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ABSTRACT 

The main results provide comparisons between condition numbers (based on 
unitarily invariant norms) of (i) positive definite (Hermitian) matrices A, B and of 
A + B. (ii) a positive definite matrix and its principal submatrix, and (iii) a matrix 
and an augmented form of the matrix. 

1. INTRODUCTION 

The condit ion n u m b e r  c o of a nonsingular  mat r ix  A is defined by  

c,(A) = 9(A)9(A-Z) ,  

where ordinar i ly  99 is a norm. This definition can be extended to include 

singular  and  rec tangular  matrices by  subs t i tu t ing  the pseudoinverse A ÷ 

for A -1. Condition numbers  arise in various contexts,  and  serve, e.g. 

as measures of the diff iculty in solving a system of l inear equat ions (see Eli). 

For  condit ion numbers  based on norms tha t  are un i ta r i ly  invar i an t  

(i.e. 9(A) = 9(A U) = q~(VA) for all un i t a ry  matrices U and V of appro- 

priate order), we obta in  the following comparisons. 

PROPOSITION 1. If A : m × q is o /rank q and (A, B) : m × n is o[ rank 

n, then 

c,(A) ~ c,(A,  B). (1.1) 
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PROPOSITION 2. I /  A : m x n is o/ rank k, H : n × q is column ortho- 
normal (H*H = Iq), and rank (A*, H) = rank A*,  then 

co(AH) <~ cAA). (1.2) 

PROPOSITION 3. I / A  : m × n, and e > O, then 

co(A + cA*+) <~ co(A). (1.3) 

The inequalities are known for the case tha t  9(A) is the max imum 
singular value of A. For  this norm, (1.1) and (1.2) were obtained by  
Hanson and Lawson E2J; (1.3) was obtained by  Klinger E3~ when A is 
normal and nonsingular, and by  Tewarson and Ramnath  [8J without  
normali ty.  

Unitar i ly  invariant  norms ~ are monotone in the sense tha t  if A and 
B --  A are positive semi-definite (Hermitian) then ~o(A) ~ 9(B). Marshall 
and Olkin E4, 51 and Marshall, Olkin, and Proschan [6] discuss the following 
propositions. 

PROPOSITION 4. I /  A is nonsingular and ~v is unitari ly  invariant, then 

co(A ) <~ co(AA* ). (1.4) 

PROPOSITION 5. I / A ,  B are positive de/inite and ~o is a monotone norm, 

then 

c,(A + B) ~ max[co(A), co(B)J. (1.5) 

We extend (1.4) to the case tha t  A is singular or rectangular  (Sec. 3), 
and show tha t  no such general extension is possible for (1.5) (Sec. 4). 

A reinterpretat ion of (1.1) yields the result tha t  if 

U n  U12~ 
U = \U21 U2j 

is a positive definite matrix,  and ~0 is a unitari ly invariant  norm, then 
c,o(g 1/2) >~ co(Ul{2). In Sec. 5 we use results on majorization to show tha t  

[Ull 0 ) 
co(U) ~> col 0 Uo~ >~ co(U.). 
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2. PRELIMINARIES 

In writing an inequali ty like co(A ) <~ %(A, B), or even in defining 
c¢(A) = cv(A)~(A +) we have acted as though ~ is defined on matrices of 
various orders. If this is to be the case, we must  be careful to specify what  
is meant  by  a norm because, e.g. the triangle inequali ty q0(A + B) 

~(A) + 9(B) makes no sense if A and B are of different orders. However,  
if we assume tha t  augmenta t ion  of a matrix by  blocks of zeros to the 
right and below does not  change its norm, i.e. 

A ;)] 

then we are free either to regard ~ as defined on matr ices of various orders, 

or to augment  matrices by  blocks of zeros to achieve a common order. 
To do this with impuni ty  we must  be sure tha t  all norms ~v defined on 
m × n matrices have, for all i , /  > 0, the form 

(2.1) 

This is not  for some norm q~ defined on the m + i × n + / "  matrices. 
difficult to demonstrate.  But  since we are concerned exclusively with 

unitari ly invariant  norms we want  to be sure tha t  ~ can be found which 
is unitari ly invariant  whenever ~0 is unitari ly invariant.  

When 9 is unitari ly invariant ,  ~(A) depends on A only through its 

singular values. More precisely, if ~ la , . . . ,  :%e are the characteristic roots 
of A ' A ,  

(2.2) qo(A) = (/)(or 1 . . . . .  (Xn)  , 

for some symmetr ic  gauge function (SGF) ¢ (see [7]). If  we define 

@xi . . . . .  Xn+j) = ~OEX¢I, . . . . .  X(n,] where tX(l>} ~ > . - - > ~  ]x(,~+j, I are obtained 

by  reordering Xl . . . . .  xn+¢, then ~ is an SGF which gives rise to a unitari ly 
invariant  norm ~ satisfying (2.1). 

In view of these remarks, one sees immedia te ly  tha t  because (1.4) 
holds for nonsingular matrices A, it must  also hold for singular and 
rectangular  matrices. 

Suppose A is an arb i t rary  matrix,  U = A*A and V = AA*.  The 
nonzero singular values of A, U 1/2, V 1/2 are identical. When  q is unitari ly 
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invar ian t ,  ~o(A) depends  only on these s ingular  values, so t ha t  

co(A  ) = c(o(U 1/2) = c~a(Vl/2). (2.3) 

3. AUGMENTED MATRICES 

Using (2.3) and  the no ta t ion  U = (A, B)*(A, B), Ull = A 'A ,  we see 

t ha t  for any  uni ta r i ly  inva r i an t  norm % inequa l i ty  (1.1) becomes 

c~a(U]{ 2) ~-~ c(o(U1/2). (3.1) 

Here,  U is posi t ive defini te  because r ank  (A, B) = n. 

I nequa l i t y  (1.2) can be s imi lar ly  rewr i t ten  : Since H*H = [q, there  exist  

u n i t a r y  matr ices  F and A such t ha t  

H = f ' o A .  

Let  B = AT', U = B*B and define U l l  by  

W i t h  this  nota t ion,  (1.2) also becomes (3.1), bu t  now U has r ank  k and  is 

not  posi t ive definite unless k = n. However ,  

0  an (A* : rank . ,  (: ran ?* (/O)] 
so t h a t  the  condi t ion  rank(A*,  H) = r ank  A* of (1.2) is equiva lent  to 

rank[B* , ( Io ) ]=rankB.  (3.2) 

Of course, this  means  q ~< k -- r ank  B. 

To complete  the  proof  of (1.1) and  (1.2), i t  remains  to be shown t h a t  
U n (3.1) holds. Denote  the  charac te r i s t i c  roots  of U = ( i~)i,j=l b y  ~1 >~ 

[~ ~n--1 a2 ~ " "  ~ an ~ 0 and the  charac te r i s t i c  roots  of Un-1 = ~ ira,j=1 b y  

~1 ~ " • " /> Vn-1 ~ 0. According  to the  separa t ion  theorem of Sturm,  

~1 >~ ~1 >~ ~2 ~ " "  >~ ~'n-1 >~ :~.  

This  shows t ha t  :~i ~ 7i, i = 1, 2 . . . . .  n - -  1, and  i te ra t ion  of the  a rgumen t  

yields  ~i ~ fl~, i = 1, 2 . . . . .  q, where f l l / >  " ' "  ~ /~q  > 0 are the  char-  
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acteristic roots of Ul l .  Providing t ha t  rank U = k > q = rank  Ull ,  it 
follows in a similar fashion tha t  ~k-J ~ tic-J, ]' = 0, 1 . . . .  , q - -  1. The 
monotonic i ty  of the SGF qb related to ~ via  (2.2), and ~ ~ [3i > O, 
i = 1, 2 . . . . .  q, together  yield 

~ ( 0 ~ 1 , -  • ",  ~n) ~ ~ ( 0 t l  . . . . .  O~a, 0 . . . . .  0) /> ~b(fl 1 . . . .  , tic, 0 . . . . .  0). (3.3) 

The same monotonic i ty  and flq_j >~ ~k-~" > 0, ]" = 0, 1 . . . . .  q - -  1 give 

(~(CXl--1,..., 0~n -1) >~ ~(0tk -1, 0~k-_ll . . . . .  ~k-_lq+l, 0 . . . . .  0) 

~> ~b(flq-1, fi7_11,..., i l l - l ,  0 . . . . .  0). (3.4) 

The combinat ion  of (3.3) and (3.4) proves (3.1) under  the condition t h a t  
rank  U > rank  Ull ,  as it is for (1.1) when U is posit ive definite. 

I t  remains  to be shown tha t  (3.1) holds under  the conditions (3.2) and 
k = q .  Wi th  k = q, (3.2) implies tha t  B = (B1,0) where B l : m  x q .  
Consequently,  

Since the nonzero roots of U and Ull  coincide, (3.1) is trivial.  

4. SUMS OF MATRICES 

In considering the possibilities of extending (1.5) to matr ices  tha t  are 
not  posit ive definite, we begin with two simple counterexamples .  The 
first of these shows tha t  nonsingular i ty  is insufficient for (1.5) ; the second 
shows tha t  posit ive semidefiniteness is insufficient. 

I. Le t  

A = (2 0 02), B = ( ~  10). 

Then A A *  = 4 I  and B B *  = I,  so t ha t  c,(A) = %(B) = 1 whenever  9 is 
uni tar i ly invariant .  On the other  hand,  %(A + B) > 1, e.g. when 9 is the 
spectral  norm. 

I I .  Le t  
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Again, %(A) = %(B) = 1 when 9 is unitari ly invariant,  but  %(A + B) > 1, 
e.g. when ~o is the spectral norm. 

The proof of (1.5) given by  Marshall and Olkin [51 depends upon the 
convexi ty  of the inverse function on the domain of positive definite 

matrices:  

[OU1 + (1 - -  O)U2] -1 ~ OU1-1  A 7 (1 - -  O)U2 -1,  

whenever 0 ~ 0 ~ 1, U1 and U2 are positive definite, and where A ~ B 
means B - -  A is positive semidefinite. However,  the pseudoinverse is not  

convex on the domain of positive semidefinite matrices. To see this, let 

U1 be positive definite, Us = 0. Then for 0 < 0 < 1, 

[OU 1 A V (1 --  O)U2] + = O - 1 U 1 - 1  ~> OU1-1  = OU1 + -Jr (1 - -  O)U2 +. 

I t  is, however, possible to extend (1.5) in a rather  trivial but  useful way. 

PROPOSITION 6. I] A, B are positive semide/inite, rank A = rank B = 

rank(A, B), and i/qJ is unitarily invariant, then (1.5) holds. 

To see this we take 

o=(0 :) 
where D is diagonal wi thout  loss of generali ty because ~0 is unitari ly 
invariant.  Then the rank condition and symmet ry  of A imply tha t  

A(Ao 1 ;) 
where Al l  and D are of the same size. The application of (1.5) to A l l  and 

D completes the proof. 
This result can be used to show (1.3) for unitari ly invariant  norms as 

follows. Let ~1 ~ >/•  • • > / ~ , 2  be the characteristic roots of 

[A + e(A*)+][A + s(A*)+I * = AA* + 2eAA + + e~(AA*) +. 

If  we write 

(D~, O) 
A = F  0 0 A, 
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where D~ = diag(~l  . . . . .  ek) so t ha t  the ~i are the  roots  of (AA*) 1/2, then 

A + = A* 0 / ' * '  

and y j2 are the  roots  of 

:);, 

T h u s ? s  = °~ij + e ~  1, j = 1,2 . . . . .  k, Ts = 0, ~ = k +  1 . . . .  , m, for some 
permuta t ion  i s. Consequent ly ,  wi th  W = (AA*) 1/~ i nequa l i ty  (1.3) can 

he wr i t t en  as 

c~(W + eW+) <~ cAW). 

But  co(W ) = %(eW+), so t ha t  this  follows from the above  genera l iza t ion  

of (1.5). 

As a very  special case of (1.3), we have for posi t ive  defini te  mat r ices  

A tha t ,  for any  u_l,  u l  > 0, 

%(U_l A-1 + UlA) ~ %(A). (4.1) 

I t  is of in teres t  to compare  this  wi th  the  following I5]: If A is pos i t ive  

definite,  ~0 is un i t a r i ly  invar ian t ,  1 ~< Vl ~< • • • ~< vz and ui ~> 0, 0 ~ i ~< l, 

then 

c,(A) ~ %(uoA + . . .  + u~A vz) <~ c,(AV~), 

%(A -1) <~ %(Uo A-1 + . . .  + uzA-V~) <~ c,(A-~).  

One might  be t e m p t e d  to conjec ture  tha t  (4.1) can be ex tended  as follows: 

c,(u_lA -1 + UlA) ~ %(u_zA-~Z + . . .  + u_lA-1 + Ul A + . . .  + usA'S). 

This is false, as can be seen b y  t ak ing  A = diag(1, ½) and q~(xl, x2) = 

max(]xl{, }x2}). Then 

12 5 
c~o(A -1 + A + A S) = 11 < 4 = c*(A-1 + A). 
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5. AN APPLICATION OF MAJORIZATION 

We have shown in Sec. 3 tha t  for any  uni tar i ly  invariant  norm ~0, and 
for positive definite and certain other  matrices 

( U i l  U12~ 
U = \U2~ U2~]' 

cca(V 1/2) ~ c.(U~{2) • 

Using different methods, we show here tha t  

I o) 
c~o(U ) ~ c o U2 2 ~ c<0(g11 ) (5.1) 

whenever U is positive semidefinite and 9 is unitari ly invariant.  
The second inequali ty of (5.1) is immediate  from the fact t ha t  unitari ly 

invar iant  norms are monotone (see Sec. 1). To prove the first inequality, 

let 

;) 
be a un i ta ry  matrix such tha t  F 1 U l l F l *  = diag(fll . . . . .  13q) - - D ~ ,  and 
F2U22F2* = diag(81 . . . . .  d~_.) ~ Do. Of course, the characteristic roots 

~1, e2,. • . ,  en of U are the same as the characteristic roots of 

Da r u t *  = (r u rl* rlui r *  
D e ] "  

According to a result of I. Schur (e.g., see [6]), the vector d = (fl, d) = 
(d 1, d~ . . . . .  dn) of diagonal elements of a positive semidefinite matr ix  is 
majorized by  the vector ~ = (~1 . . . . .  en) of characteristic roots in the 

sense that ,  possibly after reordering components,  

d 1 ~ . . .  ~ dn, oc 1 ~ ' "  ~ ~Xn 

di ~ ~_~ ~i, l =  1 , 2  . . . . .  n - -  1, di = xi. 
i=1 i=1 i=1 i=1 

This means [4, Lemma 3.3] tha t  if k is defined by  dk > 0, dk+l . . . . .  
d~ = 0 (so also xk > 0, ~k+l . . . . .  ~ = 0), and if # is the SGF which 
corresponds to ~ as in (2.2), then 
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~[J(d 1 . . . . .  dk, 0 , . . . ,  O) ~ ~(~1 . . . . .  0~k, 0 , . . . ,  0), 

~(d1-1 . . . . .  dk -1, 0 . . . . .  O) ~ (/)(o¢1-1,..., ¢xe -1, 0 . . . . .  0). 

These inequalities together prove the first inequality of (5.1). 
From the fact that  the characteristic roots of 

o) 
are majorized by the characteristic roots of U, one might conjecture that 

A = 

if 

All  A12 A18] -All  A12 0 1 / 
A21 Ag2 A23[ , z~ = |A21 A22 A23 

A31 A32 Aa3J " [ O  A32 A83J 

are positive definite, then the characteristic roots of ~ are majorized by 
the characteristic roots of A. That  this is false can be seen from the choice 

A = 1 , . 4  = 1 , lal < V~_ 
a 

The characteristic roots (1 -- a, 1 -- a, 1 + 2a) of A, and the characteristic 

roots (1 -- aV2, 1, 1 + aV2) of 2/are  not ordered either way by majoriza- 
tion. 

Since we have obtained %(Un) <~ %(U) and c,(U~{ 2) <~ %(U1/2), it is 
natural to inquire if one of the inequalities 

(i) %(A) <~ %(B), (ii) c,o(A 1/~) ~ %(B 1/2) 

is implied by the other. If A = diag(625, 25, 1) and B = diag(325, 325, l) 
then it is easily checked that  with ~(A) = (tr AA*) 1/~, (i) is violated but  
(ii) holds. On the other hand, interchanging these special A and B shows 
that (i) can hold when (ii) is violated. 

A comparison of (3.1) and (5.1) suggests the possibility that  

/ TT1/~ 0 ) 
c¢(U1/2) ~ C ¢ / O  U1/2 

when U is positive definite. Whether or not this is true remains an open 
question. 
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