and N (x) ∩ N (x ′) ∩ X ⊆ {u}, which implies that |N (x) ∩ N (x ′) ∩ X | ≥ 2k − 1 and hence
|N (x) ∩ X | ≥ 2k − 1. Let H be a connected subgraph of G[X ] such that |V (H)| = k and u ∈ V (H). It follows that∑

x∈X\V (H) |N (x) ∩ V (H)| ≤ k|X \ V (H)| < (2k − 1)|X \ V (H)| ≤
∑

x∈X\V (H) |N (x) ∩ X |. This is contrary to

Lemma 2.1(ii). Therefore, |N (x) ∩ X | = k for any x ∈ X .

Claim 3. X
0
= ∅.

By contradiction. Suppose that there exists y ∈ X
0
. Then, since |X | > k and |N (y) ∩ X | ≤ k − 1, there

exists x ∈ X such that xy 6∈ E(G). By Claim 2, |N (x) ∩ X | = k. It follows that 2k ≤ |N (x) ∩ N (y)| =
|N (x) ∩ N (y) ∩ X | + |N (x) ∩ N (y) ∩ X | ≤ |N (y) ∩ X | + |N (x) ∩ X | ≤ (k − 1)+ k = 2k − 1, a contradiction.

Similar to Claim 2, we have:
Claim 4. |N (y) ∩ X | = k for any y ∈ X .
Claim 5. G[X ] is complete.
Let u, v be two arbitrary vertices in X . First, we will show G[X ] − u is connected. For any x1, x2 ∈ X − u, if

x1x2 6∈ E(G), then |N (x1) ∩ N (x2)| ≥ 2k. Suppose that k = 1. By Claim 4, |N (y) ∩ X | = k = 1 for any y ∈ X ,
which implies that N (x1) ∩ N (x2) ∩ X = ∅. It follows that |N (x1) ∩ N (x2) ∩ (X − u)| ≥ 2k − 1 > 0. Therefore,
G[X ]−u is connected. Suppose that k ≥ 2. Then, by Claim 2, |N (x1)∩N (x2)∩X | ≤ |N (x1)∩X | = k. It follows that
|N (x1)∩N (x2)∩ (X−u)| ≥ k−1 > 0. Therefore, G[X ]−u is connected. Clearly, there exists a connected subgraph
H of G[X ]− u of order k such that v ∈ V (H). It follows that

∑
w∈X\V (H) |N (w)∩ V (H)| ≤

∑
w∈X\V (H) |V (H)| =

k|X \ V (H)| =
∑
w∈X\V (H) |N (w) ∩ X |. Combining this with Lemma 2.1(ii), we have

∑
w∈X\V (H) |N (w) ∩

V (H)| =
∑
w∈X\V (H) |N (w) ∩ X | and hence

∑
w∈X\V (H) |N (w) ∩ V (H)| =

∑
w∈X\V (H) |V (H)|. It follows that
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|N (w) ∩ V (H)| = |V (H)| and so wz ∈ E(G) for any w ∈ X \ V (H), z ∈ V (H). In particular, uv ∈ E(G). By the
arbitrariness of u, v, we conclude that G[X ] is complete.

Similar to Claim 5, we have:
Claim 6. G[X ] is complete.
By Claims 2, 4, 5 and 6, it follows that ν is even and G is a graph in L2(

ν
2 , k) and ν

2 = |X | ≥ k + 1. The proof is
complete. �

Recalling that for any G ∈ L2(
ν
2 , k), |N (u) ∩ N (v)| = 2k holds for every pair u, v of nonadjacent vertices.

Therefore, we have the following corollary.

Corollary 3.4. Let k be a positive integer and let G be a graph with order at least 2k. If

|N (u) ∩ N (v)| ≥ 2k + 1

for all pairs u, v of nonadjacent vertices, then G is super-λk .

By Observation 3.1 and Theorem 3.2, we have the following corollary.

Corollary 3.5. Let k be a positive integer and let G be a graph with order ν ≥ 2k. If

dG(u)+ dG(v) ≥ ν + 2k − 2

for all pairs u, v of nonadjacent vertices, then G either is super-λk or is in L2(
ν
2 , k).

By Observation 3.1 and Corollary 3.4, we have the following corollary.

Corollary 3.6. Let k be a positive integer and let G be a graph with order ν ≥ 2k. If

dG(u)+ dG(v) ≥ ν + 2k − 1

for all pairs u, v of nonadjacent vertices, then G is super-λk .

Recalling that super-λ property is super-λ1 property, we have the following corollary.

Corollary 3.7 (Lesniak [11] 1974). Let G be a connected graph of order ν. If dG(u)+ dG(v) ≥ ν + 1 for all pairs
u, v of nonadjacent vertices, then G is super-λ.

The conditions that G is not in L2(
ν
2 , k) and |N (u) ∩ N (v)| ≥ 2k − 1 for all pairs u, v of nonadjacent vertices

cannot guarantee G is super-λk , which is shown by the next example. In this sense, Theorem 3.2 is best possible.

Example 3.4. Given two integers k ≥ 2, p ≥ 3, let H1 and H2 be two disjoint complete graphs with
V (H1) = {x1, . . . , x pk} and V (H2) = {y1, . . . , yp(k−1)}, respectively. Let H3 be a bipartite graph with bipartition
(V (H1), V (H2)) such that |N (xi )∩V (H2)| = k−1, |N (y j )∩V (H1)| = k for any i = 1, . . . , pk; j = 1, . . . , p(k−1).
Let G = H1 ∪ H2 ∪ H3. Then |N (u) ∩ N (v)| = 2k − 1 for all pairs u, v of nonadjacent vertices. Let U be an
arbitrary subset of V (G) such that |U | = k and let t = |U ∩ V (H1)|. By a similar method as in Example 3.2,
we have |[U,U ]| ≥ t (p − 1) + pk(k − 1) ≥ pk(k − 1). Clearly, if U ⊆ V (H2), then G[U ] is connected and
|[U,U ]| = pk(k−1). So, ξk(G) = pk(k−1). By Theorem 3.1, G is λk-optimal. That is, λk(G) = ξk(G) = pk(k−1).
Clearly, |E(H3)| = |[V (H1), V (H2)]| = pk(k − 1), and H1, H2 are connected. It follows that [V (H1), V (H2)] is a
λk-cut. Since |V (H1)| > k, |V (H2)| > k, we conclude that G is not super-λk .

4. Sufficient conditions for γk-optimality or super-γk property

Suppose that G is a graph of order ν ≥ 2k and S = [X, X ] is a γk-cut of G. Denote X0
= {x ∈ X :

|N (x) ∩ X | ≤ k − 1}, X
0
= {y ∈ X : |N (y) ∩ X | ≤ k − 1}. Without loss of generality, assume that

min{|N (x) ∩ X | : x ∈ X} ≥ min{|N (y) ∩ X | : y ∈ X}. We will use this assumption and such notation in this
section.
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By a similar method as in Section 2, the following results can be shown.

Lemma 4.1. Let G be a graph of order ν ≥ 2k and let S = [X, X ] be a γk-cut of G.
(i) If there exists a subset U of X such that |U | = k and∑

v∈X\U

|N (v) ∩U | ≤
∑
v∈X\U

|N (v) ∩ X |,

then G is γk-optimal.
(ii) There exists no subset U of X such that |U | = k and∑

v∈X\U

|N (v) ∩U | <
∑
v∈X\U

|N (v) ∩ X |.

Corollary 4.1. Let G be a graph of order ν ≥ 2k and let S = [X, X ] be a γk-cut of G. If there exists a vertex x∗ in
X such that |N (x∗) ∩ X | ≥ k + 1, then there exists no subset U of X − x∗ such that |U | = k and∑

v∈X\(U∪{x∗})

|N (v) ∩U | ≤
∑

v∈X\(U∪{x∗})

|N (v) ∩ X |.

Lemma 4.2. Let X∗ be a subset of X such that |X∗| ≥ k and X0
⊆ X∗, and let G∗ = G[X∗ ∪ X ]. If X0

6= ∅,

X
0
6= ∅ and |NG∗(u) ∩ NG∗(v)| ≥ 2k − 1 for all pairs u, v of nonadjacent vertices in G∗, then there exists a subset

U of X∗ such that |U | = k and∑
v∈X∗\U

|N (v) ∩U | ≤
∑

v∈X∗\U

|N (v) ∩ X |.

Proof. Similar to the proof of Claim 2 in Lemma 2.3, we have 1 ≤ |X0
| ≤ k− 1. Since |X∗| ≥ k and X0

⊆ X∗, there
exists a subset U of X∗ such that X0

⊆ U and |U | = k. By the definition of X0, |N (v) ∩ X | ≥ k for any v ∈ X∗ \U .
It follows that

∑
v∈X∗\U |N (v) ∩ U | ≤

∑
v∈X∗\U |U | = k|X∗ \ U | ≤

∑
v∈X∗\U |N (v) ∩ X |. The proof is complete.

�

Similar to Proposition 3.1, we have the following result.

Proposition 4.1. Let k be a positive integer. If G is a complete graph with order at least 2k, then G is super-γk .

Theorem 4.1. Let k be a positive integer and let G be a graph with order at least 2k. If

|N (u) ∩ N (v)| ≥ 2k − 1

for all pairs u, v of nonadjacent vertices, then G is γk-optimal.

Proof. By Proposition 4.1, we only consider the case that G is not a complete graph. Let S = [X, X ] be an arbitrary

γk-cut. By definition, |X | ≥ k, |X | ≥ k. Suppose that X0
= ∅ or X

0
= ∅. Without loss of generality, assume

that X0
= ∅. Then |N (x) ∩ X | ≥ k for any x ∈ X . Let U be a subset of X such that |U | = k. It follows that∑

v∈X\U |N (v)∩U | ≤
∑
v∈X\U |U | = k|X \U | ≤

∑
v∈X\U |N (v)∩ X |. By Lemma 4.1(i), G is γk-optimal. Suppose

that both X0
6= ∅ and X

0
6= ∅. Then, by Lemmas 4.1(i) and 4.2, G is γk-optimal. The proof is complete. �

Corollary 4.2 (Zhang and Yuan [21] 2007). Let G be a connected graph on ν ≥ 2k vertices. Suppose that

dG(u)+ dG(v) ≥ ν + 2k − 3

for every pair of nonadjacent vertices u and v in G. Then G is γk-optimal.

Example 3.1 also shows that Theorem 4.1 is an improvement of Corollary 4.2.
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Similar to Theorem 3.2, we have the following theorem.

Theorem 4.2. Let k be a positive integer and let G be a graph with order at least 2k. If

|N (u) ∩ N (v)| ≥ 2k

for all pairs u, v of nonadjacent vertices, then G either is super-γk or is in L2(
ν
2 , k).

Proof. By Proposition 4.1, we only consider the case that G is not a complete graph. By Theorem 4.1, G is γk-optimal.
That is, γk(G) = βk(G). Suppose that G is not super-γk . Then there exists a γk-cut S = [X, X ] such that |X | ≥ k + 1
and |X | ≥ k + 1.

Claim 1. X0
= ∅ or X

0
= ∅.

By contradiction. Suppose that both X0
6= ∅ and X

0
6= ∅. Then, similar to the proof in Theorem 3.2, there exists

x∗ ∈ X such that |N (x∗)∩ X | ≥ k + 1. Let X∗ = X − x∗, G∗ = G[X∗ ∪ X ]. Then G∗ = G − x∗. Clearly, X0
⊆ X∗

and |NG∗(u)∩ NG∗(v)| ≥ 2k − 1 for all pairs u, v of nonadjacent vertices in G∗. By Lemma 4.2, there exists a subset
U of X∗ such that |U | = k and

∑
v∈X∗\U |N (v) ∩U | ≤

∑
v∈X∗\U |N (v) ∩ X |. This is contrary to Corollary 4.1. The

proof of Claim 1 is complete.
By Claim 1, without loss of generality, we may assume that X0

= ∅. Then |N (x) ∩ X | ≥ k for any x ∈ X .
Claim 2. |N (x) ∩ X | = k for any x ∈ X .
By contradiction. Suppose that there is a vertex u in X such that |N (u) ∩ X | > k. Then, since |X | ≥ k + 1,

there exists a subset U of X∗ = X − u such that |U | = k. It follows that
∑
v∈X∗\U |N (v) ∩ U | ≤

∑
v∈X∗\U |U | =

k|X∗ \U | ≤
∑
v∈X∗\U |N (v) ∩ X |. This is contrary to Corollary 4.1.

Claim 3. G[X ] is complete.
Let u, v be two arbitrary vertices in X and let U be an arbitrary subset of X − u such that |U | = k and

v ∈ U . It follows that
∑
w∈X\U |N (w) ∩ U | ≤

∑
w∈X\U |U | = k|X \ U | =

∑
w∈X\U |N (w) ∩ X |. Combining

this with Lemma 4.1(ii), we have
∑
w∈X\U |N (w) ∩U | =

∑
w∈X\U |N (w) ∩ X | and hence

∑
w∈X\U |N (w) ∩U | =∑

w∈X\U |U |. It follows that |N (w) ∩ U | = |U | and hence wz ∈ E(G) for any w ∈ X \ U, z ∈ U . In particular,
uv ∈ E(G). By the arbitrariness of u, v, we conclude that G[X ] is complete.

Claim 4. X
0
= ∅.

By contradiction. Suppose that there exists y ∈ X
0
. Then, since |X | > k and |N (y) ∩ X | ≤ k − 1, there

exists x ∈ X such that xy 6∈ E(G). By Claim 2, |N (x) ∩ X | = k. It follows that 2k ≤ |N (x) ∩ N (y)| =
|N (x) ∩ N (y) ∩ X | + |N (x) ∩ N (y) ∩ X | ≤ |N (y) ∩ X | + |N (x) ∩ X | ≤ (k − 1)+ k = 2k − 1, a contradiction.

Similar to Claims 2 and 3, we have |N (y) ∩ X | = k for any y ∈ X and G[X ] is complete. It follows that ν is even
and G ∈ L2(

ν
2 , k). The proof is complete. �

Similarly, it can been shown that Theorems 4.1 and 4.2 are best possible in some sense by Examples 3.2 and 3.4.
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