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ABSTRACT

The main results provide comparisons between condition numbers (based on
unitarily invariant norms) of (i) positive definite (Hermitian) matrices 4, B and of
A 4+ B, (ii) a positive definite matrix and its principal submatrix, and (iii) a matrix
and an augmented form of the matrix.

1. INTRODUCTION

The condition number ¢, of a nonsingular matrix A4 is defined by

co(d) = g(d)p(4™),

where ordinarily ¢ is a norm. This definition can be extended to include
singular and rectangular matrices by substituting the pseudoinverse 4+
for A-1. Condition numbers arise in various contexts, and serve, e.g.
as measures of the difficulty in solving a system of linear equations (see {1]).

For condition numbers based on norms that are unitarily invariant
(i.e. p(4) = (AU) = @(VA) for all unitary matrices U and V of appro-
priate order), we obtain the following comparisons.

ProposiTiON 1. If A :m X qisof rank g and (A, B) : m X nisof rank
n, then
¢o(4) < c,(4, B). (1.1)
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ProposiTiON 2. If A:m X nis of rank k, H:n X q is column ortho-
normal (H*H = 1), and rank (A*, H) = rank A*, then

ColAH) < c,(4). (1.2)

PropPosITION 3. If A:m X n, and € > 0, then

cold + eA*) < ¢ {A4). (1.3)

The inequalities are known for the case that ¢(4) is the maximum
singular value of 4. For this norm, (1.1) and (1.2) were obtained by
Hanson and Lawson [2]; (1.3) was obtained by Klinger [3] when 4 is
normal and nonsingular, and by Tewarson and Ramnath [8] without
normality.

Unitarily invariant norms ¢ are monotone in the sense that if A and
B — A are positive semi-definite (Hermitian) then ¢(4) < ¢(B). Marshall
and Olkin [4, 5] and Marshall, Olkin, and Proschan [6] discuss the following
propositions.

PropoSITION 4. If A is nonsingular and ¢ is unitarily invariant, then

co(A4) <, (AA*). (1.4)

ProposiTION 5. If A, B are positive definite and ¢ is a monotone norm,
then

¢o(4 + B) < maxlc,(4), c,(B)]. (1.5)

» Lo

We extend (1.4) to the case that A is singular or rectangular (Sec. 3),
and show that no such general extension is possible for (1.5) (Sec. 4).
A reinterpretation of {1.1) yields the result that if

U_cuUﬂ
Ui Up
is a positive definite matrix, and ¢ is a unitarily invariant norm, then

co(UY2) = ¢, (UY?). In Sec. 5 we use results on majorization to show that

Cw(U) > Co 0 (]‘)2 > cw(Ull)-
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2, PRELIMINARIES

In writing an inequality like ¢,(4) < ¢,(4, B), or even in defining
co(A) = @(4)p(A+) we have acted as though ¢ is defined on matrices of
various orders. If this is to be the case, we must be careful to specify what
is meant by a norm because, e.g. the triangle inequality ¢(4 + B) <
¢(A) 4+ @(B) makes no sense if 4 and B are of different orders. However,
if we assume that augmentation of a matrix by blocks of zeros to the
right and below does not change its norm, i.e.

i =v|(y o)l

then we are free either to regard ¢ as defined on matrices of various orders,
or to augment matrices by blocks of zeros to achieve a common order.
To do this with impunity we must be sure that all norms ¢ defined on
m X n matrices have, for all 7, j > 0, the form

A4 0
p(4) =¢7[<0 0)], 2.1

for some norm ¢ defined on the m + ¢ X # + 7 matrices. This is not
difficult to demonstrate. But since we are concerned exclusively with
unitarily invariant norms we want to be sure that ¢ can be found which
is unitarily invariant whenever ¢ is unitarily invariant.

When ¢ is unitarily invariant, ¢(4) depends on A only through its
singular values. More precisely, if «,2,.. ., a,? are the characteristic roots
of A*A,

p(d) = Play,. . ., 4), (2.2)

for some symmetric gauge function (SGF) @ (see [7]). If we define
é(xl,. s Xnys) = DXy, . ., ¥Hny) Where |xqy| = -+ = |5, ;| are obtained
by reordering x4,. .., %, ;, then @ is an SGF which gives rise to a unitarily
invariant norm ¢ satisfying (2.1).

In view of these remarks, one sees immediately that because (1.4)
holds for nonsingular matrices A, it must also hold for singular and
rectangular matrices.

Suppose A4 is an arbitrary matrix, U = A*4 and V = AA*. The
nonzero singular values of 4, UV2, V1/2 are identical. When ¢ is unitarily



294 A. W. MARSHALL AND I. OLKIN

invariant, ¢(A4) depends only on these singular values, so that

co(A) = c,(UV2) = ¢, (V1) (2.3)
3. AUGMENTED MATRICES

Using (2.3) and the notation U = (4, B)*(4, B), Uy = A*4, we see
that for any unitarily invariant norm ¢, inequality (1.1) becomes

6o (UT) < 6 (UM). (3.1)

Here, U is positive definite because rank (4, B) = #.
Inequality (1.2) can be similarly rewritten: Since H*H = I, there exist
unitary matrices I and 4 such that

H rI"A
= O .

Let B = AI', U = B*B and define Uy, by

I, 0 Uy 0O
* =

With this notation, (1.2) also becomes (3.1), but now U has rank % and is
not positive definite unless 2 = ». However,

I 0 I,
rank(4*, H) = rank {F*(A*, H) (O A*)} = rank [B*, (0)]

so that the condition rank(A*, H) = rank A* of (1.2) is equivalent to
I(l
rank | B¥, o]l = rank B. (3.2)

Of course, this means ¢ < # = rank B.

To complete the proof of (1.1) and (1.2}, it remains to be shown that
(3.1) holds. Denote the characteristic roots of U = (u;;)};., by o«; >
ay >+ = a, >0 and the characteristic roots of U,_; = (u,,)};2; by

Y1 2= = Va1 = 0. According to the separation theorem of Sturm,
Uy Y1 =g = 2 Y] 2 ey

This shows thata; > y,,7 = 1, 2,..., n — 1, and iteration of the argument
yields «; = f;, 1 =1,2,...,¢, where §; >-++ > 8, >0 are the char-
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acteristic roots of Uy;. Providing that rank U = & > ¢ = rank Uy, it
follows in a similar fashion that e« ; << f,;, 7 =0,1,...,9 — 1. The
monotonicity of the SGF @ related to ¢ via (2.2), and «, > 8, > 0,
1 =1,2,...,q, together yield

Doy, ..., 0, ZPlag, -+, 8%, 0,...,0) =D(By,...,8,0,...,0). (3.3)
The same monotonicity and 8, _; = o;_; > 0,7 =0,1,..., 9 — 1 give
Py, o) = Pl oty 010, 0,001, 0)

> OB, B, /L0, ., 0). (3.4)

The combination of (3.3) and (3.4) proves (3.1) under the condition that
rank U > rank U,, as it is for (1.1) when U is positive definite.

It remains to be shown that (3.1) holds under the conditions (3.2) and
k =gq. With & =g¢q, (3.2) implies that B = (B, 0) where B,:m X g.

Consequently,
B*B; 0 U, O
U=l 0o o/=\o o

Since the nonzero roots of U and U, coincide, (3.1) is trivial.
4. SUMS OF MATRICES

In considering the possibilities of extending (1.5) to matrices that are
not positive definite, we begin with two simple counterexamples. The

first of these shows that nonsingularity is insufficient for (1.5); the second
shows that positive semidefiniteness is insufficient.

t=lo3) 2= o)

Then AA* = 4I and BB* = I, so that ¢,(4) = ¢,(B) = 1 whenever @ is
unitarily invariant. On the other hand, ¢,(4 + B) > 1, e.g. when ¢ is the

spectral norm.
4 1 0 B 1 0
~\o o)’ “\o 1/°

I. Let

II. Let
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Again, ¢, (4) = ¢,(B) = 1 when @ is unitarily invariant, but ¢,(4 + B) > 1,
e.g. when ¢ is the spectral norm.

The proof of (1.5) given by Marshall and Olkin [5] depends upon the
convexity of the inverse function on the domain of positive definite
matrices:

U, + (1 — 60U, << OU, 4+ (1 — 0)Ug ™,

whenever 0 <L 0 <{ 1, U; and U, are positive definite, and where 4 <{ B
means B — A is positive semidefinite. However, the pseudoinverse is not
convex on the domain of positive semidefinite matrices. To see this, let
U, be positive definite, Uy = 0. Then for 0 < 6 < 1,

(U, + (1 — OU1+ = 071U 1 > 06U, = 0U,* 4 (1 — )U,™
It is, however, possible to extend (1.5) in a rather trivial but useful way.

ProrosiTioN 6. If A, B are positive semidefinite, rank A = rank B =
rank(4, B), and if @ is unitarily invariant, then (1.5) holds.

BDO
~“\o o/’

where D is diagonal without loss of generality because ¢ is unitarily
invariant. Then the rank condition and symmetry of 4 imply that

A]l 0
A=
(54

where A;, and D are of the same size. The application of (1.5) to 4,; and
D completes the proof.

This result can be used to show (1.3) for unitarily invariant norms as
follows. Lety® >+ = y,,% be the characteristic roots of

To see this we take

[A + e(A¥H[A 4 e(A*)*]* = AA* + 2eAA+ + 2(AAX)*,

A D“OA
=T{y o)4

If we write
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where D, = diag(a,,. .., a;) so that the o, are the roots of (4.4*)V2, then

A+ = A* D“_IOP*
- o o/

and p ;2 are the roots of

FDOFO . FIOF* 2FD;20 )
o of [Tty oIt o ol
D2+ 21+ D, 0

0 0/

Thusy; = a;; + eocgl, 1=12,...,ky;=0,7=Ek+1,..., m, for some
permutation ;. Consequently, with W = (4A4*)1/2 inequality (1.3) can
be written as

co(W + eWH) < co(W).

But ¢, (W) = c,(eW+), so that this follows from the above generalization
of (1.5).

As a very special case of (1.3), we have for positive definite matrices
A that, for any u_,, u; > 0,

Colt A7 + uyd) < cy4). 8}

It is of interest to compare this with the following [5]: If A is positive
definite, @ is unitarily invariant, 1 {v; <<+ +- {yjand 4, > 0,0 << ¢ </,
then

cold) < cp(tod + -+ + A" < cp(4"),
oA™Y KoplugAd™ + -+ + u A7) L (A™.
One might be tempted to conjecture that (4.1) can be extended as follows:
Colh 1 A1+ g A) el A7 oo s U A+ wg A + - uAT).

This is false, as can be seen by taking 4 = diag(l, 4) and D(xy, x,) =
max(|xy], |¥2|). Then
12 5

oA+ A+ A3 = 37 < = co(A7H + 4).
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5. AN APPLICATION OF MAJORIZATION

We have shown in Sec. 3 that for any unitarily invariant norm ¢, and
for positive definite and certain other matrices

_ (Un Ulz)
Ui Uss)’
¢o(UM2) 2 co(UTE).

Using different methods, we show here that

co(U) = Cw( 0 U22) ¢o(U11) (5.1)

whenever U is positive semidefinite and ¢ is unitarily invariant.
The second inequality of (5.1) is immediate from the fact that unitarily
invariant norms are monotone (see Sec. 1). To prove the first inequality,

let
ry o
N0 Iy)’
be a unitary matrix such that I''U, I'* = diag(8i,..., 8, = Ds, and
Uy Iy* = diag(dy,. . ., 0,4 = D;. Of course, the characteristic roots

oy, &g, . - ., &, Of U are the same as the characteristic roots of
D U T5*
TUT* ( [; 1Viel 2 )
FZUIZFI Da
According to a result of I. Schur (e.g., see [6]), the vector d = (f, §) =
(dy, d, - . ., d,) of diagonal elements of a positive semidefinite matrix is
majorized by the vector a = (ay,..., a,) of characteristic roots in the

sense that, possibly after reordering components,

iz 2d, oz Za

i 14 n ”
Ed, Z 1=1,2,...,n—1, Ddi=D

b i=1 i=1
This means {4, Lemma 3.3] that if £ is defined by d, >0, d;,y =--- =
d, =0 (soalsooa >0,0,; =+ = «a, =0}, and if @ is the SGF which
corresponds to ¢ as in (2.2), then
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@(dl,...,dk,(),.. .y )<¢(d1, . d,k,o ...,0),
Q(dlkl, ey dk_‘l, 0, .y ) < Q( N ak_l, 0,. ey 0).

These inequalities together prove the first inequality of (5.1).
From the fact that the characteristic roots of

are majorized by the characteristic roots of U, one might conjecture that
if

All A12 A13 All A12 0
4= A21 A22 A23 ’ A = A21 A22 A23
A31 A32 A33 0 A32 A33

are positive definite, then the characteristic roots of 4 are majorized by
the characteristic roots of A. That this is false can be seen from the choice

1
ﬁ

The characteristic roots (1 — @, 1 — 4, 1 + 2a) of A, and the characteristic

1 a a a 0
A={a 1 a], 4= 1 a}, |a| <
a a 1 0 a1

roots (1 — al2, 1,1 + aVE) of A are not ordered either way by majoriza-
tion.

Since we have obtained ¢,(Uy;) < ¢,(U) and ¢,(ULP) < ¢, (UY?), it is
natural to inquire if one of the inequalities

i) cold) <cp(B), () co(AV?) < cp(BY7)

is implied by the other. If 4 = diag(625, 25, 1) and B = diag(325, 325, 1)
then it is easily checked that with @(4) = (tr AA*)Y/2, (i) is violated but
(i) holds. On the other hand, interchanging these special A and B shows
that (i) can hold when (ii) is violated.

A comparison of (3.1) and (5.1) suggests the possibility that

Uiz o
cw(U”z) > Co 0 U1/2)

when U is positive definite. Whether or not this is true remains an open
question.
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