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Abstract

An algorithm for solving nonlinear monotone equations is proposed, which combines a modified spectral gradient method and
projection method. This method is shown to be globally convergent to a solution of the system if the nonlinear equations to be solved
is monotone and Lipschitz continuous. An attractive property of the proposed method is that it can be applied to solving nonsmooth
equations. We also give some preliminary numerical results to show the efficiency of the proposed method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the problem to find solutions of the following nonlinear equations

F(x) = 0, (1.1)

where F : Rn → Rn is continuous and monotone, i.e. 〈F(x)−F(y), x −y〉�0 for all x, y ∈ Rn. Nonlinear monotone
equations arise in various applications such as subproblems in the generalized proximal algorithms with Bregman
distances [10]. Some monotone variational inequality can be converted into systems of nonlinear monotone equations
by means of fixed point map or normal map [20].

For solving smooth systems of equations, the Newton method, quasi-Newton methods, Levenberg–Marquardt method
and their variants are of particular importance because of their locally fast convergent rates [5–7,15]. To ensure global
convergence, some line search strategy for some merit function are used, see [11]. Recently, Solodov and Svaiter [19]
presented a Newton-type algorithm for solving systems of monotone equations. By using hybrid projection method,
they showed that their method converges globally. For nonlinear equations, Griewank [9] obtained a global convergence
results for Broyden’s rank one method. Li and Fukushima [12] presented a Gauss–Newton-based BFGS method for
solving symmetric nonlinear equations and established global convergence of their method. But these methods need to
compute and store matrix which is not suitable for large scale nonlinear equations. To overcome this drawback, Nocedal
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[14] proposed the limited memory BFGS method (L-BFGS) for unconstrained minimization problems. Numerical
results [13,3] showed that the L-BFGS method is very competitive due to its low storage.

For solving nonsmooth systems of equations, many algorithms are proposed such as semismooth Newton method
[16], other methods can be found in [8] and its references.

Recently, Cruz and Raydan [4] extended the spectral gradient method to solve nonlinear equations. Spectral gradient
method are low cost nonmonotone schemes for finding local minimizers. It was introduced by Barzilai and Borwein
[1]. The convergence for quadratics was established by Raydan [17] and a global scheme was discussed more recently
for nonquadratic functions by Raydan [18]. It has been applied successfully to solving large scale unconstrained
optimization problems [4,2]. In [4], Cruz and Raydan still converted the nonlinear equations into a unconstrained
minimization problem by using some merit function.

In this paper, we propose a method to solve (1.1), which combines spectral gradient method [1] and projection
method [19]. This method is very different from that of [4] because we do not use any merit function and any descent
method. Under mild assumptions, we prove this method globally converges to solutions of (1.1). In Section 2, we state
our algorithm. In Section 3, we establish the global convergence of the method. In Section 4, we give some numerical
results.

2. Algorithm

In this section, we first introduce the spectral gradient method for unconstrained minimization problem:

min f (x) x ∈ Rn, (2.1)

where f : Rn → R is continuously differentiable and its gradient is available. Spectral gradient method is defined by

xk+1 = xk − �kgk , (2.2)

where gk is the gradient vector of f at xk and �k is given by

�k = sT
k−1sk−1

uT
k−1sk−1

, (2.3)

where sk−1 = xk − xk−1, uk−1 = gk − gk−1.
About projection method [19], note that by monotonicity of F, for any x̄ such that F(x̄) = 0, we have

〈F(zk), x̄ − zk〉�0. (2.4)

By performing some kind of line search procedure along the direction dk , a point zk = xk + �kdk computed such that

〈F(zk), xk − zk〉 > 0. (2.5)

Thus, the hyperplane

Hk = {x ∈ Rn | 〈F(zk), x − zk〉 = 0} (2.6)

strictly separates the current iterate xk from zeros of the systems of equations. Once the separating hyperplane is
obtained, the next iterate xk+1 is computed by projecting xk onto it.

We now can state our algorithm for solving (1.1).

Algorithm 1. Step 0: Choose an initial point x0 ∈ Rn, � ∈ (0, 1), � ∈ (0, 1), r > 0. Let k := 0.
Step 1: Compute dk by

dk =
{−F(xk) if k = 0,

−�kF (xk) otherwise,
(2.7)

where �k = sT
k−1sk−1/y

T
k−1sk−1 is similar to (2.3), sk−1 = xk − xk−1, but yk−1 is defined by

yk−1 = F(xk) − F(xk−1) + rsk−1,

which is different from the standard definition of yk−1.
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Stop if dk = 0; otherwise,
Step 2: Determine steplength �k , find zk =xk +�kdk , where �k =�mk with mk being the smallest nonnegative integer

m such that

−〈F(xk + �mdk), dk〉���m‖dk‖2. (2.8)

Step 3: Compute

xk+1 = xk − 〈F(zk), xk − zk〉
‖F(zk)‖2 F(zk). (2.9)

Set k := k + 1 and go to step 1.

Remarks. (i) In step 1, by the monotonicity of F, we have

yT
k−1sk−1 = 〈F(xk) − F(xk−1), xk − xk−1〉 + rsT

k−1sk−1 �rsT
k−1sk−1 > 0. (2.10)

In addition, if F is Lipschitz continuous, i.e., there exists a constant L > 0 such that

‖F(x) − F(y)‖�L‖x − y‖ ∀x, y ∈ Rn. (2.11)

Then we also have

yT
k−1sk−1 = 〈F(xk) − F(xk−1), xk − xk−1〉 + rsT

k−1sk−1 �(L + r)sT
k−1sk−1. (2.12)

So we have from (2.7), (2.10) and (2.12)

‖F(xk)‖
L + r

�‖dk‖� ‖F(xk)‖
r

. (2.13)

(ii) From (i) and (2.8), the step 2 is well-defined and so is the Algorithm 1.
(iii) Line search (2.8) is different from that of [19].

3. Convergence property

In order to obtain global convergence, we need the following lemma.

Lemma 3.1 (Solodov and Svaiter [19]). Let F be monotone and x, y ∈ Rn satisfy 〈F(y), x − y〉 > 0. Let

x+ = x − 〈F(y), x − y〉
‖F(y)‖2 F(y).

Then for any x̄ ∈ Rn such that F(x̄) = 0, it holds that

‖x+ − x̄‖2 �‖x − x̄‖2 − ‖x+ − x‖2.

Now we can state our convergence result whose proof is similar to that of [19].

Theorem 3.2. Suppose that F is monotone and Lipschitz continuous and let {xk} be any sequence generated by
Algorithm 1. We also suppose the solution set of the problem is nonempty. For any x̄ such that F(x̄) = 0, it holds that

‖xk+1 − x̄‖2 �‖xk − x̄‖2 − ‖xk+1 − xk‖2.

In particular, {xk} is bounded. Furthermore, it holds that either {xk} is finite and the last iterate is a solution, or the
sequence is infinite and limk→∞ ‖xk+1 − xk‖ = 0. Moreover, {xk} converges to some x̄ such that F(x̄) = 0.
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Proof. We first note that if the algorithm terminates at some iteration k, then dk =0 and we have F(xk)=0 from (2.13),
so that xk is a solution. From now on, we assume that dk 	= 0 for all k, then an infinite {xk} is generated.

We have from (2.8)

〈F(zk), xk − zk〉 = −�k〈F(zk), dk〉���2
k‖dk‖2 > 0. (3.1)

Let x̄ be any point such that F(x̄) = 0. By (2.9), (3.1) and Lemma 3.1, it follows that

‖xk+1 − x̄‖2 �‖xk − x̄‖2 − ‖xk+1 − xk‖2. (3.2)

Hence the sequence {‖xk − x̄‖} is decreasing and convergent. Therefore, the sequence {xk} is bounded, and also

lim
k→∞ ‖xk+1 − xk‖ = 0. (3.3)

By (2.13), it holds that {dk} is bounded and so is {zk}. Now by continuity of F, there exists a constant C > 0 such that
‖F(zk)‖�C.

We obtain from (2.9) and (3.1)

‖xk+1 − xk‖ = 〈F(zk), xk − zk〉
‖F(zk)‖ � �

C
�2
k‖dk‖2.

From the above inequality and (3.3), we have

lim
k→∞ �k‖dk‖ = 0. (3.4)

If lim infk→∞ ‖dk‖ = 0, from (2.13), we have lim infk→∞ ‖F(xk)‖ = 0. Continuity of F implies that the sequence
{xk} has some accumulation point x̂ such that F(x̂) = 0. From (3.2), it holds that {‖xk − x̂‖} converges, and since x̂ is
an accumulation point of {xk}, it must hold that {xk} converges to x̂.

If lim infk→∞ ‖dk‖ > 0, from (2.13), we have lim infk→∞ ‖F(xk)‖ > 0. By (3.4), it holds that

lim
k→∞ �k = 0. (3.5)

We have from (2.8)

−〈F(xk + �mk−1dk), dk〉 < ��mk−1‖dk‖2. (3.6)

Since {xk}, {dk} are bounded, we can choose a subsequence, let k → ∞ in (3.6), we obtain

−〈F(x̂), d̂〉�0, (3.7)

where x̂, d̂ are limits of corresponding subsequences. On the other hand, by (2.13) and already familiar argument,

−〈F(x̂), d̂〉 > 0. (3.8)

(3.7) and (3.8) are a contradiction. Hence lim infk→∞ ‖F(xk)‖ > 0 is not possible.
This finishes the proof. �

4. Numerical results

In this section, We only gave the following two simple problems to test the efficiency of the proposed method.

Problem 1. F : Rn → Rn,

Fi(x) = xi − sin |xi |, i = 1, 2, . . . , n,

where F(x) = (F1(x), F2(x), . . . , Fn(x))T, x = (x1, x2, . . . , xn)
T.
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Table 1
Test results for our method, INM method and SANE method

Our method INM method SANE method

ip n iter time iter time iter time

x1 500 84 0.672 238 5.219 13 0.328
x2 500 68 0.531 33 0.719 14 0.344
x3 500 23 0.203 9 0.203 11 0.312
x4 500 24 0.203 233 5.204 15 0.375
x5 500 20 0.156 8 0.172 7 0.187
x6 500 25 0.203 30 0.641 15 0.375
average 500 40.6667 0.328 91.8333 2.0263 12.5 0.32017
x1 1000 103 1.829 331 25.218 14 1.11

x2 1000 86 1.468 42 3.188 15 1.172
x3 1000 23 0.437 9 0.703 11 0.891
x4 1000 24 0.422 326 24.828 15 1.188
x5 1000 21 0.375 9 0.718 8 0.641
x6 1000 26 0.453 40 3.047 15 1.187
average 1000 47.1667 0.83067 126.1667 9.617 13 1.0315
x1 3000 141 12.75 563 362.657 15 9.985

x2 3000 124 10.719 66 40.844 15 9.313
x3 3000 23 2.094 9 5.765 11 6.844
x4 3000 25 2.235 558 347.125 16 9.938
x5 3000 22 1.968 12 7.641 9 5.609
x6 3000 27 2.359 63 39.25 16 9.954
average 3000 60.3333 5.3542 211.8333 133.8803 13.6667 8.6072

Problem 2. F : Rn → Rn,

F1(x) = 2x1 + sin(x1) − 1,

Fi(x) = −2xi−1 + 2xi + sin (xi) − 1, i = 2, . . . , n − 1,

Fn(x) = 2xn + sin(xn) − 1.

Obviously, Problem 1 is nonsmooth at x = 0.
We first compare our method with the Inexact Newton Method (INM) in [19] and the spectral approach for

nonlinear equation (SANE) in [4]. We test Problem 1 for these three methods in Table 1 with different initial
points x1 = (10, 10, . . . , 10)T, x2 = (1, 1, . . . , 1)T, x3 = (1, 1/2, . . . , 1/n)T, x4 = (−10, −10, . . . ,−10)T, x5 =
(−0.1, −0.1, . . . ,−0.1)T, x6 = (−1, −1, . . . ,−1)T. For our method, we set � = 0.4, � = 0.01, r = 0.001. For INM
method in [19], we set �k = ‖F(xk)‖, �k = 0, � = 0.4, � = 0.01. For SANE method in [4], we set �0 = 1, M = 1, � =
0.01, � = 0.4, 	 = 10. We use the stopping criterion ‖F(xk)‖ < 10−4. The algorithms were coded in MATLAB7.0 and
run on Personal Computer with 2.0 GHZ CPU processor. In Table 1, “n” is the dimension of the problem, “ip” means
the initial point, “iter” stands for the total number of iterations, “time” stands for CPU time in second, “average” is the
average of these numbers respectively.

From Table 1, we can see that the INM method perform worst, it needs most iterations and CPU time. Especially for
initial points x1, x4, these two points are far from the solution of Problem 1, which affects the local fast convergence.
Moreover, Problem 1 is not differentiable at x = 0, which cannot guarantee the superlinear convergence of the INM
method. Our method need more iterations than the SANE method, but needs less CPU time especially for high dimension
case which is important for large scale problems. So the results of Table 1 show our method is very efficient.

Now we discuss the role of the parameter r in our proposed method. Tables 2–3 show the number of iterations
with different dimension sizes and different initial points when our method solve Problems 1 and 2, respectively.
In Tables 2 and 3, the meaning of x0 is the initial point. In Table 2, A/B stand for the total number of iterations in the
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Table 2
Test results for our method on Problem 1 with r = 0.1, 0.001

xT
0 (0.1, . . . , 0.1) (1, . . . , 1) (1, 1/2, . . . , 1/n) (0, 0, . . . , 0) (−0.1, . . . , −0.1) (−1, . . . , −1)

n = 100 170/27 204/38 96/23 1/1 20/19 25/24
n = 500 309/58 343/68 96/23 1/1 21/20 27/25
n = 1000 396/77 431/86 96/23 1/1 22/21 27/26
n = 2000 506/99 540/109 96/23 1/1 23/22 28/27
n = 3000 583/114 617/124 96/23 1/1 23/22 29/27

Table 3
Test results for our method on Problem 2 with r = 1, 0.1

xT
0 (0.1, . . . , 0.1) (1, . . . , 1) (1, 1/2, . . . , 1/n) (0, 0, . . . , 0) (−0.1, . . . , −0.1) (−1, . . . , −1)

n = 100 379/313 376/269 375/280 378/292 380/290 385/295
n = 500 1549/1205 1538/1335 1541/1393 1530/1286 1540/1343 1547/1372
n = 1000 2801/2047 2794/2019 2790/2383 2802/2468 2786/2650 2797/2215
n = 2000 4385/4203 4382/3482 4375/3624 4385/3431 4388/3459 4380/3721
n = 3000 5328/3993 5325/3986 5338/3937 5329/4293 5333/5029 5320/3640

Algorithm 1 with r = 0.1, 0.001 respectively. In Table 3, A/B stand for the total number of iterations in the Algorithm
1 with r = 1, 0.1 respectively.

Tables 2 and 3 show that our method always stopped successfully for each problem. For Problem 1, the initial points
influence the number of iterations very much. For Problem 2, numerical results indicate that the proposed method
perform well, but the initial points do not influence the number of iterations very much. For high dimension case, the
iteration number is large since we don’t use enough derivative information of the equations. Moreover, the results show
that the values of r affects significantly the performance of the algorithm. The smaller r is, the smaller the number of
iteration is. This can explain partly as follows: from the Theorem 3.2, we have

‖xk+1 − x̄‖2 �‖xk − x̄‖2 − ‖xk+1 − xk‖2.

From (2.9) and definitions of zk and dk , we have

‖xk+1 − xk‖2 = |〈F(zk), xk − zk〉|2
‖F(zk)‖2 ≈ ‖xk − zk‖2 = ‖�kdk‖2

= �2
k‖F(xk)‖2�2

k = �2
k‖F(xk)‖2

(
sT
k−1sk−1

yT
k−1sk−1

)2

.

From the above inequalities and the definition yk−1 = F(xk) − F(xk−1) + rsk−1, we can get that when r get smaller,
then xk come closer to solutions of F(x) = 0.
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