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Abstract

We study multivariate approximation for continuous functions in the average case setting. The space
of d variate continuous functions is equipped with the zero mean Gaussian measure whose covariance
function is the reproducing kernel of a weighted Korobov space with the smoothness parameter � > 1 and
weights �d,j for j = 1, 2, . . . , d. The weight �d,j moderates the behavior of functions with respect to
the j th variable, and small �d,j means that functions depend weakly on the j th variable. We study lat-
tice rule algorithms which approximate the Fourier coefficients of a function based on function values
at lattice sample points. The generating vector for these lattice points is constructed by the component-
by-component algorithm, and it is tailored for the approximation problem. Our main interest is when d

is large, and we study tractability and strong tractability of multivariate approximation. That is, we want
to reduce the initial average case error by a factor � by using a polynomial number of function values
in �−1 and d in the case of tractability, and only polynomial in �−1 in the case of strong tractability.
Necessary and sufficient conditions on tractability and strong tractability are obtained by applying known
general tractability results for the class of arbitrary linear functionals and for the class of function values.
Strong tractability holds for the two classes in the average case setting iff supd �1

∑d
j=1 �s

d,j
< ∞ for some

positive s < 1, and tractability holds iff supd �1
∑d

j=1�t
d,j

/ log(d + 1) < ∞ for some positive t < 1. The
previous results for the class of function values have been non-constructive. We provide a construction in
this paper and prove tractability and strong tractability error bounds for lattice rule algorithms. This paper
can be viewed as a continuation of our previous paper where we studied multivariate approximation for
weighted Korobov spaces in the worst case setting. Many technical results from that paper are also useful
for the average case setting. The exponents of �−1 and d corresponding to our error bounds are not sharp.
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However, for � close to 1 and for slow decaying weights, we obtain almost the minimal exponent of �−1.
We also compare the results from the worst case and the average case settings in weighted Korobov spaces.
© 2007 Published by Elsevier Inc.
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1. Introduction

We are interested in approximating real-valued continuous functions defined on the cube [0, 1]d .
The number of variables is d , and d = 1, 2, . . . . Our main interest is when d is large, even in
the hundreds or thousands, as is the case for many applications in mathematical finance, quantum
physics and chemistry, see [16].

We assume that the space of continuous functions is equipped with a zero mean Gaussian
measure �d whose covariance function is the reproducing kernel of a weighted Korobov space
with the smoothness parameter � > 1. In particular, the �d -measure of the classical Korobov space
with smoothness parameter � is 1 as long as � < � − 1, see Section 7. Hence, with probability 1,
all functions have partial derivatives up to the order (� − 1)/2 with respect to each variable.

The reproducing kernel depends on the non-negative weights �d,j for j = 1, 2, . . . , d. The
classical Korobov space corresponds to �d,j = 1 in which case all variables play the same role.
As long as d is relatively small, this is a reasonable assumption. If, however, d is large, the role
of successive variables or groups of variables may be quite different. This corresponds to more
general weights. In this paper we study the so-called product weights, leaving the case of general
weights for future research. For product weights, we have 1��d,1 ��d,2 � · · · ��d,d , and each
weight �d,j moderates the behavior of functions with respect to the j th variable. Small �d,j means
that functions depend weakly on the j th variable, and the limiting case when �d,j = 0 means that
functions are constant with respect to the j th variable.

In this paper we study lattice rule algorithms. Lattice rules are traditionally used for multivariate
integration, see [10]. Recently, there has been a significant progress in the efficient construction
of generating vectors of lattice rules for multivariate integration. The generating vectors can
be constructed by the component-by-component algorithm, which works for arbitrarily large d,
see [3,11–13]. The essence of this algorithm is that each component of the generating vector is
computed by a one-dimensional search, with all the previous components kept unchanged. The
cost of constructing an n-point lattice rule for d variables is proportional to d n log n, see [8].

Lattice rules may also be used for multivariate approximation, see [4] and papers cited there.
This paper can be viewed as a continuation of [4]. We study lattice rule algorithms which ap-
proximate the Fourier coefficients of functions based on function values at lattice sample points.
The generating vector for these lattice points is constructed by the component-by-component
algorithm, and is especially suited for multivariate approximation. The paper [4] considered the
approximation problem in the worst case setting for functions from weighted Korobov spaces,
while here we study the problem in the average case setting for a much larger class of functions—
the space of continuous functions equipped with a zero mean Gaussian measure. Due to the
assumption that the covariance function of the Gaussian measure is the reproducing kernel of
the weighted Korobov space, many technical results from [4] can be applied to the average case
analysis.

The second major theme of this paper is tractability and strong tractability of multivariate
approximation in the average case setting. Tractability has recently become a popular research
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subject in information-based complexity, see [7] and papers cited there. The essence of this
study is to find necessary and sufficient conditions for which the minimal number of information
evaluations needed to reduce the initial error by a factor � is polynomial in �−1 and d in the case of
tractability, and only polynomial in �−1 in the case of strong tractability. When these conditions
hold we want to find algorithms enjoying tractability or strong tractability error bounds.

Two classes of information evaluations are typically studied. The first class �all consists of
all continuous functionals, whereas the second class �std consists of only function values. The
initial error is defined as the smallest error which can be achieved without sampling the functions.
Tractability and strong tractability can be studied in various settings including the worst case and
the average case settings. Most papers on tractability have been devoted to the worst case setting.
The average case setting has been studied in [2], where only strong tractability is addressed,
and in [1], where both strong tractability and tractability are addressed. Necessary and sufficient
conditions on tractability and strong tractability are typically expressed in terms of weights of
the underlying problem. Classical spaces correspond to equal weights, �d,j = 1, and in this
case tractability does not hold, and, even worse, the minimal number of information evaluations
depends exponentially on d . This is referred to as the curse of dimensionality.

Tractability can usually be obtained for sufficiently decaying weights. For multivariate ap-
proximation in the average case setting, necessary and sufficient conditions on tractability and
strong tractability can be obtained from [1,2]. For both classes, �all and �std, strong tractability
holds iff

sup
d �1

d∑
j=1

�s
d,j < ∞ (1)

for some positive s < 1. When this holds then the minimal number of evaluations is of order

O(�−p),

with the factor in the big O notation independent of � and d but dependent on the exponent p.
For both classes �all and �std, the exponent p can be arbitrarily close to the so-called exponent
of strong tractability

p∗ = 2 max(1/�, s�)

1 − max(1/�, s�)
,

where s� is the infimum of the positive numbers s for which (1) holds. Note that p∗ can be
arbitrarily large if � or s� is close to 1.

For both classes �all and �std, tractability holds iff

sup
d �1

∑d
j=1 �t

d,j

log(d + 1)
< ∞ (2)

for some positive t < 1. (All logarithms in the paper are natural logarithms.) When this holds
then the minimal number of evaluations is of order

O(da�−p),

with the factor in the big O notation independent of � and d but dependent on the positive numbers
a and p. For both classes �all and �std, there is a trade-off between the exponents a and p. Indeed,
let � ∈ (max(1/�, t�), 1), where t� is the infimum of the positive numbers t for which (2) holds.
Then the exponents a and p can be equal to (for the class �all) or can be arbitrarily close to
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(for the class �std)

2�(��)R�

1 − �
and

2�

1 − �
,

respectively. Here and elsewhere in the paper �(x) = ∑∞
h=1 h−x for x > 1 is the Riemann zeta

function, and R� = lim supd→∞
∑d

j=1 ��
d,j / log(d + 1) is finite.

Now let � go to max(1/�, t�). Then the exponent p is minimized and goes to

p∗∗ = 2 max(1/�, t�)

1 − max(1/�, t�)
,

but the exponent a goes to infinity when 1/�� t� or when 1/� < t� and R� goes to infinity.
Obviously, for given d and � we should choose � such that da�−p is minimized. We stress that in
the case of tractability, the minimal exponent p can be arbitrarily large if � or t� is close to 1.

The results for the class �all are constructive, whereas the proof presented in [2] for the class
�std uses a non-constructive argument and therefore the results are non-constructive. We provide
a construction for the class �std in this paper. This construction is based on lattice rule algorithms.
We prove that the average case errors of lattice rule algorithms achieve tractability or strong
tractability error bounds. We have the following results.

For lattice rule algorithms with the generating vector especially constructed for multivariate
approximation in the average case setting, we prove in Theorem 10 that the number of function
values required to reduce the average case error from its initial value by a factor of � is of order

O
(
�−[p+2p/(2+p)]) in the case of strong tractability,

O
(
da�−[p+2p/(2+p)]) in the case of tractability,

with the factors in the big O notation independent of � and d but dependent on p, and on a and
p, respectively. Here p can be, as before, arbitrarily close to p∗ or p∗∗, depending on whether
strong tractability or tractability holds, and there is a trade-off between p and a, see the second
part of Theorem 10.

Clearly these bounds are not optimal. As already mentioned p can be very large when �, s� or
t� is close to 1. In this case, the extra term 2p/(2+p), which is always less than 2, is insignificant
since p + 2p/(2 + p) = p[1 + 2/(2 + p)] ≈ p. On the other hand, p is small for large � and
small s� and t�. In this case, the extra term is more important but does not cause serious concern
since p + 2p/(2 + p) = p[1 + 2/(2 + p)]�2p. In other words, for a hard problem we have
essentially the (already large) minimal exponent of �−1. When a problem is easy we are at worst
doubling the (small) minimal exponent of �−1.

As a comparison we also consider the generating vector constructed for multivariate integration.
We prove in Theorem 14 that the number of function values required is of order

O
(
�−2p

)
in the case of strong tractability,

O
(
da�−2p

)
in the case of tractability,

with the factors in the big O notation independent of � and d but dependent on p, and on a

and p, respectively. Here p can be arbitrarily close to p∗ or p∗∗, depending on whether strong
tractability or tractability holds, and again there is a trade-off between p and a, see the second part
of Theorem 14. The essence of these estimates is that we roughly double the exponent of �−1 as
compared to the minimal one. Thus, not surprisingly the generating vector constructed especially
for approximation is better than the vector constructed for integration.



F.Y. Kuo et al. / Journal of Complexity 24 (2008) 283–323 287

In Section 7 we compare the worst case and the average case settings for multivariate approxi-
mation defined over weighted Korobov spaces. We show how much easier the average case setting
is, and show that much smaller tractability and strong tractability exponents can be obtained in the
average case setting, compared to the worst case setting. Finally, in Section 8 we discuss the im-
plementation issues associated with the construction of generating vectors and present numerical
results.

2. Formulation of the problem

We consider the approximation problem in the average case setting for the space F :=
C([0, 1]d) of continuous real functions defined on [0, 1]d . Multivariate approximation, or simply
approximation, is defined in terms of the operator which is the embedding from F to the space
G := L2([0, 1]d), i.e., EMBd : F → G is given by

EMBd f = f.

We assume that the space F is equipped with a Gaussian probability measure �d whose mean
element is zero and whose covariance function is∫

F
f (x)f (y)�d(df ) = Kd,�,�d

(x, y) ∀x, y ∈ [0, 1]d , (3)

where Kd,�,�d
(x, y) is the reproducing kernel for the weighted Korobov space with smoothness

parameter � > 1. The reader is referred to [17] for Gaussian measures and to [6,14] for weighted
Korobov spaces. More precisely, the reproducing kernel Kd,�,�d

has the form

Kd,�,�d
(x, y) =

∑
h∈Zd

e2	ih·(x−y)

rd(�, �d , h)
, i = √−1, (4)

where �d = (�d,1, �d,2, . . . , �d,d) is a vector of positive 1 weights satisfying

1��d,1 ��d,2 � · · · ��d,d > 0,

and

rd(�, �d , h) =
d∏

j=1

r(�, �d,j , hj ) with r(�, �d,j , hj ) =
{

1 if hj = 0,

�−1
d,j |hj |� otherwise.

(5)

Note that rd(�, �d , h) = rd(�, �d , −h) and therefore Kd,�,�d
takes real values and can be rewritten

as

Kd,�,�d
(x, y) =

∑
h∈Zd

cos (2	h · (x − y))
rd(�, �d , h)

.

To simplify our notation, we write rd(h) := rd(�, �d , h) from this point on, except when there is
a need to show the dependence on � or �d .

1 The zero weight �d,j = 0 can be treated as the limiting case of �d,j tending to zero.



288 F.Y. Kuo et al. / Journal of Complexity 24 (2008) 283–323

Let 
d = �dEMB−1
d . Then 
d is a Gaussian measure on the whole 2 space G, with mean element

zero and with the covariance operator C
d
given by

(C
d
f )(x) =

∫
[0,1]d

Kd,�,�d
(x, y)f (y) dy, (6)

see e.g., [15, pp. 218–222]. It is easy to obtain the eigenpairs of the operator C
d
. We have

C
d
cos (2	h · x) = 1

rd(h)
cos (2	h · x) for all h ∈ Zd ,

C
d
sin (2	h · x) = 1

rd(h)
sin (2	h · x) for all non-zero h ∈ Zd .

Hence, the normalized eigenfunction corresponding to the eigenvalue 1/rd(0) = 1 is just the
function 1, and for h 	= 0 the two normalized eigenfunctions corresponding to the double eigen-
value 1/rd(h) = 1/rd(−h) are

√
2 cos(2	h · x) and

√
2 sin(2	h · x). The eigenfunctions are

orthonormalized in G, and additionally the L∞ norms of all the eigenfunctions are uniformly
bounded by

√
2. The last property will be needed later.

It is convenient to label the vectors h = h(i) ∈ Zd so that the corresponding eigenvalues of C
d

are in non-increasing order, i.e.,

�d,i = 1

rd(h(i))
with 1 = �d,1 ��d,2 � · · · > 0. (7)

Clearly such labeling is not unique since we can have repeated eigenvalues.
Without loss of generality, see [15, Chapter 6], we approximate f by linear algorithms

An,d(f ) =
n∑

k=1

akLk(f ), (8)

where Lk belongs either to the class �all of all continuous linear functionals or to the class �std

of function evaluations. The average case error of the algorithm An,d is defined as

eavg(An,d) :=
(∫

F
‖f − An,d(f )‖2

G�d(df )

)1/2

,

and the initial error associated with A0,d = 0 is

e
avg
0,d :=

(∫
F

‖f ‖2
G�d(df )

)1/2

=
(∫

[0,1]d
Kd,�,�d

(x, x) dx
)1/2

=
⎛
⎝∑

h∈Zd

1

rd(h)

⎞
⎠

1/2

=
d∏

j=1

(
1 + 2�(�)�d,j

)1/2
.

Hence, the square of the initial error is equal to the sum of the eigenvalues of the operator C
d
,

and

e
avg
0,d =

( ∞∑
i=1

�d,i

)1/2

=
d∏

j=1

(
1 + 2�(�)�d,j

)1/2
.

2 The inverse operator EMB−1
d

is defined for an arbitrary Borel set A of G by EMB−1
d

A = {f ∈ F : EMBd f ∈ A}.
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Let � ∈ {�all, �std}. For � ∈ (0, 1) and d �1, define

navg(�, d, �) := min{n : ∃An,d with Lk ∈ � such that eavg(An,d)��eavg
0,d }

as the minimal number of evaluations from the class � which is needed to reduce the initial error
in the average case setting by a factor �. The approximation problem in the average case setting
is tractable in the class � iff

navg(�, d, �)�C�−p da ∀d = 1, 2, . . . ,∀� ∈ (0, 1), (9)

where C, p and a are non-negative numbers independent of � and d. The approximation problem
is strongly tractable if (9) holds with a = 0. In this case, the infimum of p from (9) is called the
exponent of strong tractability, and is denoted by pavg(�).

In Theorem 1, we summarize known results on tractability and strong tractability in the average
case setting with our specific covariance kernel Kd,�,�d

. This theorem can be derived from already
established results in [1,2]. The details of the derivation will be given in the next section.

Theorem 1. Consider multivariate approximation EMBd : F → G in the average case setting,
where F is equipped with a zero mean Gaussian measure whose covariance kernel is Kd,�,�d

given by (4), with the smoothness parameter � > 1. For � = {�d}d �1 a given infinite sequence of
weight vectors �d = (�d,1, �d,2, . . . , �d,d) satisfying 1��d,1 ��d,2 � · · · ��d,d > 0, define the
sum exponents

s� := inf

⎧⎨
⎩s > 0 : sup

d �1

d∑
j=1

�s
d,j < ∞

⎫⎬
⎭ ,

t� := inf

{
t > 0 : sup

d �1

∑d
j=1 �t

d,j

log(d + 1)
< ∞

}
,

with the convention that inf ∅ = ∞. For � > 0, define also

R� := lim sup
d→∞

∑d
j=1 ��

d,j

log(d + 1)
.

(a) The approximation problem in the average case setting is strongly tractable in either class
�all or �std iff s� < 1. When this holds, then for any � ∈ (max(1/�, s�), 1) and any integer k,
we have

navg(�, d, �all) = O
(
�−

2�
1−�

)
,

navg(�, d, �std) = O
(
�−

2�
1−� [1−(1−�)k]−1

)
,

with the implied factors in the big O notation independent of � and d but dependent on � and,
for the class �std, on k. The exponents of strong tractability are

pavg(�all) = pavg(�std) = 2 max(1/�, s�)

1 − max(1/�, s�)
.
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(b) The approximation problem in the average case setting is tractable in either class �all or �std

iff t� < 1. When this holds, then for any � ∈ (max(1/�, t�), 1), any a > 2�(��)R�/�, and any
integer k, we have

navg(�, d, �all) = O
(
d

a�
1−� �−

2�
1−�

)
,

navg(�, d, �std) = O
(
d

a�
1−� [1−(1−�)k]−1

�−
2�

1−� [1−(1−�)k]−1
)

,

with the implied factors in the big O notation independent of � and d but dependent on �, a,
and, for the class �std, on k.

First we comment on the sum exponents s� and t�, and the numbers R�. Clearly s� � t�. In the
special case where the weights do not depend on d , we have the following result.

Lemma 2. Let �d,j = �j for 1�j �d and � = (�1, �2, . . .) with 1��1 ��2 � · · · > 0. Suppose
that t� < ∞. Then

s� = t� and R� = 0 ∀� > t�.

Proof. Since s� � t�, we only need to show that s� � t�. For any t > t�, let X := supd �1
∑d

j=1 �t
j /

log(d + 1) < ∞. Since the weights are non-increasing, we have

d�t
d

log(d + 1)
�

∑d
j=1 �t

j

log(d + 1)
�X ∀d �1,

implying

�d �
(

log(d + 1)

d
X

)1/t

∀d �1.

Thus, for any s > t we have

∞∑
j=1

�s
j �Xs/t

∞∑
j=1

(
log(j + 1)

j

)s/t

< ∞.

Since s can be arbitrarily close to t , and t can be arbitrarily close to t�, we conclude that s� � t�.
Hence s� = t�. Furthermore, for any � > t� = s� we have Y := ∑∞

j=1 ��
j < ∞ and thus

R� = lim sup
d→∞

∑d
j=1 ��

j

log(d + 1)
� lim sup

d→∞
Y

log(d + 1)
= 0,

which implies R� = 0. �

Combining Lemma 2 and Theorem 1, we see that tractability and strong tractability are equiv-
alent when the weights are independent of d .

For weights that do depend on d , we could have t� < ∞ and s� 	= t�. Also R� need not be
zero for any � > t�. Indeed, take for example, �d,j = 1 for all j = 1, 2, . . . , 
log(d + 1)�, and
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�d,j = 0 otherwise. Then we have s� = ∞, since for any s > 0,

d∑
j=1

�s
d,j = 
log(d + 1)� → ∞ as d → ∞.

On the other hand we have t� = 0 since for any t > 0,

1�
∑d

j=1 �t
d,j

log(d + 1)
= 
log(d + 1)�

log(d + 1)
< 1 + 1

log(d + 1)
�1 + 1

log 2
∀d �1.

Clearly, in this example we have R� = 1 for all � > t�.
We now comment on the big O bounds in Theorem 1, keeping in mind that tractability and

strong tractability are equivalent if the weights do not depend on d. Assume first that s� < 1.
Then we have strong tractability, and for all � ∈ (max(1/�, s�), 1),

the exponent of �−1 is, or is arbitrarily close to,
2�

1 − �
.

(For the class �std, the exponent of �−1 is arbitrarily close to 2�/(1 − �) by taking k arbitrarily
large.) We need to take � as small as possible to minimize the exponent of �−1. As we shall see
in the derivation of Theorem 1, to ensure that the factors in the big O bounds are finite we must
have � > 1/� to guarantee that �(��) < ∞, and � > s� to guarantee that supd �1

∑d
j=1 ��

d,j <

∞. Suppose that 1/� < s� < 1. Then we can take � = s� if we additionally assume that
supd �1

∑d
j=1 �s�

d,j < ∞. In this case, the minimal exponent of �−1 is or is arbitrary close to
2s�/(1 − s�).

Now let t� < 1. Then we have tractability, and for all � ∈ (max(1/�, t�), 1),

the exponent of �−1 is, or is arbitrarily close to,
2�

1 − �
,

and

the exponent of d is arbitrarily close to
2�(��)R�

1 − �
.

Note that we need � > 1/� to guarantee that �(��) < ∞, and � > t� is needed to guarantee
R� < ∞. Clearly, there is a trade-off between the exponents of �−1 and d. Just as for strong
tractability, we need � as small as possible to minimize the exponent of �−1. On the other hand,
the exponent of d can be very large if � is small. Suppose that 1/� < t� < 1. Then we can even
take � = t� to obtain the minimal exponent of �−1, provided we assume additionally that Rt� < ∞.
In this case, the exponent of �−1 is, or is arbitrarily close to, 2t�/(1 − t�), and the exponent of d

is arbitrarily close to 2�(�t�)Rt�/(1 − t�).

3. Derivation of Theorem 1

In this section we derive Theorem 1 from already established results in [1,2]. We consider the
two classes �all and �std separately.
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3.1. Tractability and strong tractability in the class �all

In the class �all, the optimal algorithm is well known and navg(�, d, �all) is fully characterized
by the eigenvalues of the covariance operator C
d

given by (6), see [15, Chapter 6].
We recall that the vectors h = h(i) ∈ Zd are labeled such that the corresponding eigenvalues

�d,i = 1/rd(h(i)) are in non-increasing order. The optimal algorithm in the class �all is the
truncated Fourier series

An,d(f )(x) :=
n∑

i=1

f̂ (h(i))e2	ih(i)·x.

The average case error of An,d is

eavg(An,d) =
⎛
⎝ ∞∑

i=n+1

1

rd(h(i))

⎞
⎠

1/2

=
⎛
⎝ ∞∑

i=n+1

�d,i

⎞
⎠

1/2

.

Here, optimality means that the algorithm has the minimal average case error among all algorithms
that use at most n evaluations from �all. Thus,

navg(�, d, �all) = min

⎧⎨
⎩n :

∞∑
i=n+1

�d,i ��2
∞∑
i=1

�d,i

⎫⎬
⎭ .

Theorem 1 of [1] states necessary and sufficient conditions on tractability and strong tractability
of the approximation problem in the class �all, see also [2] for strong tractability. Specifically,
the approximation problem is strongly tractable in the class �all iff

M� := sup
d �1

(∑∞
i=1 ��

d,i

)1/�∑∞
i=1 �d,i

< ∞ for some � ∈ (0, 1).

When this holds, then

navg(�, d, �all)�
⌈(

�M�

1 − �

) �
1−�

�−
2�

1−�

⌉
. (10)

The exponent of strong tractability is

pavg(�all) = 2�∗

1 − �∗ ,

where �∗ is the infimum of all numbers � for which (10) holds. The approximation problem is
tractable in the class �all iff

M�,a := sup
d �1

(∑∞
i=1 ��

d,i

)1/�

da
∑∞

i=1 �d,i

< ∞ for some � ∈ (0, 1) and a�0.

When this holds, then

navg(�, d, �all)�
⌈(

�M�,a

1 − �

) �
1−�

d
a�

1−� �−
2�

1−�

⌉
. (11)
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In our current setting, we have for � ∈ (1/�, 1),

(∑∞
i=1 ��

d,i

)1/�∑∞
i=1 �d,i

=
d∏

j=1

(
1 + 2�(��)��

d,j

)1/�

1 + 2�(�)�d,j

, (12)

where we made use of [rd(h)]� = [rd(�, �d , h)]� = rd(��, ��
d , h)with ��

d := (��
d,1, �

�
d,2, . . . , �

�
d,d).

We now show that the right-hand side of (12) has upper and lower bounds given by

exp

⎛
⎝b�

d∑
j=1

��
d,j

⎞
⎠ �

d∏
j=1

(
1 + 2�(��)��

d,j

)1/�

1 + 2�(�)�d,j

� exp

⎛
⎝2�(��)

�

d∑
j=1

��
d,j

⎞
⎠ , (13)

where

b� := 1

�
log

(
1 + (2 − 2�)�(��)

1 + 2��(��)

)
.

To prove (13) we note that
∏d

j=1 (1+xj ) = exp(
∑d

j=1 log(1+xj )) for all xj �0. Furthermore,
it can be checked that for any x∗ > 0 we have

log(1 + x∗)
x∗ x� log(1 + x)�x ∀x ∈ (0, x∗]. (14)

The upper bound in (13) follows easily by applying the upper estimate of (14) with x = 2�(��)��
d,j

to the numerator and estimating the denominator by 1. To prove the lower bound in (13), we use
Jensen’s inequality 3 in the denominator:

1 + 2�(�)�d,j = 1 + 2�d,j

∞∑
h=1

h−� �
(

1 + 2���
d,j

∞∑
h=1

h−��

)1/�

=
(

1 + 2��(��)��
d,j

)1/�
.

Then (
1 + 2�(��)��

d,j

)1/�

1 + 2�(�)�d,j

�
(

1 + 2�(��)��
d,j

1 + 2��(��)��
d,j

)1/�

=
(

1 + (2 − 2�)�(��)��
d,j

1 + 2��(��)��
d,j

)1/�

�
(

1 + (2 − 2�)�(��)

1 + 2��(��)
��
d,j

)1/�

.

From this and the lower estimate of (14) with x∗ = (2 − 2�)�(��)/(1 + 2��(��)), we obtain the
lower bound in (13). This completes the proof of (13).

From (12) and (13) we conclude that

exp

⎛
⎝b� sup

d �1

d∑
j=1

��
d,j

⎞
⎠ �M� � exp

⎛
⎝2�(��)

�
sup
d �1

d∑
j=1

��
d,j

⎞
⎠ .

3 Jensen’s inequality states that
(∑

k ak

)� �
∑

k a�
k

for any non-negative ak and any � ∈ (0, 1].
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Thus, M� is finite for some � ∈ (1/�, 1) iff

sup
d �1

d∑
j=1

��
d,j < ∞ for some � ∈ (1/�, 1).

This, in turn, holds iff s� < 1, where s� is defined as in Theorem 1. Hence, strong tractability
holds iff s� < 1. When s� < 1, then for � ∈ (max(1/�, s�), 1) we have M� < ∞. This, together
with (10), proves the big O bound on navg(�, d, �all) in the case of strong tractability.

We now consider tractability for the class �all. For � ∈ (1/�, 1) and a�0, we use ex =
(d + 1)x/ log(d+1), and conclude from (12) and (13) that

sup
d �1

(d + 1)
b�

∑d
j=1 ��

d,j
log(d+1)

−a �M�,a � sup
d �1

(
1 + 1

d

)a

(d + 1)
2�(��)

�

∑d
j=1 ��

d,j
log(d+1)

−a
.

Thus, M�,a is finite for some � ∈ (1/�, 1) and a�0 iff

sup
d �1

∑d
j=1 ��

d,j

log(d + 1)
< ∞ for some � ∈ (1/�, 1),

which holds iff t� < 1, where t� is defined as in Theorem 1. Hence, tractability holds iff t� < 1.
When t� < 1, then for any � ∈ (max(1/�, t�), 1) we may choose a > 2�(��)R�/�, where R� < ∞
is defined as in Theorem 1. This choice of a ensures that the exponent of d +1 in the upper bound
of M�,a is negative for large d , and hence M�,a < ∞. This and (11) together prove the big O

bound on navg(�, d, �all) in Theorem 1 in the case of tractability.

3.2. Tractability and strong tractability in the class �std

We now turn to the class �std. Since �std ⊂ �all, we know that s� < 1 is a necessary condition
for strong tractability in the class �std, and t� < 1 is a necessary condition for tractability in the
class �std.

Using the fact that the eigenfunctions of C
d
are uniformly bounded in the L∞ norm 4 by√

2, we find out from the proof of Theorem 1 in [2] that for any � ∈ (max(1/�, s�), 1) in the
case of strong tractability, and any � ∈ (max(1/�, t�), 1) and any a > 2�(��)R�/� in the case of
tractability, for any positive integer k there is an algorithm Akn,d using kn function values whose
average case error satisfies

eavg(Akn,d)�
(

4k + pd(4k − 1)/3
)1/2

n−qk e
avg
0,d ,

where

pd =

⎧⎪⎨
⎪⎩

�M�

1 − �
in the case of strong tractability,

�M�,a

1 − �
da in the case of tractability,

qk = 1 − �

2�

(
1 − (1 − �)k

)
.

4 This assumption is removed in [1].
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If we define

n =
⌈(

4k + pd(4k − 1)/3
)1/(2qk)

�−1/qk

⌉

then eavg(Akn,d)��eavg
0,d , and therefore navg(�, d, �std)�kn, which proves the big O bounds of

navg(�, d, �std) in Theorem 1.
This also shows that s� < 1 implies strong tractability in the class �std, and that the exponent

of strong tractability in this class is the same as in the class �all. Furthermore, we see that t� < 1
implies tractability in the class �std. This completes the derivation of Theorem 1.

A closer examination of the argument above leads to the conclusion that the necessary and
sufficient conditions for tractability and strong tractability remain the same if we study the absolute
error e

avg
n,d instead of the normalized error e

avg
n,d/e

avg
0,d . When the absolute error e

avg
n,d is considered, the

factors in the big O bounds of navg(�, d, �), � ∈ {�all, �std}, are larger, although the exponents
of d and �−1 remain unchanged for both tractability and strong tractability.

We stress here that the proof in [2] was non-constructive, giving no clue as to how to find
an algorithm An,d that achieves the estimate of navg(�, d, �std) in Theorem 1. We provide a
construction in this paper.

4. Lattice rule algorithms in the class �std

A rank-1 lattice rule, see [10], is an equal weight integration rule which approximates the
integral of a function f over the unit cube [0, 1]d by

1

n

n∑
k=1

f
({

kz
n

})
.

Here z is an integer vector, known as the generating vector, which has no factor in common
with n, and the braces around a vector indicate that each component of the vector is to be re-
placed by its fractional part. In recent years there have been many theoretical advances on lattice
rules for multivariate integration. The most significant achievement has been the development
of component-by-component algorithms for choosing good generating vectors that lead to the
optimal rate of convergence for integrands belonging to weighted Korobov or weighted Sobolev
spaces, see e.g., [3,11–13].

In this section we study lattice rule algorithms for multivariate approximation. By a lattice rule
algorithm we mean a linear algorithm that uses function values at the lattice sample points {kz/n}
for k = 1, 2, . . . , n. For simplicity we assume that n is prime and

z ∈ Zd
n := {1, 2, . . . , n − 1}d .

4.1. The optimal lattice rule algorithm

We start by finding the optimal lattice rule algorithm A
(opt)
n,d for a given z ∈ Zd

n . More precisely,

A
(opt)
n,d (f )(x) :=

n∑
k=1

ak(x)f
({

kz
n

})
,
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where a1, a2 . . . , an are functions from G chosen to minimize the average case error

e
avg (opt)
n,d (z) :=

(∫
F

‖f − A
(opt)
n,d (f )‖2

G�d(df )

)1/2

.

Note that e
avg(opt)
n,d (z) is a quadratic form in terms of the functions ak and therefore it is possible

to find its minimum by the standard technique.

Lemma 3. Let n be prime and let z ∈ Zd
n be given. The optimal lattice rule algorithm A

(opt)
n,d has

the explicit form

A
(opt)
n,d (f )(x)

=
n∑

k=1

⎛
⎝1

n

∑
h∈Zd

1

1 + rd(h)Fd(h, z)
e−2	ikh·z/n+2	ih·x

⎞
⎠ f

({
kz
n

})

=
∑

h∈Zd

(
1

n

1

1 + rd(h)Fd(h, z)

n∑
k=1

f
({

kz
n

})
e−2	ikh·z/n

)
e2	ih·x, (15)

where

Fd(h, z) :=
∑

�∈Zd\{0}
�·z≡0(mod n)

1

rd(h + �)
. (16)

The average case error of A
(opt)
n,d is

e
avg(opt)
n,d (z) =

⎛
⎝∑

h∈Zd

Fd(h, z)
1 + rd(h)Fd(h, z)

⎞
⎠

1/2

. (17)

Proof. For each k = 1, 2, . . . , n, let âk(h) denote the Fourier coefficient of ak . Then the pointwise
error from the approximation A

(opt)
n,d (f ) is

(f − A
(opt)
n,d (f ))(x) =

∑
h∈Zd

(
f̂ (h) −

n∑
k=1

âk(h)f
({

kz
n

}))
e2	ih·x.

In effect, A
(opt)
n,d (f ) approximates each Fourier coefficient of f by

f̂ (h) ≈
n∑

k=1

âk(h)f
({

kz
n

})
.

The average case error is

e
avg (opt)
n,d (z) =

⎛
⎝∑

h∈Zd

eh

⎞
⎠

1/2

, eh :=
∫

F

∣∣∣∣∣f̂ (h) −
n∑

k=1

âk(h)f
({

kz
n

})∣∣∣∣∣
2

�d(df ).
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Note that eh can be viewed as the squared average case integration error in approximating the
Fourier coefficient f̂ (h). The optimal choice of a1, a2, . . . , an can be obtained by choosing the
Fourier coefficients â1(h), â2(h), . . . , ân(h) to minimize eh for each h.

It follows from the property (3) of the covariance kernel Kd,�,�d
that∫

F
f̂ (h)f̂ (h)�d(df ) =

∫
F

∫
[0,1]d

∫
[0,1]d

f (x)f (y)e−2	ih·(x−y) dx dy �d(df )

=
∫

[0,1]d

∫
[0,1]d

Kd,�,�d
(x, y)e−2	ih·(x−y) dx dy = 1

rd(h)
,

and ∫
F

f̂ (h)f
({

kz
n

})
�d(df ) =

∫
F

∫
[0,1]d

f (x)f
({

kz
n

})
e−2	ih·x dx�d(df )

=
∫

[0,1]d
Kd,�,�d

(
x,
{

kz
n

})
e−2	ih·x dx = e−2	ikh·z/n

rd(h)
.

Similarly,

∫
F

f̂ (h)f
({

kz
n

})
�d(df ) = e2	ikh·z/n

rd(h)
,

and ∫
F

f
({

kz
n

})
f
({

tz
n

})
�d(df ) =

∑
p∈Zd

e2	i(k−t)p·z/n

rd(p)
.

Thus,

eh = 1

rd(h)
−

n∑
k=1

âk(h)
e2	ikh·z/n

rd(h)
−

n∑
k=1

âk(h)
e−2	ikh·z/n

rd(h)

+
n∑

k=1

n∑
t=1

âk(h)ât (h)
∑
p∈Zd

e2	i(k−t)p·z/n

rd(p)

= 1

rd(h)
− aTb − bTa + aTKa,

where a = [ât (h)]T
1� t �n,

b =
[

e−2	ikh·z/n

rd(h)

]T

1�k �n

and K =
⎡
⎣∑

p∈Zd

e2	i(k−t)p·z/n

rd(p)

⎤
⎦

1�k �n
1� t �n

.

Since K is hermitian and positive definite, we see that eh is minimized when a is the solution of
b = Ka, and the minimum is

eh = 1

rd(h)
− aTb.
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Suppose that ât (h) = �(h) e−2	ith·z/n. We check for which �(h) we have b = Ka. For each
k = 1, 2, . . . , n we compute the kth component of Ka, getting

n∑
t=1

∑
p∈Zd

e−2	i(k−t)p·z/n

rd(p)
�(h)e−2	ith·z/n

= �(h)
∑
p∈Zd

e−2	ikp·z/n

rd(p)

(
n∑

t=1

e2	it (p−h)·z/n

)
= �(h) n

∑
p∈Zd

(p−h)·z≡0(mod n)

e−2	ikp·z/n

rd(p)

= �(h)ne−2	ikh·z/n
∑
�∈Zd

�·z≡0(mod n)

1

rd(h + �)

= �(h)ne−2	ikh·z/n

(
1

rd(h)
+ Fd(h, z)

)
,

which equals the kth component of b if we take

�(h) = 1

n

1

rd(h)

(
1

rd(h)
+ Fd(h, z)

)−1

= 1

n

1

1 + rd(h)Fd(h, z)
.

This leads to

âk(h) = e−2	ikh·z/n

n

1

1 + rd(h)Fd(h, z)
,

and

eh = 1

rd(h)

(
1 − 1

1 + rd(h)Fd(h, z)

)
= Fd(h, z)

1 + rd(h)Fd(h, z)
.

The lemma follows easily from the last two expressions. �

From Lemma 3 we see that the optimal algorithm A
(opt)
n,d approximates the Fourier coefficient

f̂ (h), or equivalently the integral of f (x)e−2	ih·x, by a lattice rule with equal integration weights

1

n

1

1 + rd(h)Fd(h, z)

as opposed to the typical weights 1/n. The algorithm A
(opt)
n,d turns out to be essentially the same as

the spline algorithm considered in [19], where, instead of an average case error, a modified worst
case error criterion was used.

4.2. Two lattice rule algorithms

In practice we cannot include every Fourier component as in the optimal algorithm in (15). Here
we introduce two modified algorithms which include only a finite number of Fourier components.

Clearly each term inside the sum of (17) satisfies

Fd(h, z)
1 + rd(h)Fd(h, z)

� min

(
1

rd(h)
, Fd(h, z)

)
.
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It makes sense to use the first bound when rd(h) is large and the second bound when rd(h) is
small. This motivates the definition of the set

Ad(M) := {h ∈ Zd : rd(h)�M}. (18)

Using (17), we can write

e
avg(opt)
n,d (z) �

⎛
⎝ ∑

h/∈Ad (M)

1

rd(h)
+

∑
h∈Ad (M)

Fd(h, z)
1 + rd(h)Fd(h, z)

⎞
⎠

1/2

(19)

�

⎛
⎝ ∑

h/∈Ad (M)

1

rd(h)
+

∑
h∈Ad (M)

Fd(h, z)

⎞
⎠

1/2

. (20)

Both upper bounds above have interpretations as the average case errors for more realistic algo-
rithms. Firstly, if in (15), instead of approximating all Fourier coefficients of f , we approximate
only those Fourier coefficients with h ∈ Ad(M) and simply omit the terms with h 	∈ Ad(M),
then we have a modified algorithm

A
(1)
n,d,M(f )(x)

:=
∑

h∈Ad (M)

(
1

n

1

1 + rd(h)Fd(h, z)

n∑
k=1

f
({

kz
n

})
e−2	ikh·z/n

)
e2	ih·x, (21)

whose average case error is exactly the right-hand side of (19). Indeed, A
(1)
n,d,M corresponds to

taking

âk(h) = 0 and eh = 1

rd(h)
for h /∈ Ad(M)

in the proof of Lemma 3. If we further change the optimal algorithm by taking

âk(h) = e−2	ikh·z/n

n
and eh = Fd(h, z) for h ∈ Ad(M),

which corresponds to using the typical integration weights 1/n in the lattice rule approximation
of f̂ (h) for h ∈ Ad(M), then we have another modified algorithm

A
(2)
n,d,M(f )(x) :=

∑
h∈Ad (M)

(
1

n

n∑
k=1

f
({

kz
n

})
e−2	ikh·z/n

)
e2	ih·x, (22)

whose average case error is exactly the expression in (20). We summarize this discussion in the
following corollary.

Corollary 4. The average case errors for the algorithms A
(1)
n,d,M and A

(2)
n,d,M defined by (21) and

(22), respectively, are given by

e
avg (i)

n,d,M(z) =
⎛
⎝ ∑

h/∈Ad (M)

1

rd(h)
+ E

(i)
d (z)

⎞
⎠

1/2

, i = 1, 2,
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where

E
(1)
d (z) :=

∑
h∈Ad (M)

Fd(h, z)
1 + rd(h)Fd(h, z)

and E
(2)
d (z) :=

∑
h∈Ad (M)

Fd(h, z).

For both algorithms, it is clear that only the second term of the error, E(i)
d (z), depends on z, and

we should choose z such that E
(i)
d (z) is as small as possible. For fixed z we have E

(1)
d (z)�E

(2)
d (z)

and e
avg(opt)
n,d (z)�e

avg(1)

n,d,M(z)�e
avg(2)

n,d,M(z). Note, however, that a good choice of z for one algorithm
is not necessarily good for the other two algorithms.

The algorithm proposed in [4] is our A
(2)
n,d,M here. There it was shown that the worst case error

of A
(2)
n,d,M , for the unit ball of the weighted Korobov space with the smoothness parameter � > 1,

is bounded from above by(
1

M
+ E

(2)
d (z)

)1/2

,

and a vector z∗ was constructed component-by-component to minimize E
(2)
d (z). We will describe

this construction in the next section.
One important point to note is that the weights in [4] do not depend on the dimension d. Thus,

we must be cautious when we make use of results from [4] that are inductive in the dimension.
Throughout this paper (except when we discuss tractability and strong tractability), we shall
assume that d, and the corresponding weight vector �d = (�d,1, �d,2, . . . , �d,d), are given and
fixed. We shall use s as a running index from 1 to d in any inductive argument. Formally, for
each s = 1, 2, . . . , d, we define the s-dimensional truncated variants of rd(h), Ad(M), Fd(h, z),
E

(1)
d (z) and E

(2)
d (z) as follows:

rd,s(h) :=
s∏

j=1

r(�, �d,j , hj ), Ad,s(M) := {h ∈ Zs : rd,s(h)�M},

Fd,s(h, z) :=
∑

�∈Zs\{0}
�·z≡0(mod n)

1

rd,s(h + �)
,

E
(1)
d,s(z) :=

∑
h∈Ad,s (M)

Fd,s(h, z)
1 + rd,s(h)Fd,s(h, z)

, E
(2)
d,s(z) :=

∑
h∈Ad,s (M)

Fd,s(h, z).

These expressions involve only the first s dimensions, but they make use of the dth weight vector
�d . When s = d we recover the original expressions, for example, Ad,d(M) = Ad(M).

Now we examine the set Ad(M). Clearly, Ad(M) = ∅ if M < 1. Furthermore, we observe
that Ad(M) = {0} if �d,1 	= 1 and M ∈ [1, 1/�d,1), since if h ∈ Ad(M) then necessarily
|hj |�(�d,jM)1/� for all j = 1, 2, . . . , d. Thus, we need M �1/�d,1 to guarantee a non-trivial
set Ad(M), and if �d,1 is tiny then M would have to be huge. Fortunately, the problem is trivial
when �d,1 is small, and it no longer matters if the set contains just the zero vector. For simplicity,
we shall assume for the remainder of this paper that

�d,1 � �0 > 0.

We end this section with two lemmas that we shall need later.
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Lemma 5. For M �1, the cardinality of the set Ad(M) satisfies

(�d,1M)1/� � |Ad(M)|�Mq
d∏

j=1

(
1 + 2�(�q)�q

d,j

)
∀q > 1

� .

Proof. The proof is by induction using the properties |Ad,1(M)| = 1 + 2�(�d,1M)1/��
�(�d,1M)1/� and

Ad,s+1(M) = {(h, 0) : h ∈ Ad,s(M)} ∪
∞⋃

hs+1=−∞
hs+1 	=0

{
(h, hs+1) : h ∈ Ad,s

(
�d,s+1M

|hs+1|�
)}

for all s = 1, 2, . . . , d − 1. See [4, Lemma 1] for the full details. �

Lemma 6. For M �1 we have

∑
h/∈Ad (M)

1

rd(h)
� c0,d,�

|Ad(M)|1/�−1
∀� ∈

(
1
� , 1

)
,

where

c0,d,� := �

1 − �

d∏
j=1

(
1 + 2�(��)��

d,j

)1/�
. (23)

Proof. We recall that the vectors h = h(i) ∈ Zd are indexed in such a way that the numbers
�d,i = 1/rd(h(i)) are in non-increasing order. Thus,

Ad(M) = {h(i) ∈ Zd : i = 1, 2, . . . , |Ad(M)|},

and we have

∑
h/∈Ad (M)

1

rd(h)
=

∞∑
i=|Ad (M)|+1

�d,i .

Since the numbers �d,i are non-increasing, we have for all i�1,

��
d,i �

1

i

i∑
�=1

��
d,� � 1

i

∞∑
�=1

��
d,� = 1

i

d∏
j=1

(
1 + 2�(��)��

d,j

)
∀� > 1

� ,

which leads to

∞∑
i=|Ad (M)|+1

�d,i �
∞∑

i=|Ad (M)|+1

i−1/�
d∏

j=1

(
1 + 2�(��)��

d,j

)1/�
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�
∫ ∞

|Ad (M)|
x−1/� dx

d∏
j=1

(
1 + 2�(��)��

d,j

)1/�

= 1

|Ad(M)|1/�−1

�

1 − �

d∏
j=1

(
1 + 2�(��)��

d,j

)1/� ∀� ∈
(

1
� , 1

)
.

This completes the proof. �

5. Generating vectors constructed for approximation

In this section we introduce component-by-component constructions to find good generating
vectors for lattice rule algorithms. We prove that the average case errors of these algorithms
achieve tractability or strong tractability error bounds.

5.1. Component-by-component constructions

We see from Corollary 4 that it is enough to construct a generating vector z for which E
(i)
d (z)

is as small as possible. We stress once again that we must use the same weight vector �d =
(�d,1, �d,2, . . . , �d,d) throughout the entire construction process. The two constructions, one for

each algorithm A
(i)
n,d,M , are given below.

Algorithm 7. Let n be a prime number and M �1. For i = 1 or 2,

1. Set z1 = 1.
2. For s = 2, 3, . . . , d, find zs in {1, 2, . . . , n − 1} to minimize

E
(i)
d,s(z1, . . . , zs−1, zs).

Lemma 8. Let 
 > 1 and M �1. Suppose n is a prime number satisfying n�
M1/�. Then for
each i = 1, 2 the average case error of the algorithm A

(i)
n,d,M with z(i) ∈ Zd

n constructed by
Algorithm 7(i) satisfies

e
avg (i)

n,d,M(z(i))�
(

c0,d,�

|Ad(M)|1/�−1
+ c1,d,�,�|Ad(M)|1/�

(n − 1)1/�

)1/2

for all � ∈ (1/�, 1), � ∈ (1/�, 1], and � ∈ (0, (1 − 1/
)�], where c0,d,� is defined as in (23), and

c1,d,�,� := 1

�

d∏
j=1

(
1 + 2(1 + ��)�(��)��

d,j

)1/�
.

Proof. Using Corollary 4 and Lemma 6, we see that the result is proved if we can show by
induction that for each i = 1, 2, the vector z(i) ∈ Zd

n constructed by Algorithm 7(i) satisfies, for
each s = 1, 2, . . . , d,

E
(i)
d,s(z

(i)
1 , . . . , z(i)

s )�

⎛
⎝ 1

��

|Ad,s(M)|
n − 1

s∏
j=1

(
1 + 2(1 + ��)�(��)��

d,j

)⎞⎠
1/�

(24)
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for all � ∈ (1/�, 1] and � ∈ (0, (1 − 1/
)�]. Here we only give an outline of the proof. See the
proof of [4, Lemma 6] for the full details. Note that our error bound here is tighter than in [4,
Lemma 6] since it depends on the cardinality of Ad,s(M) instead of its upper bound.

For each i = 1, 2, suppose we have already obtained z(i,s) = (z
(i)
1 , . . . , z

(i)
s ) ∈ Zs

n from
Algorithm 7(i), with s < d , for which (24) is satisfied. First we show that

E
(i)
d,s+1(z

(i,s), zs+1)�
(
1 + 2�(�)�d,s+1

)
E

(i)
d,s(z

(i,s)) + �(z(i,s), zs+1),

where �(z(i,s), zs+1) corresponds to the �s+1 	= 0 terms in E
(2)
d,s+1(z

(i,s), zs+1). Then we apply
Jensen’s inequality and show that for all � ∈ (1/�, 1],

1

n − 1

n−1∑
zs+1=1

[
�(z(i,s), zs+1)

]�
�W1 + W2 + W3,

with

W1 �
2�(��)��

d,s+1

n − 1

⎛
⎝ s∏

j=1

(
1 + 2�(��)��

d,j

)⎞⎠ |Ad,s(M)|,

W2 �
1 + 2�(��)��

d,s+1

n − 1

⎛
⎝ s∏

j=1

(
1 + 2�(��)��

d,j

)⎞⎠ 2
∞∑

hs+1=1

∣∣∣Ad,s

(
�d,s+1M

h�
s+1

)∣∣∣ ,

W3 �
2(1 − 1/
)−���(��)��

d,s+1

n − 1

⎛
⎝ s∏

j=1

(
1 + 2�(��)��

d,j

)⎞⎠ 2
∞∑

hs+1=1

∣∣∣Ad,s

(
�d,s+1M

h�
s+1

)∣∣∣ .
These estimates are tedious to obtain. In particular, we need to use the property that h ∈ Ad,s+1(M)

implies |hs+1|�(�d,s+1M)1/� �M1/� �
−1n.

Since z
(i)
s+1 is chosen to minimize E

(i)
d,s+1(z

(i,s), zs+1), we have

E
(i)
d,s+1(z

(i,s), z
(i)
s+1)

�
(
1 + 2�(�)�d,s+1

)
E

(i)
d,s(z

(i,s)) +
(

min
zs+1∈Zn

[�(z(i,s), zs+1)]�
)1/�

�
(
1 + 2�(�)�d,s+1

)
E

(i)
d,s(z

(i,s)) +
⎛
⎝ 1

n − 1

n−1∑
zs+1=1

[�(z(i,s), zs+1)]�
⎞
⎠

1/�

.

Now we combine all of the estimates above and use the induction hypothesis and the property

|Ad,s+1(M)| = |Ad,s(M)| + 2
∞∑

hs+1=1

∣∣∣Ad,s

(
�d,s+1M

h�
s+1

)∣∣∣ .
After multiple applications of Jensen’s inequality, we finally conclude that the error bound (24)
holds with s replaced by s + 1. �



304 F.Y. Kuo et al. / Journal of Complexity 24 (2008) 283–323

5.2. Choosing M and n

Given � > 0, we want to find small M and n for which the upper bound of the errors e
avg (i)

n,d,M(z(i)),

i = 1, 2, given in Lemma 8 is at most �eavg
0,d . First we estimate the error bound from above by

replacing |Ad(M)| with its lower and upper bounds from Lemma 5. This gives

e
avg (i)

n,d,M(z(i))�
(

c2,d,�

M(1−�)/(��) + c3,d,q,�,� Mq/�

(n − 1)1/�

)1/2

for all q > 1/�, � ∈ (1/�, 1), � ∈ (1/�, 1], and � ∈ (0, (1 − 1/
)�], where

c2,d,� :=
(

1

�d,1

) 1−�
�� �

1 − �

d∏
j=1

(
1 + 2�(�q)��

d,j

)1/�
,

c3,d,q,�,� := 1

�

d∏
j=1

(
1 + 2�(�q)�q

d,j

)1/� (
1 + 2(1 + ��)�(��)��

d,j

)1/�
. (25)

Now we take q = � = � and choose M �1 such that the first term in the error bound is at most
�2[eavg

0,d ]2/2. This can be achieved by taking

M = max

⎛
⎝( 2c2,d,�

�2[eavg
0,d ]2

) ��
1−�

, 1

⎞
⎠ . (26)

We then choose a prime n satisfying n�
M1/� such that the second term in the error bound is
no greater than the first. This can be achieved by taking

n = pr

(
max

((
c3,d,�,�,�M

1−�+��
��

c2,d,�

)�

+ 1, 
M
1
�

))
, (27)

where pr(x) denotes the smallest prime number which is no less than x. From Chebyshev’s
theorem we know that 
x�� pr(x)�2
x�.

Substituting (26) into (27), we obtain

n = pr
(

max
(
C1,d,�,� �−

2�
1−� [1+�(�−1)] + 1, C2,d,��

− 2�
1−� , C3,d,�,�, 


))
,

where

C1,d,�,� :=
⎛
⎝c3,d,�,�,�

c2,d,�

(
2 c2,d,�

[eavg
0,d ]2

) 1−�+��
1−�

⎞
⎠

�

� 2�+ ��2
1−�

(
�

1−�

) ��2
1−�

(
1
�

)� (
1
�0

)�
exp

⎛
⎝2�(��)

(
2 + ��

1−� + ��
) d∑

j=1

��
d,j

⎞
⎠ (28)

= 2�+ ��2
1−�

(
�

1−�

) ��2
1−�

(
1
�

)� (
1
�0

)�
(d + 1)

2�(��)
(

2+ ��
1−� +��

)∑d
j=1 ��

d,j
log(d+1) , (29)
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C2,d,� := 


(
2 c2,d,�

[eavg
0,d ]2

) �
1−�

� 
2
�

1−�

(
�

1−�

) �
1−�

(
1
�0

) 1
�

exp

⎛
⎝2�(��) 1

1−�

d∑
j=1

��
d,j

⎞
⎠ (30)

= 
2
�

1−�

(
�

1−�

) �
1−�

(
1
�0

) 1
�
(d + 1)

2�(��) 1
1−�

∑d
j=1 ��

d,j
log(d+1) , (31)

and

C3,d,�,� :=
(

c3,d,�,�,�

c2,d,�

)�

+ 1

�
(

1−�
�

)� (
1
�

)�
exp

⎛
⎝2�(��)

(
1 + ��) d∑

j=1

��
d,j

⎞
⎠+ 1 (32)

=
(

1−�
�

)� (
1
�

)�
(d + 1)

2�(��)(1+��)

∑d
j=1 ��

d,j
log(d+1) + 1. (33)

Suppose first that s� < 1 which, as we know, is needed for strong tractability. We take � ∈
(max(1/�, s�), 1) and � ∈ (0, (1 − 1/
)�]. Since �� > 1 and � > s�, we have �(��) < ∞ and
supd �1

∑d
j=1 ��

d,j < ∞. Thus we see from (28), (30), and (32) that

sup
d �1

C1,d,�,� < ∞, sup
d �1

C2,d,� < ∞ and sup
d �1

C3,d,�,� < ∞.

Assume next that t� < 1 which is needed for tractability. We choose � ∈ (max(1/�, t�), 1) and
� ∈ (0, (1 − 1/
)�]. Then �(��) < ∞ and R� < ∞. Hence it follows from (29), (31), and (33)
that

C1,d,�,� = O(da), C2,d,� = O(db) and C3,d,�,� = O(dc),

where a > b, a > c, and a is arbitrarily close to 2�(��)[2 + ��/(1 − �) + ��]R�.
We summarize the analysis of this section in the following theorem.

Theorem 9. Consider multivariate approximation in the average case setting defined as in The-
orem 1.

(a) Suppose that s� < 1. Given d �1, � ∈ (0, 1), 
 > 1, � ∈ (max(1/�, s�), 1), and � ∈
(0, (1 − 1/
)�], for each i = 1, 2, the approximation algorithm A

(i)
n,d,M , with M and n given

by (26) and (27), and with generating vector z(i) constructed by Algorithm 7(i), achieves the
error bound e

avg (i)

n,d,M(z(i))��eavg
0,d using

n = O
(
�−

2�
1−� [1+�(�−1)])

function values. The implied factor in the big O notation is independent of � and d but depends
on � and �. The exponent of �−1 can be arbitrarily close to

pavg(�std) [1 + max(1/�, s�)(� − 1)] .
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(b) Suppose that t� < 1. Given d �1, � ∈ (0, 1), 
 > 1, � ∈ (max(1/�, t�), 1), and � ∈
(0, (1 − 1/
)�], for each i = 1, 2, the approximation algorithm A

(i)
n,d,M , with M and n given

by (26) and (27), and with generating vector z(i) constructed by Algorithm 7(i), achieves the
error bound e

avg(i)

n,d,M(z(i))��eavg
0,d using

n = O
(
da�−

2�
1−� [1+�(�−1)])

function values, where a is arbitrarily close to

2�(��)
(

2 + ��
1−� + ��

)
R�.

The implied factor in the big O notation is independent of � and d but depends on �, �, and a.

In this section we have sought the optimal relationship between M and n in order to explore
the issues relating to tractability and the corresponding exponents. We mention, however, that in
practice there is no need to choose M and n in this way, since the average case error expression in
Corollary 4 as well as its upper bound in Lemma 8 are both valid regardless of how M and n are
chosen. It is natural to think of M as determining the linear space

{e2	ih·x : h ∈ Ad(M)} (34)

from which the algorithms A
(i)
n,d,M(f ) in (21) and (22) are to be chosen, while n is the number

of points in the quadrature scheme used to approximate the corresponding Fourier coefficients.
As a final remark about the choice of M and n, we may note that a different approximating linear
space to (34) was considered in [5], with the requirement that the dimension of the approximating
space is equal to n. There is no such requirement here.

5.3. Improved error bounds

We recall from Theorem 1 that the exponents of �−1 for strong tractability and tractability
depend on

max(1/�, s�) and max(1/�, t�),

respectively. Thus if s� or t� is greater than 1/�, then the smoothness parameter � has no effect on
the exponent of �−1 whatsoever. Hence, even if we have infinite smoothness, the problem can be
extremely hard if the weights do not decay fast enough.

Assume for the moment that s� < 1, which is needed for strong tractability. Theorem 9 presents
us with an undesirable dilemma: in the case of s� > 1/�, the exponent of �−1 is arbitrarily close
to

pavg(�std) [1 + s�(� − 1)] ,

which increases as the smoothness parameter � increases, and it can grow to infinity if � is allowed
to approach infinity. In other words, higher smoothness actually hurts!

This counter intuitive observation can be partially explained from the bounds on the cardinality
of the set Ad(M). We recall from Lemma 5 that

(�d,1M)1/� � |Ad(M)|�Mq
d∏

j=1

(
1 + 2�(�q)�q

d,j

)
∀q > 1

� .
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To ensure that the upper bound on |Ad(M)| is uniformly bounded in d, we need to impose an
additional condition that q > s�. If s� �1/�, then we can take q arbitrarily close to 1/� and the
bounds on |Ad(M)| have essentially the same order M1/�. On the other hand, when s� > 1/�,
the value of q can be no smaller than s� and there is a gap between the upper and lower bounds
with respect to the exponent of M. This gap can be huge for large �.

Put differently, if 1/� < q < s� < 1, then the upper bound on |Ad(M)|/Mq depends on d and
may go to infinity with d faster than any polynomial in d. To illustrate this point, assume for the
moment that �d,j = d−1/� for some � ∈ (1/�, 1). Then s� = �, and for q ∈ (1/�, s�) we have

d∏
j=1

(
1 + 2�(�q)�q

d,j

)
= exp

(
2�(�q)d1−q/�

)
(1 + o(1)) as d → ∞,

which goes faster with d to infinity than any polynomial in d. To see that |Ad(M)|/Mq indeed
grows with d and not just its upper bound, take M = 2k�dk/� for some integer k < d and keep
�d,j = d−1/�. Then all vectors h with at least d − k components equal to 0, and at most k

components from the set {−2, −1, 1, 2} belong to the set Ad(M). Since we have 4k
(

d
k

)
such

vectors, the cardinality of Ad(M) is at least of order dk . Hence,

|Ad(M)|
Mq

= �
(
dk(1−q/�)

)
∀q ∈

(
1
� , s�

)
.

We stress that k can be arbitrarily large. This means that for q < s� = �, |Ad(M)|/Mq may
depend on an arbitrarily large power of d. This proves that for slowly decaying weights, the
cardinality of Ad(M) does not depend on � alone but on the sum exponent of weights.

To remove this undesirable dilemma, we will use an artificial smoothness parameter �̃��
defined by

�̃ := min(�, 1/s�),

when s� < 1, and

�̃ := min(�, 1/t�),

when t� < 1. We define a new set

Ãd(M) := {h ∈ Zd : rd(�̃, �d , h)�M},
which is essentially the set Ad(M) defined in (18), but with the � in rd(h) = rd(�, �d , h) replaced
by �̃. Then we define two new algorithms A

(i)

n,d,M,�̃, i = 1, 2, by replacing the set Ad(M) in (21)

and (22) with the new set Ãd(M). Note that all other occurrences of � in rd(h) and Fd(h, z) in
the formula (21) remain unchanged.

The average case errors e
avg(i)

n,d,M,�̃(z), i = 1, 2, for the new algorithms can be obtained by

renaming E
(i)
d (z) to Ẽ

(i)
d (z) and simply replacing all occurrences of Ad(M) with Ãd(M) in

Corollary 4, while keeping all other occurrences of � unchanged. The component-by-component
constructions given by Algorithm 7(i), i = 1, 2, can be modified accordingly. When it comes to
analyzing the average case errors achieved by the new algorithms, we can make use of all our
existing analysis. Since the value of rd(�, �d , h) increases as � decreases, all the error expressions
can be bounded from above by replacing all occurrences of � with �̃. (Note that we are not changing
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the smoothness parameter; all we are doing is changing the upper bounds on the average case
errors.) Hence we obtain the following Theorem analogous to Theorem 9.

Theorem 10. Consider multivariate approximation in the average case setting defined as in
Theorem 1.

(a) Suppose that s� < 1 and define

�̃ := min(�, 1/s�).

Given d �1, � ∈ (0, 1), 
 > 1, � ∈ (1/�̃, 1), and � ∈ (0, (1 − 1/
)�̃], for each i = 1, 2,
the approximation algorithm A

(i)

n,d,M,�̃, with M and n given by (26) and (27) where every

occurrence of � is replaced by �̃, and with generating vector z(i) constructed by the modified
Algorithm 7(i), achieves the error bound e

avg(i)

n,d,M,�̃(z
(i))��eavg

0,d using

n = O
(
�−

2�
1−� [1+�(�̃−1)])

function values. The implied factor in the big O notation is independent of � and d but depends
on � and �. The exponent of �−1 can be arbitrarily close to

2

�̃ − 1
+ 2

�̃
= pavg(�std) + 2pavg(�std)

2 + pavg(�std)
.

(b) Suppose that t� < 1 and define

�̃ := min(�, 1/t�).

Given d �1, � ∈ (0, 1), 
 > 1, � ∈ (1/�̃, 1), and � ∈ (0, (1 − 1/
)�̃], for each i = 1, 2,
the approximation algorithm A

(i)

n,d,M,�̃, with M and n given by (26) and (27) where every

occurrence of � is replaced by �̃, and with generating vector z(i) constructed by the modified
Algorithm 7(i), achieves the error bound e

avg(i)

n,d,M,�̃(z
(i))��eavg

0,d using

n = O
(
da�−

2�
1−� [1+�(�̃−1)])

function values, where a is arbitrarily close to

2�(�̃�)
(

2 + �̃�
1−� + ��

)
R�.

The implied factor in the big O notation is independent of � and d but depends on �, �, and a.

Note that

pavg(�std) + 2pavg(�std)

2 + pavg(�std)
�pavg(�std) [1 + max(1/�, s�)(� − 1)] .

Thus, Theorem 10 is indeed an improvement over Theorem 9.
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6. Generating vectors constructed for integration

For the moment let us forget about the artificial smoothness parameter �̃. The lattice rule
algorithms A

(1)
n,d,M and A

(2)
n,d,M approximate the Fourier coefficients of f, which are integrals, by

lattice rules. Thus it makes sense to ask if a generating vector z constructed for the integration
problem can also be efficiently used for the approximation problem.

For n prime and z ∈ Zd
n , we approximate the integral of f

Id(f ) =
∫

[0,1]d
f (x) dx

by the optimal integration rule Q
(opt)
n,d using lattice points {kz/n} for k = 1, 2, . . . , n. That is,

Q
(opt)
n,d (f ) =

n∑
k=1

wkf
({

kz
n

})
,

where w1, w2, . . . , wn are integration weights chosen to minimize the average case integration
error:

e
avg-INT (opt)
n,d (z) :=

(∫
F

|Id(f ) − Q
(opt)
n,d (f )|2�d(df )

)1/2

.

Since Id(f ) = f̂ (0), we see from Lemma 3 and its proof that the optimal integration weights
are given by

wk = âk(0) = 1

n

1

1 + Fd(0, z)
, k = 1, 2, . . . , n,

and the average case error of Q
(opt)
n,d is

e
avg-INT (opt)
n,d (z) = e

1/2
0 =

(
Fd(0, z)

1 + Fd(0, z)

)1/2

=
(

1 − 1

1 + Fd(0, z)

)1/2

.

If, instead of using the optimal integration weights given above, we use the typical equal weights
1/n, then the average case integration error is [Fd(0, z)]1/2. In both cases, it is sufficient that we
find a vector z which leads to a small value of Fd(0, z). We construct z component-by-component
as follows, keeping in mind that we must use the same weight vector �d = (�d,1, �d,2, . . . , �d,d)

throughout the entire construction process.

Algorithm 11. Let n be a prime number.

1. Set z1 = 1.
2. For s = 2, 3, . . . , d, with z1, . . . , zs−1 fixed, find zs in {1, 2, . . . , n − 1} to minimize

Fd,s(0, (z1, . . . , zs−1, zs)).

Lemma 12. Let n be prime. The average case errors for the algorithms A
(1)
n,d,M and A

(2)
n,d,M with

z(0) ∈ Zd
n constructed by Algorithm 11 satisfy

e
avg (1)

n,d,M (z(0))�e
avg (2)

n,d,M (z(0))�
(

c0,d,�

|Ad(M)|1/�−1
+ c4,d,� M |Ad(M)|

(n − 1)1/�

)1/2
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for all � ∈ (1/�, 1) and � ∈ (1/�, 1], where c0,d,� is defined as in (23) and

c4,d,� := 2�k̂�d

⎛
⎜⎝

k̂�d∏
j=1

�d,j

⎞
⎟⎠ d∏

j=1

(
1 + 2�(��)��

d,j

)1/�
,

with k̂�d
denoting the largest index 1�k�d such that �d,k > 2−�, and k̂�d

= 0 if no such index
exists.

Proof. Using the following estimate proved in [6], also used in [4, Section 2],

1

rd(h + �)
� rd(h)

rd(�)

d∏
j=1

max(1, 2��d,j ),

we have from (16) that Fd(h, z)�rd(h)Fd(0, z)
∏d

j=1 max(1, 2��d,j ), which leads to

E
(1)
d (z)�E

(2)
d (z) �

∑
h∈Ad (M)

rd(h)Fd(0, z)
d∏

j=1

max(1, 2��d,j )

� M|Ad(M)| Fd(0, z)2�k̂�d

k̂�d∏
j=1

�d,j .

We know from existing results for the integration problem in the worst case setting, see also (12)
of [4], that the generating vector z(0) constructed by Algorithm 11 satisfies

Fd(0, z(0))�(n − 1)−1/�
d∏

j=1

(
1 + 2�(��)��

d,j

)1/� ∀� ∈
(

1
� , 1

]
.

The inequality in Lemma 12 now follows from Corollary 4 by combining the bounds above and
making use of Lemma 6. �

Before we proceed to choose M and n, we first prove a simple result concerning k̂�d
defined in

Lemma 12. Note that this result holds when 2−� is replaced by any fixed number w > 0.

Lemma 13. If s� < 1 then

sup
d �1

k̂�d
< ∞.

If t� < 1 then

sup
d �1

k̂�d

log(d + 1)
< ∞.

Proof. Let w = 2−�. First we assume that s� < 1. Then for all d �1 we have

d∑
j=1

�d,j �Y where Y := sup
d �1

d∑
j=1

�d,j < ∞.
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Let d0 := 
Y/w�. Since the �d,j are non-increasing in j, for d �d0 we have

�d,d0
� 1

d0

d0∑
j=1

�d,j � Y

d0
�w.

In other words, k̂�d
< d0 for all d �d0, and hence supd �1 k̂�d

< ∞.
Now we assume that t� < 1. Then for all d �1 we have

∑d
j=1 �d,j

log(d + 1)
�X where X := sup

d �1

∑d
j=1 �d,j

log(d + 1)
< ∞.

Let d1 := 
X/w� and d2 := max{d �1 : d/ log(d + 1) < d1}. Then d2 �d1, and for d > d2 we
have d1 log(d + 1)�d , and hence

�d,
d1 log(d+1)� � 1


d1 log(d + 1)�

d1 log(d+1)�∑

j=1

�d,j �

d∑
j=1

�d,j

d1 log(d + 1)
� X

d1
�w.

It follows that k̂�d
< d1 log(d + 1) for all d > d2. Hence

sup
d �1

k̂�d

log(d + 1)
� max

(
d2

log(d2 + 1)
, d1

)
= d1 < ∞.

This completes the proof. �

We want to find small M and n for which the upper bound of the errors e
avg (i)

n,d,M(z(0)), i = 1, 2,

given in Lemma 12 is at most �eavg
0,d . Using the same line of argument as in Section 5.2, for

� ∈ (1/�, 1) we choose M as in (26) and

n = pr

⎛
⎝
⎛
⎝c5,d,�M

1−�+��+��2
��

c2,d,�

⎞
⎠

�

+ 1

⎞
⎠ , (35)

where c2,d,� is defined as in (25) and

c5,d,� := 2�k̂�d

⎛
⎜⎝

k̂�d∏
j=1

�d,j

⎞
⎟⎠ d∏

j=1

(
1 + 2�(��)��

d,j

)1+ 1
�
.

Substituting (26) into (35), we obtain

n = pr
(

max
(
C4,d,��

− 2�
1−� [1+�(��+�−1)] + 1, C5,d,�

))
,
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where

C4,d,� :=
⎛
⎜⎝c5,d,�

c2,d,�

(
2c2,d,�

[eavg
0,d ]2

) 1−�+��+��2
1−�

⎞
⎟⎠

�

� 2�+ ��2(1+�)
1−�

(
�

1−�

) ��2(1+�)
1−�

(
1
�0

)�(1+�)

×exp

⎛
⎝��(log 2)k̂�d

+ 2�(��)
(

1 + � + ��(1+�)
1−�

) d∑
j=1

��
d,j

⎞
⎠

= 2�+ ��2(1+�)
1−�

(
�

1−�

) ��2(1+�)
1−�

(
1
�0

)�(1+�)

×(d + 1)
��(log 2)

k̂�d
log(d+1)

+2�(��)
(

1+�+ ��(1+�)
1−�

)∑d
j=1 ��

d,j
log(d+1) ,

and

C5,d,� :=
(

c5,d,�

c2,d,�

)�

+ 1 �
(

1−�
�

)�
exp

⎛
⎝��(log 2)k̂�d

+ 2�(��)�
d∑

j=1

��
d,j

⎞
⎠+ 1

=
(

1−�
�

)�
(d + 1)

��(log 2)
k̂�d

log(d+1)
+2�(��)�

∑d
j=1 ��

d,j
log(d+1) + 1.

If s� < 1, then by choosing � ∈ (max(1/�, s�), 1) we have supd �1 C4,d,� < ∞ and supd �1 C5,d,�
< ∞. On the other hand if t� < 1, then we choose � ∈ (max(1/�, t�), 1) and this leads to C4,d,� =
O(da) and C5,d,� = O(dc), where a > c and a can be arbitrarily close to ��(log 2)K̂ +2�(��)[1+
� + ��(1 + �)/(1 − �)]R�, with K̂ = lim supd→∞ k̂�d

/ log(d + 1), and R� given in Theorem 1.
Now we switch to the artificial smoothness parameter �̃ introduced in Section 5.3 and consider

the average case errors of the modified algorithms A
(i)

n,d,M,�̃, i = 1, 2. As in Section 5.3, all our
analysis above can be carried forward by simply replacing every occurrence of � with �̃. We obtain
the following theorem.

Theorem 14. Consider multivariate approximation in the average case setting defined as in
Theorem 1.

(a) Suppose that s� < 1 and define

�̃ := min(�, 1/s�).

Given d �1, � ∈ (0, 1) and � ∈ (1/�̃, 1), for each i = 1, 2, the approximation algorithm
A

(i)

n,d,M,�̃, with M and n given by (26) and (35) where every occurrence of � is replaced by

�̃, and with generating vector z(0) constructed by the modified Algorithm 11, achieves the
error bound e

avg (i)

n,d,M,�̃(z
(0))�� e

avg
0,d using

n = O
(
�−

2�
1−� [1+�(�̃�+�̃−1)])
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function values. The implied factor in the big O notation is independent of � and d but depends
on �. The exponent of �−1 can be arbitrarily close to

2 pavg(�std).

(b) Suppose that t� < 1 and define

�̃ := min(�, 1/t�).

Given d �1, � ∈ (0, 1), and � ∈ (1/�̃, 1), for each i = 1, 2, the approximation algorithm
A

(i)

n,d,M,�̃, with M and n given by (26) and (35) where every occurrence of � is replaced by

�̃, and with generating vector z(0) constructed by the modified Algorithm 11, achieves the
error bound e

avg (i)

n,d,M,�̃(z
(0))�� e

avg
0,d using

n = O

(
da �−

2�
1−� [1+�(�̃�+�̃−1)]

)

function values, where a is arbitrarily close to

�̃�(log 2)K̂ + 2�(�̃�)
(

1 + � + �̃�(1+�)
1−�

)
R�,

with K̂ = lim supd→∞ k̂�d
/ log(d+1) < ∞, and R� given in Theorem 1. The implied factor

in the big O notation is independent of � and d but depends on � and a.

7. Comparison with the worst case setting

In this section we briefly compare the results obtained in this paper for the approximation
problem in the average case setting with the results obtained in [4] for the approximation problem
in the worst case setting for weighted Korobov spaces.

The weighted Korobov space Hd,�,�d
with � > 1 consists of 1-periodic real functions defined

on [0, 1]d for which

‖f ‖Hd,�,�d
=
⎛
⎝∑

h∈Zd

rd(�, �d , h)|f̂ (h)|2
⎞
⎠

1/2

< ∞, (36)

with rd(�, �d , h) given by (5) when we replace � by �, and the weight vector �d by �d =
(�d,1, �d,2, . . . , �d,d) with 1��d,1 ��d,2 � · · · ��d,d > 0. The reproducing kernel of Hd,�,�d

is
Kd,�,�d

given by (4) with the same change of � to �, and �d to �d . Note that the weights in [4]
do not depend on d, but the results can be generalized in much the same way as in the previous
sections.

The approximation problem has been studied in the worst case setting for the unit ball of the
space Hd,�,�d

. For technical reasons we consider this problem for the ball of radius q. Clearly, all
tractability results obtained for the unit ball are also valid for the ball of radius q. The reason is
that the initial worst case error as well as the worst case error of all linear algorithms are simply
multiplied by q, and therefore the reduction of the initial error by a factor � is independent of q.

The worst case error of a linear algorithm (8) is now defined as

ewor(An,d) := sup
f ∈Hd,�,�d‖f ‖Hd,�,�d

�q

‖f − An,d(f )‖G = q ‖EMBd − An,d‖.
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For n = 0 and A0,d = 0, the initial error is

ewor
0,d = q ‖EMBd‖.

Let

nwor(�, d, �) := min{n : ∃An,d with Lk ∈ � such that ewor(An,d)�� ewor
0,d }

be the minimal number of evaluations from the class � which is needed to reduce the initial error
in the worst case setting by a factor � for the approximation problem in the worst case setting for
the ball of Hd,�,�d

of radius q.
The approximation problem in the worst case setting is tractable in the class � iff

nwor(�, d, �)�C�−p da ∀d = 1, 2, . . . ,∀� ∈ (0, 1), (37)

where C, p and a are non-negative numbers independent of � and d. The approximation problem
is strongly tractable if (37) holds with a = 0. In this case, the infimum of p from (37) is called
the exponent of strong tractability, and is denoted by pwor(�).

It is known, see [6,18], that the approximation problem is strongly tractable in either class �all

or �std iff

sup
d �1

d∑
j=1

�d,j < ∞.

When this holds then

pwor(�all) = 2 max(1/�, s�) and pwor(�std) ∈
[
pwor(�all), pwor(�all) + 2

]
,

where s� is given in Theorem 1. The approximation problem is tractable in either class �all or
�std iff

L� := lim sup
d→∞

∑d
j=1 �d,j

log(d + 1)
< ∞. (38)

In [4], we constructed lattice rule algorithms whose worst case errors achieve strong tractability or
tractability error bounds. More precisely, for strong tractability we need O(�−p) function values
whereas for tractability we need O(da�−4) function values, with the factors in the big O notation
independent of � and d but dependent on p and a, respectively, where p is arbitrarily close to
2pwor(�all) and a is arbitrarily close to 4�(�)L�.

We now discuss the average case setting of the approximation problem for the weighted Korobov
space Hd,�,�d

. Since Hd,�,�d
is a (Borel) subset of F = C([0, 1]d), we equip the linear space

Hd,�,�d
with the Gaussian measure �d with mean element zero and covariance function Kd,�,�d

defined in Section 2. We have

�d(Hd,�,�d
) = 
d(Hd,�,�d

),

where, as before, 
d = �dEMB−1
d is a Gaussian probability measure on G = L2([0, 1]d).

We now show that 
d is a probability measure on Hd,�,�d
iff � > �+1. To do this, we apply the

Kolmogorov (or zero-one) principle, see [9] as well as [15, p. 308], which says that for a linear
subspace B of the separable Hilbert space G we have 
d(B) = 0 or 
d(B) = 1. Furthermore, we
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know when the measure of B is zero and when it is one: namely, if we denote the orthonormal
system of eigenelements {zh} of C
d

, with C
d
zh = �hzh, and if

B =
⎧⎨
⎩g ∈ G :

∑
h∈Zd

|〈g, zh〉|2 ah < ∞
⎫⎬
⎭

for some non-negative ah, then


d(B) = 1 iff
∑

h∈Zd

ah�h < ∞.

In our case, B = Hd,�,�d
and we have {ah} = {rd(�, �d , h)} and {�h} = {1/rd(�, �d , h)}.

Furthermore,

∑
h∈Zd

rd(�, �d , h)

rd(�, �d , h)
=

d∏
j=1

(
1 + 2�(� − �)

�d,j

�d,j

)
< ∞ iff � > � + 1.

That is why from now on we assume that � > � + 1. For such �, it follows that 
d restricted
to Hd,�,�d

is a Gaussian probability measure with mean element zero and covariance function
Kd,�,�d

. From this it follows that the average case setting for the approximation problem over the
space Hd,�,�d

is the same as over the space F = C([0, 1]d).
We want to compare the results for approximation in the worst case and average case settings

defined over the ball of Hd,�,�d
of radius q,

Ballq = { f ∈ Hd,�,�d
: ‖f ‖Hd,�,�d

�q}.
Thus we need to equip Ballq with a probability measure. To achieve this, we normalize the measure

d and take


d,q(A) = 
d

(
A ∩ Ballq

)

d

(
Ballq

) (39)

for any Borel set A of G.
Let n

avg
q (�, d, �) denote the minimal number of evaluations needed from the class � ⊂

{�std, �all} to reduce the initial error by a factor � for the approximation problem in the aver-
age case setting for the ball of Hd,�,�d

of radius q which is equipped with the measure 
d,q . Let
navg(�, d, �) = n

avg
∞ (�, d, �) denote the minimal number of evaluation when we consider the

approximation problem for the whole space Hd,�,�d
, i.e., with q = ∞ and 
d,∞ = 
d . Note that

for q = ∞ we use the same notation as in the previous sections since the average case setting for
the approximation problems for F = C([0, 1]d) and for the whole space Hd,�,�d

are the same.
We are ready to prove the following theorem.

Theorem 15. Let � > 1, � > � + 1, and let

P := sup
d �1

d∑
j=1

�d,j

�d,j

< ∞. (40)

Then there exists a positive number q0 depending only on � − � and P and independent of � and
d such that the approximation problem in the average case setting for the whole space Hd,�,�d
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equipped with the measure 
d and for the ball of Hd,�,�d
of radius q �q0 equipped with the

measure 
d,q are essentially the same, in that

c1 navg(c2�, d, �)�n
avg
q (�, d, �)�c3 navg(c4�, d, �),

where

c1 = 1 −√
10/27 = 0.391419 . . . ,

c2 =
(

1 +√
3/10

)
/

√
1 −√

10/27 = 2.473841 . . . ,

c3 = 10/9 = 1.111111 . . . ,

c4 =√
9/10

√
1 −√

3/10 = 0.638004 . . . .

Proof. We use the known fact that the average case setting for the ball of radius q is essentially
the same as the average case setting for the whole space if q is sufficiently large compared to the
trace of the covariance operator, see [15, Chapter 6, Section 5.8]. In particular, we need to choose
q such that 1 − 
d(Ballq)�x := 0.1. Arguing as in [15, p. 258], we observe that for any real a,

1 − 
d(Ballq) �
∫

‖f ‖Hd,�,�d
>q

exp
(
a
(
‖f ‖2

Hd,�,�d
− q2

))

d(df )

� exp
(
−q2a

) ∫
G

exp
(
a‖f ‖2

Hd,�,�d

)

d(df ).

To evaluate the last integral we first use [15, p. 258, Remark 5.8.1], which states that for a Gaussian
measure 
d on a separable Hilbert space G

∫
G

exp
(
a‖f ‖2

G
)


d(df ) =
∞∏
i=1

1√
1 − 2a�d,i

,

if {�d,i} are the eigenvalues of the covariance operator C
d
, and a < (2 maxi �1 �d,i)

−1. In our
particular case the eigenvalues of the covariance operator are given by (7), but the result needs to
be modified because the norm of f in the exponent is the norm in Hd,�,�d

given by (36), not the
norm in G = L2([0, 1]d). With the appropriate modification, the result becomes

∫
G

exp
(
a‖f ‖2

Hd,�,�d

)

d(df ) =

∏
h∈Zd

(
1 − 2a

rd(�, �d , h)

rd(�, �d , h)

)−1/2

,

if a < [2 maxh∈Zd rd(�, �d , h)/rd(�, �d , h)]−1. It follows that, under the tighter condition a <

[2∑h∈Zd rd(�, �d , h)/rd(�, �d , h)]−1, we have

∫
G

exp
(
a‖f ‖2

Hd,�,�d

)

d(df ) �

⎛
⎝1 − 2a

∑
h∈Zd

rd(�, �d , h)

rd(�, �d , h)

⎞
⎠

−1/2

=
⎛
⎝1 − 2a

d∏
j=1

(
1 + 2�(� − �)

�d,j

�d,j

)⎞⎠
−1/2

.
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For a = [4∏d
j=1(1 + 2�(� − �)�d,j /�d,j )]−1 we therefore have

∫
G

exp
(
a‖f ‖2

Hd,�,�d

)

d(df )�

√
2.

Hence

1 − 
d(Ballq)�
√

2 exp

(
− q2

4
∏d

j=1

(
1 + 2�(� − �)�d,j /�d,j

)
)

.

We need to choose q such that 1 − 
d(Ballq)�x. Note that P < ∞ implies that
lim supd→∞

∑d
j=1 �d,j /�d,j and supd �1

∏d
j=1(1 + 2�(� − �)�d,j /�d,j ) are finite. Hence, there

is a number q0 depending only on how large P and �(� − �) are such that for all q �q0 we have
1 − 
d(Ballq)�x. Observe that the value of �(� − �) depends only on how close � − � is to 1.
Hence, q0 depends on � − � and P, but is independent of d and, of course, of �.

Let e
avg
0,d,q denote the initial error for the approximation problem over the ball of Hd,�,�d

of

radius q �q0 equipped with the measure 
d,q , and let e
avg
0,d = e

avg
0,d,∞. From [15, p. 261, Theorem

5.8.2] we know that

√
1 − √

3x�
e

avg
0,d,q

e
avg
0,d,∞

�1 + √
3x.

From [15, p. 259, Theorem 5.8.1] we know that

c1n
avg

(
c̄2

e
avg
0,d,q

e
avg
0,d,∞

�, d, �

)
�n

avg
q (�, d, �)�c3n

avg

(
c̄4

e
avg
0,d,q

e
avg
0,d,∞

�, d, �

)
,

with c1 = 1 − √
3x/(1 − x), c3 = 1/(1 − x), c̄2 = 1/

√
c1, and c̄4 = 1/

√
c3. Since

navg

(
c̄2

e
avg
0,d,q

e
avg
0,d,∞

�, d, �

)
� navg

(
c̄2 (1 + √

3x)�, d, �
)

= navg (c2 �, d, �) ,

navg

(
c̄4

e
avg
0,d,q

e
avg
0,d,∞

�, d, �

)
� navg

(
c̄4

√
1 − √

3x�, d, �

)
= navg(c4 �, d, �),

the proof is completed. �

Theorem 15 allows us to compare the tractability results for the approximation problem in the
worst case and average case settings. Indeed, under the assumptions of Theorem 15, we know that
n

avg
q (�, d, �) behaves essentially as navg(�, d, �) which was studied in the previous sections.
We take �d,j = �u

d,j for u > 1. Assume first that strong tractability holds in the worst case

setting. Then we have supd �1
∑d

j=1 �d,j < ∞ which implies that s� �1. To guarantee that (40)
holds we assume that u > 1 + s�. Then

s� = s�/u < s�/(1 + s�) < 1.
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This implies that we have also strong tractability in the average case setting. Since � > � + 1,
it is easy to check that the exponent of strong tractability in the average case setting is smaller
that the exponent of strong tractability in the worst case setting:

pavg(�all) = 2 max(1/�, s�)

1 − max(1/�, s�)
< pwor(�all) = 2 max(1/�, s�).

We now assume that tractability holds in the worst case setting. Then L� defined in (38) is finite
which implies that t� �1. Furthermore, (40) holds if u > 1+t�. This implies that t� = t�/(1+t�) <

1, and we have also tractability in the average case setting.
Obviously, it can happen that there is no tractability in the worst case setting but we have even

strong tractability in the average case setting. For example, take �d,j = j−1/2. Then s� = 2 and
L� = ∞, and we have no tractability in the worst case setting, whereas for u > 1 + s� = 3 we
have s� = s�/u < 1 which yields strong tractability in the average case setting.

8. Numerical experiments

8.1. Computational issues

Here we discuss the computational cost of Algorithm 7 and tricks for speeding up the calcu-
lations. Throughout this section, let h = (h′, hs) and z = (z′, zs) with h′, z′ ∈ Zs−1. Clearly
(h′, hs) ∈ Ad,s(M) iff (h′, −hs) ∈ Ad,s(M). Furthermore, if h′ ∈ Ad,s−1(M) and we want
h ∈ Ad,s(M), then the magnitude of hs can be no greater than

L(h′) :=
⌊(

�d,sM

rd,s−1(h′)

)1/�
⌋

.

For computational efficiency, we write

E
(1)
d,s(z) =

∑
h′∈Ad,s−1(M)

L(h′)∑
hs=−L(h′)

Fd,s((h′, hs), z)

1 + rd,s(h′, hs)Fd,s((h′, hs), z)
,

E
(2)
d,s(z) =

∑
h′∈Ad,s−1(M)

L(h′)∑
hs=−L(h′)

Fd,s((h′, hs), z),

where (see [4])

Fd,s(h, z) = − 1

rd,s(h)
+ 1

n

s∏
j=1

(
1 + 2�(�)�d,j

)+ �h(zs)

n
,

with (suppressing the dependence on z′)

�h(zs) :=
n−1∑
k=1

⎛
⎝e−2	ikh·z/n

s∏
j=1

(
1 + �d,j�

(
kzj

n

))⎞⎠ and �(x) :=
∞∑

�=−∞
�	=0

e2	i�x

|�|� .
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To avoid working with complex numbers, we use basic properties of sine and cosine and the
symmetry of �(x) about x = 1/2 to write

�h(zs) =
n−1∑
k=1

⎛
⎝[

cos
(

2	kh′·z′
n

)
cos

(
2	khszs

n

)
− sin

(
2	kh′·z′

n

)
sin

(
2	khszs

n

)]

×
s∏

j=1

(
1 + �d,j�

(
kzj

n

))⎞⎠ . (41)

Note that for fixed zs , the k and n − k terms in the sum (41) are equal. Furthermore, we observe
that

Fd,s((h′, hs), (z′, n − zs)) = Fd,s((h′, −hs), (z′, zs)),

which implies

E
(i)
d,s(z

′, zs) = E
(i)
d,s(z

′, n − zs), i = 1, 2.

Thus it suffices to search through zs ∈ {1, 2, . . . , (n − 1)/2}.
When � is an even integer, �(x) can be easily computed, since

�(x) = (2	)�

(−1)
�
2 +1�!Ber�(x),

where Ber� is the Bernoulli polynomial of degree �. If we store rd,s−1(h′) and h′ · z′ for all
h′ ∈ Ad,s−1(M) as well as the products

∏s−1
j=1(1 + �d,j�(kzj /n)) for all k ∈ {1, 2, . . . , n − 1},

then the cost to evaluate E
(i)
d,s(z) for one zs is O(|Ad,s(M)| n) operations. (There is no need to store

the vectors h′.) Thus the total cost for the CBC construction up to dimension d is O(|Ad(M)| n2d)

operations, at the expense of O(|Ad(M)| + n) storage.
To further speed up the computation, we need to write the error calculation for all zs as some

matrix–vector products with circulant matrices. The precise detail can be found in [8]. It is
important to note that �h(zs) 	= �h(n − zs) because sin(2	x) is antisymmetric about x = 1/2.
As a result, if we consider only zs ∈ {1, 2, . . . , (n − 1)/2}, then the error calculation cannot
be expressed in terms of circulant matrix–vector products. Therefore, we must consider all zs ∈
{1, 2, . . . , n − 1} even though zs and n − zs give the same error. Expressing (41) as a vector for
zs ∈ {1, 2, . . . , n − 1}, we have

��h = �c
hs

pc
h′ − �s

hs
ps

h′ ,

where the entries of the (n − 1) by (n − 1) matrices and the vectors are given by

�c
hs

(zs, k) = cos
(

2	hs
kzs

n

) (
1 + �d,s�

(
kzs

n

))
,

�s
hs

(zs, k) = sin
(

2	hs
kzs

n

) (
1 + �d,s�

(
kzs

n

))
,

pc
h′(k) = cos

(
2	kh′·z′

n

) s−1∏
j=1

(
1 + �d,j�

(
kzj

n

))
,

ps
h′(k) = sin

(
2	kh′·z′

n

) s−1∏
j=1

(
1 + �d,j�

(
kzj

n

))
.
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Clearly the entries of the matrices depend only on kzs mod n. By a reordering of the zs and
k indices, both matrices can be brought into circulant form. More precisely, since n is prime,
there is a generator g which generates the multiplicative group modulo n, that is, {gi mod n :
0� i�n − 2} = {1, 2, . . . , n − 1}. To get a circulant matrix, we order zs and k according to gi

and g−i′ , respectively, for 0� i, i′ �n − 2. The matrix–vector products with circulant matrices
can be done in O(n log n) operations, thus reducing the total cost for the CBC construction to
O(|Ad(M)|n log n d) operations.

In particular, the CBC construction based on E
(2)
d,s(z) can be simplified due to the linearity

in the error expression. We can actually use
∑

h∈Ad,s (M) �h(zs) as our search criterion, and
the search can also be restricted to zs ∈ {1, 2, . . . , (n − 1)/2}. Expressed as a vector of zs ∈
{1, 2, . . . , (n − 1)/2}, we have∑

h∈Ad,s (M)

��h =
∑

h′∈Ad,s−1(M)

�h′ph′ ,

where the entries of the (n − 1)/2 by (n − 1)/2 matrix and the vector are given by

�h′(zs, k) =
⎛
⎝1 + 2

L(h′)∑
hs=1

cos
(

2	hs
kzs

n

)⎞⎠(
1 + �d,s�

(
kzs

n

))
,

ph′(k) = cos
(

2	kh′·z′
n

) s−1∏
j=1

(
1 + �d,j�

(
kzj

n

))
.

Note that 1+2
∑L

h=1 cos(2	ht) = 2 cos(	ht) sin(	(h+1)t)/ sin(	t)−1 for t ∈ (0, 1). The total
computational cost is again O(|Ad(M)|n log n d) operations, but the implied factor is smaller.

8.2. Numerical results

Following from our theory, M and n should be chosen according to (26) and (27), with respect
to suitable parameters �, 
, �, and �. Unfortunately, this leads to enormous M and n, and the
computation becomes infeasible. This is because our error bounds are not sharp with respect to
these parameters.

We carried out some preliminary calculations with

d = 20, �d,j = 0.1 × 0.75j−1, � ∈ {2, 4, 6}, M = 5000, n ∈ {1009, 2003, 4001},
just to get a feel of how the CBC algorithms work.

In Table 1 we present the results from Algorithm 7(1), i.e. based on the criterion E
(1)
d,s(z), for

� = 2 and n = 4001. The first term of the average case error is independent of n and z, and it can
be computed using

∑
h/∈Ad,s (M)

1

rd,s(h)
= [eavg

0,d,s]2 −
∑

h∈Ad,s (M)

1

rd,s(h)
,

where e
avg
0,d,s := ∏s

j=1(1+2�(�)�d,j )
1/2 denotes the s-dimensional truncated variant of the initial

error e
avg
0,d . We see from the numbers that the growth of |Ad,s(5000)| slows down as s increases.

This is consistent with decaying weights. The first term of the average case error indicates that
the choice of M = 5000 corresponds roughly to � = 0.64. The second term of the average
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Table 1
Algorithm 7(1) with n = 4001 and � = 2

s |A20,s (5000)| ∑
h/∈A20,s (5000)

1
r20,s (2,�20,h)

/[eavg
0,20,s ]2 zs E

(1)
20,s (z)/[eavg

0,20,s ]2

1 45 6.68737e−03 1 6.95869e−07
2 139 2.09592e−02 1527 5.34309e−05
3 251 4.21366e−02 1074 4.71954e−04
4 367 6.59559e−02 898 1.79457e−03
5 463 9.01138e−02 689 4.09777e−03
6 543 1.11820e−01 1670 6.76412e−03
7 609 1.30264e−01 638 9.45634e−03
8 669 1.45106e−01 751 1.22745e−02
9 715 1.57408e−01 610 1.46260e−02

10 747 1.67582e−01 524 1.64046e−02
11 773 1.75582e−01 1491 1.77833e−02
12 793 1.81924e−01 355 1.88858e−02
13 807 1.87024e−01 1603 1.97265e−02
14 817 1.91063e−01 1128 2.03270e−02
15 821 1.94424e−01 1293 2.07056e−02
16 825 1.96940e−01 1443 2.10187e−02
17 829 1.98824e−01 1472 2.12800e−02
18 831 2.00349e−01 332 2.14550e−02
19 833 2.01491e−01 1177 2.15996e−02
20 835 2.02347e−01 1689 2.17181e−02

Table 2
Comparison of results for � = 2

∑
h/∈A20(5000)

1
r20(2,�20,h)

/[eavg
0,20]2 = 2.02347e − 01

n z E
(1)
20 (z)/[eavg

0,20]2 E
(2)
20 (z)/[eavg

0,20]2

1009 z(1) 7.80515e−02 2.06908e−01
z(2) 7.87842e−02 1.92599e−01
z(0) 8.04402e−02 2.15769e−01

2003 z(1) 4.46415e−02 7.73733e−02
z(2) 4.38831e−02 7.11386e−02
z(0) 4.60306e−02 8.12095e−02

4001 z(1) 2.17181e−02 2.83850e−02
z(2) 2.18408e−02 2.79887e−02
z(0) 2.31070e−02 3.11909e−02

case error appears to be one magnitude smaller than the first term, suggesting that n = 4001 is
unnecessarily large in relation to M = 5000. It took just over 1 min (on a PC with Pentium IV
2.8 GHz processor) to produce the results in Table 1. Note, however, that the computation time
depends critically on the choice of weights, since they control the size of the set Ad(M).

In Tables 2–4 we present a comparison of the results from all three algorithms: Algorithm
7(1), Algorithm 7(2), and Algorithm 11. Recall that z(1), z(2), and z(0) denote the vectors obtained
by optimizing E

(1)
d (z), E

(2)
d (z), and Fd(0, z), respectively. The underlined entries represent the
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Table 3
Comparison of results for � = 4

∑
h/∈A20(5000)

1
r20(4,�20,h)

/[eavg
0,20]2 = 5.86045e − 02

n z E
(1)
20 (z)/[eavg

0,20]2 E
(2)
20 (z)/[eavg

0,20]2

1009 z(1) 7.87141e−03 9.61386e−03
z(2) 7.89395e−03 9.39313e−03
z(0) 8.51012e−03 1.06525e−02

2003 z(1) 2.30353e−03 2.42050e−03
z(2) 2.30364e−03 2.42037e−03
z(0) 2.51769e−03 2.68799e−03

2001 z(1) 5.88871e−04 5.97576e−04
z(2) 5.88871e−04 5.97576e−04
z(0) 6.46782e−04 6.57251e−04

Table 4
Comparison of results for � = 6

∑
h/∈A20(5000)

1
r20(6,�20,h)

/[eavg
0,20]2 = 4.09159e − 02

n z E
(1)
20 (z)/[eavg

0,20]2 E
(2)
20 (z)/[eavg

0,20]2

1009 z(1) 3.15063e−03 3.46769e−03
z(2) 3.15063e−03 3.46769e−03
z(0) 3.62148e−03 4.27081e−03

2003 z(1) 7.26309e−04 7.42414e−04
z(2) 7.24054e−04 7.38721e−04
z(0) 9.35084e−04 9.71324e−04

4001 z(1) 1.45628e−04 1.46191e−04
z(2) 1.43076e−04 1.43627e−04
z(0) 1.68453e−04 1.69649e−04

quantities which the algorithm attempted to optimize. In most cases, we see that our choices of n
are unnecessarily large when compared to the choice of M = 5000. The vectors obtained from
Algorithm 7(1) and Algorithm 7(2) appear to be of similar quality, however, the vectors obtained
from Algorithm 11 are generally worse.
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[4] F.Y. Kuo, I.H. Sloan, H. Woźniakowski, Lattice rules for multivariate approximation in the worst case setting,
in: H. Niederreiter, D. Talay (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, Berlin, 2006,
pp. 289–330.

[5] D. Li, F.J. Hickernell, Trigonometric spectral collocation methods on lattices, in: S.Y. Cheng, C.-W. Shu, T. Tang
(Eds.), Recent Advances in Scientific Computing and Partial Differential Equations, AMS Series in Contemporary
Mathematics, vol. 330, American Mathematical Society, Providence, RI, 2003, pp. 121–132.
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