JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 30, 665-679 (1970)

Decomposition Theorems for Partial lsometries

I. ERDELYI

Temple University, Philadelphia, Pennsylvania 19122

AND

F. R. MILLER

Kansas State University, Manhattan, Kansas 66502 Submitted by R. J. Duffin

PRELIMINARIES

N. Dunford in [l] and [2] introduced the concept of spectral operators on a complex Banach space, as an extension of the spectral theory to bounded¹ operators with resolution of the identity E .

A main result of the bounded case $[2,$ Theorem 8] is that T is a bounded spectral operator iff

$$
T = S + N,
$$

where S is a bounded scalar type operator, $S = \int \lambda dE_{\lambda}$, and N is a quasinilpotent operator, i.e., $\lim_{n} ||N^n||^{1/n} = 0$, commuting with S. Moreover, such decomposition is unique. The terms S and N are called the scalar and the radical part, respectively, of the spectral operator T.

C. Apostol [5] gave a condition for a bounded linear operator T on a Hilbert space H , satisfying condition

$$
\lim_{n} \| T^* T^n - T^n T^* \|^{1/n} = 0,
$$
\n(1)

to be spectral.

S.K. Berberian [6], defining a certain extension of a Hilbert space H to a Hilbert space K , reduced the problem of the approximate point spectrum of an operator T on H to the point spectrum problem of the corresponding oper-

¹ Unbounded spectral operators were considered by W. G. Bade [3] and J. Schwartz [4].

ator T' on K . The extension K of H is formed by the bounded sequences of vectors from H , and the inner product is defined with the help of a Banach limit.

Let H be a complex Hilbert space. Vectors $x \in H$ of unit norm, i.e., $||x|| = 1$, will be referred to as unit vectors.

For an operator $T: H \to H$, $R(T)$, $Ker(T)$, $\sigma(T)$, $\pi(T)$, $\alpha(T)$, and $\rho(T)$ denote the range, the kernel, the spectrum, the point spectrum, the approximate point spectrum, and the resolvent set, respectively. $\lambda \in \alpha(T)$ if there exists a sequence (x_n) of unit vectors, such that

$$
\lim_{n} \left\| \left(\lambda - T \right) x_n \right\| = 0.
$$

Let $B(H)$ represent the bounded linear operators on H. For each $x \in H$, $(\lambda - T)^{-1} x$ is analytic in λ defined on $\rho(T)$ with values in H. Dunford [2, Theorem 21 showed that, if T is spectral, the function $(\lambda - T)^{-1} x$ has a unique maximal single-valued analytic extension. The domain of this extension is denoted by $\rho(x)$ and its spectrum $\sigma(x)$ is defined as the complement of $\rho(x).$

If a linear manifold $S \subseteq H$ decomposes T then $T \mid S$ stands for the restriction of T to S.

Let

$$
H_0 = \{x : \lim_{n} \|T^n x\|^{1/n} = 0\},\tag{2}
$$

a linear manifold in H. Clearly, H_0 is invariant under T.

PROPOSITION 1 (Apostol). Let $T \in B(H)$ satisfy condition (1). Then H_0 is invariant under T^* , i.e. $T^*H_0 \subset H_0$.

PROPOSITION 2 (Apostol). Let $T \in B(H)$ satisfy condition (1). Then \overline{H}_0 and H_0^{\perp} reduce T and $T \mid H_0^{\perp}$ is normal.

PROPOSITION 3 (Apostol). Let $T \in B(H)$ satisfy condition (1). T is spectral with its scalar part normal if the manifold H_0 is closed.

PROPOSITION 4 (Berberian). There exist a Hilbert space K and linear mappings $\varphi : H \to K$, $\theta : B(H) \to B(K)$, such that:

- (a) $(px, \varphi y) = (x, y),$ for every $x, y \in H$;
- (b) $\theta T = T'$ is a *-algebra isometry;
- (c) $T'\varphi x = \varphi Tx$, for each $x \in H$, and $T \in B(H)$;
- (d) $\alpha(T) = \alpha(T') = \pi(T')$.

A defining condition for a partial isometry T on a Hilberts space H is

$$
T = TT^*T.
$$
 (3)

The adjoint T^* of a partial isometry T is itself a partial isometry with the initial space and final space interchanged. Furthermore (e.g. [7]), the norm of a nonzero partial isometry is one and its spectrum is included in the closed unit disk.

In this paper we give a necessary and sufficient condition that H_0 be closed, and show that every partial isometry subject to condition (1) is spectral. Finally, we give a decomposition for a larger class of partial isometries.

SOME PROPERTIES OF THE RESOLVENTS OF AN OPERATOR

An exposition of analytic functions with values in a complex Banach space is given in [S, Chapter 91.

Let X, $B(X)$, and $\mathbb C$ denote a complex Banach space, the bounded linear operators on X , and the complex plane, respectively.

For spectral operators, the linear manifold H_0 , as defined by (2), is determined by the resolution of the identity E .

THEOREM 1. If $T \in B(X)$ is a spectral operator, then $H_0 = E((0))$ X, and thus it is closed.

Proof. By [2, Theorems 3 and 41,

$$
E((0)) X = \{x : x = 0 \text{ or } \sigma(x) = (0)\}.
$$

If $0 \neq x \in H_0$, then

$$
R_{\lambda}x=\sum_{n=1}^{\infty}\lambda^{-n}T^{n-1}x
$$
\n(4)

is an analytic function defined on $\mathbb{C} - (0)$ such that

$$
(\lambda - T) R_{\lambda} x = x, \qquad (5)
$$

and

$$
R_{\lambda}x=(\lambda-T)^{-1}x, \qquad \lambda \in \rho(T). \qquad (6)
$$

Thus we have

 $x \in E((0))$ X.

Conversely, suppose $\sigma(x) = (0)$. Then there is an analytic function $R_{\lambda}x$

40913013-13

defined on $\mathbb{C} - (0)$ such that (5) and (6) hold. Since $\mathbb{C} - (0)$ is an annulus, the uniqueness of the Laurent expansion for $R_{\lambda}x$ shows that series (4) converges for every $\lambda \neq 0$. This implies that

$$
\lim_n\parallel T^{n}x\parallel^{1/n}=0,
$$

and hence $x \in H_0$.

THEOREM 2. Suppose that $T \in B(X)$, H_0 is dense in X, and 0 is not a limit point of $\sigma(T)$. Then T is quasinilpotent.

Proof. Since 0 is not a limit point of $\sigma(T)$ there is an $r > 0$ such that $(\lambda - T)^{-1} = R_{\lambda}$ is analytic in the annulus $0 < |\lambda| < r$. Let

$$
R_{\lambda}=\sum_{n=1}^{\infty}c_{n}\lambda^{-n}+\sum_{n=0}^{\infty}d_{n}\lambda^{n}
$$

be its Laurent expansion.

Suppose that $x \in H_0$. Then

$$
f(\lambda)=\sum_{n=1}^{\infty}\lambda^{-n}T^{n-1}x
$$

is an analytic function on $\mathbb{C} - (0)$ such that

$$
(\lambda-T) f(\lambda) = x.
$$

Let $0 < |\lambda| < r$. Then

 $(\lambda-T)f(\lambda)=x$ and $(\lambda-T)R_{\lambda}x=x$

which implies that

$$
f(\lambda)=R_\lambda x
$$

since $(\lambda - T)^{-1}$ exists. Hence

$$
f(\lambda) = R_{\lambda} x = \sum_{n=1}^{\infty} c_n(x) \lambda^{-n} + \sum_{n=0}^{\infty} d_n(x) \lambda^n
$$

and by the uniqueness of Laurent series we get

$$
d_n(x)=0, \quad n\geqslant 0 \qquad \text{and} \qquad c_n(x)=T^{n-1}x, \quad n\geqslant 1.
$$

Since this is true for each x in H_0 and H_0 is dense we get

$$
d_n=0 \qquad \text{and} \qquad c_n=T^{n-1}.
$$

Hence

$$
R_{\lambda}=\sum_{n=1}^{\infty}\frac{1}{\lambda^n}T^{n-1}=\frac{1}{\lambda}\sum_{n=1}^{\infty}\left(\frac{T}{\lambda}\right)^{n-1}, \qquad 0<|\lambda|
$$

This implies that $\lim_{n} \|T^{n}\|^{1/n} = 0$, thus T is quasinilpotent.

COROLLARY 1. Let H be a Hilbert space and T satisfy (1) . If 0 is an isolated point of $\sigma(T \mid \overline{H}_0)$, then T is a spectral operator.

Proof. By Proposition 2, H_0^{\perp} and \overline{H}_0 decompose T, and $T \mid H_0^{\perp}$ is normal. The second term $T \mid \overline{H}_0$ satisfies the premises of foregoing Theorem 2.

A SPECTRAL DECOMPOSITION

Let $\mathcal{S}(H)$ denote all partial isometries on a Hilbert space H, which satisfy condition (l), i.e.,

$$
\lim || T^*T^n - T^nT^* ||^{1/n} = 0.
$$

Some properties will be obtained for partial isometries which satisfy the weaker pointwise condition:

$$
\lim_{m} \|(T^*T^n - T^nT^*) x\|^{1/n} = 0, \quad \text{for every} \quad x \in H. \tag{1'}
$$

Let Γ denote the unit circle of the complex plane, i.e.,

$$
\Gamma = \{ \lambda : |\lambda| = 1 \}.
$$

THEOREM 3. The point spectrum of $T \in \mathcal{S}(H)$ is a subset of the union of the unit circle Γ and the singleton (0) ,

$$
\pi(T) \subset \Gamma \cup (0). \tag{7}
$$

Proof. The proof can be given under the more general condition (1'). Let

$$
0\neq\lambda\in\pi(T).
$$

There exists a nonzero vector x , such that

$$
Tx = \lambda x, \qquad x = \lambda^{-1}Tx,
$$

$$
T^n x = \lambda^n x, \qquad \text{for every natural number } n.
$$
 (8)

Since condition (1') is satisfied for every $x \in H$, with the help of (3) and relations (8) , we have successively:

$$
0 = \lim_{n} \| T^* T^n x - T^n T^* x \|^{1/n} = \lim_{n} \| \lambda^n T^* x - \lambda^{-1} T^n T^* T x \|^{1/n}
$$

=
$$
\lim_{n} \| \lambda^n T^* x - \lambda^{-1} T^n x \|^{1/n} = \| \lambda \| \lim_{n} \| T^* x - \lambda^{-1} x \|^{1/n}.
$$

It follows

$$
T^*x = \lambda^{-1}x, \quad \text{thus} \quad \lambda^{-1} \in \pi(T^*).
$$

Since we must simultaneously have $|\lambda| \leq 1$, $|\lambda^{-1}| \leq 1$, it follows $|\lambda| = 1$, and this completes the proof.

From the ergodic theorem it follows that the eigenmanifold $Ker(\lambda - T)$ of any nonzero eigenvalue λ of $T \in \mathcal{S}(H)$, splits off from the entire space as a direct summand,

$$
H=\mathrm{Ker}(\lambda-T)\oplus\overline{R(\lambda-T)},
$$

and Ker($\lambda - T$) can be obtained as $R(T(\lambda))$, where

$$
T(\lambda) x = \lim_{n} n^{-1} \sum_{m=1}^{n} \left(\frac{T}{\lambda}\right)^m x.
$$

In particular, if

$$
T^*T^m-T^*T^*=0,
$$
 for some natural m,

 T^m is normal, and $H_0 = \text{Ker}(T^m)$. Thus H_0 is closed and according to Apostol's results $[5, 9]$, T is a (finite) *m*-type spectral operator:

$$
T = U \oplus N \tag{9}
$$

with U unitary and N nilpotent of index $(\leq m)$.

THEOREM 4. The approximate point spectrum $\alpha(T)$ of $T \in \mathcal{S}(H)$ is a subset of the union of the unit circle Γ and the zero,

$$
\alpha(T) \subset \Gamma \cup (0). \tag{10}
$$

Proof. By Proposition 4, Berberian's transform T' and its adjoint T'^* satisfy the same operator equations, in particular (1) and (3), as T and T^* do. Thus $T' \in \mathcal{S}(K)$, and then by Theorem 3,

$$
\pi(T')\subseteq \Gamma\cup (0).
$$

Moreover, by property (d) of Proposition 4,

$$
\alpha(T)=\pi(T'),
$$

and this completes the proof.

For $T \in \mathcal{S}(H)$ we shall show that property (10) holds for the entire spectrum. An immediate consequence of (10) is the following

THEOREM 5. Let $T \in B(H)$ and

$$
\alpha(T) \subset \Gamma \cup (0).
$$

Then

$$
\sigma(T) \subset \Gamma \cup (0) \qquad or \qquad \sigma(T) = \{\lambda : |\lambda| \leq 1\}.
$$

Proof. Consider

$$
M = \{\lambda : 0 < |\lambda| < 1\}
$$

as a topological space. Then M is connected. Since $\sigma(T)$ is closed $\sigma(T) \cap M$ is closed in M. Let $x \in \sigma(T) \cap M$ and write ∂ for the boundary. Since $\partial \sigma(T) \subset \alpha(T)$ and $\alpha(T) \cap M = \phi$, x is an interior point of $\sigma(T)$. It follows that x is an interior point of $\sigma(T) \cap M$ in M. Thus $\sigma(T) \cap M$ is both open and closed in M and hence

$$
\sigma(T) \cap M = \phi \quad \text{or} \quad \sigma(T) \cap M = M.
$$

Let $T \in B(H)$, and for every nonzero scalar λ , define $R_{\lambda}: H_0 \to \overline{H}_0$, as in (4).

LEMMA 1. T is quasinilpotent, i.e.,

$$
\lim_{m} \| T^{n} \|^{1/n} = 0,
$$
\n(11)

iff $H_0 = H$.

Proof. Clearly, if (11) holds, then $H_0 = H$. Conversely, if $H_0 = H$, R_λ is an algebraic inverse of $(\lambda - T)$ and, by the closed graph theorem, it is in $B(H)$. Hence $\sigma(T) = (0)$. Since the left-hand side of (11) is the spectral radius, it is zero.

THEOREM 6. If H_0 is dense, i.e., $\overline{H}_0 = H$, then

$$
\sigma(T) - (0) = \alpha(T) - (0). \tag{12}
$$

Proof. Let $0 \neq \lambda \in \sigma(T)$. Then R_{λ} is not bounded for otherwise it could

be extended to $(\lambda - T)^{-1}$. Thus there is a sequence of unit vectors $(x_n) \in H_0$ such that

$$
\|R_{\lambda}x_n\|>n,\qquad \text{for every }n. \tag{13}
$$

Define

$$
y_n = \frac{R_\lambda x_n}{\parallel R_\lambda x_n \parallel}.
$$

Then, by (5),

$$
(\lambda-T) y_n = \frac{x_n}{\|R_\lambda x_n\|},
$$

and by condition (13),

$$
\|(\lambda-T)\,y_n\|<\frac{1}{n}\to 0
$$

and hence $\lambda \in \alpha(T)$. It follows $\sigma(T) - (0) \subset \alpha(T) - (0)$, but the approximate point spectrum is a part of the entire spectrum, thus (12) follows.

Now we are in a position to state the following

THEOREM 7. Every $T \in \mathcal{S}(H)$ is a spectral partial isometry.

Proof. Let

$$
R=T\,|\,H_0.
$$

First observe that

 $R \in \mathscr{S}(\overline{H}_{0}),$

since \overline{H}_0 reduces T and T^{*}.

Next, by Theorems 4 and 6, we have

$$
\sigma(R) \subset \Gamma \cup (0).
$$

Thus, 0 is an isolated point of the spectrum and then, by Corollary 1, T is a spectral operator.

In the particular case: $H_0 = H$, by Lemma 1, $R = T$ is quasinilpotent, yet still spectral.

An example of a quasinilpotent partial isometry which is not nilpotent is given by the operator matrix

$$
T=\begin{bmatrix} AU & 0 \\ (I-A^2)^{1/2} \; U & 0 \end{bmatrix}
$$

where U is a unilateral shift, i.e., $Ue_i = e_{i+1}$, (e_i) , $(i > 0)$ being an orthonormal basis, and A is a diagonal contraction:

$$
|| A || \leqslant 1, \qquad Ae_i = \left(\frac{1}{2}\right)^{i^2} e_i.
$$

COROLLARY 2. Every $T \in \mathcal{S}(H)$ is the direct sum of a unitary and a quasinilpotent operator: $T = U \oplus N$.

Proof. According to Proposition 2, $U = T | H_0^{\perp}$ is a normal partial isometry and hence the direct sum of a unitary and a zero operator. But the zero term of U is included in the quasinilpotent part $N = T | H_0$.

There remains the class of spectral partial isometries which are not in $\mathcal{S}(H)$. We will consider a class of partial isometries for which a similar decomposition is attainable. Whether such class is or is not spectral depends on the nonunitary part of the decomposition.

Halmos and McLaughlin [7, Theorem 2], and Halmos [10] showed that any closed subset of the unit disk which contains 0 is the spectrum of a partial isometry, by considering operator matrices of the form:

$$
T=\begin{bmatrix}A&(I-AA^*)^{1/2}\\0&0\end{bmatrix},\qquad\text{with}\qquad \|A\|\leqslant 1,\quad Ae_i=\xi_ie_i\,,\qquad (14)
$$

i.e., A is a diagonal contraction and (ξ_i) is a sequence of complex numbers in the unit disk.

If there is an $\epsilon > 0$, such that

$$
\epsilon \leqslant |\xi_i| \leqslant 1, \qquad \text{for every } i,
$$

then it can be shown that T is a scalar partial isometry, i.e.,

$$
T=\int \lambda\ dE_\lambda
$$

for some resolution of the identity E_{λ} .

Thus if σ is any closed subset of the unit disk containing 0 as an isolated point then it is the spectrum of a spectral partial isometry.

QUASICOMMUTING PARTIAL ISOMETRIES

We now weaken the basic condition (1).

DEFINITION. We call a partial isometry T on a Hilbert space H , quasicommuting, if it satisfies following condition

$$
\lim_{n} \| T^*T^n - T^nT^* \| = 0.
$$
 (15)

Some properties will be obtained for quasicommuting partial isometries satisfying, instead of (15), the pointwise condition

$$
\lim_{n} \left\| \left(T^* T^n - T^n T^* \right) x \right\| = 0, \qquad \text{for every} \qquad x \in H. \tag{15'}
$$

For the sake of simplicity we shall denote by $Q(H)$ the class of quasicommuting partial isometries on H.

For any $T \in B(H)$, let

$$
H_1=\{x:\lim_n\parallel T^nx\parallel=0\}
$$

be a manifold in H . Some useful properties of H_1 now follow.

LEMMA 2. If there is a number M such that $||T^n|| < M$ for each n, then H_1 is closed.

Proof. Choose (x_m) in H_1 such that $x_m \to x$. We have

$$
|\parallel T^n x_m \parallel - \parallel T^n x \parallel | \leqslant \parallel T^n x_m - T^n x \parallel \leqslant M \parallel x_m - x \parallel.
$$

Let $\epsilon > 0$. We can find an *m* such that

$$
\|x_m-x\|<\frac{\epsilon}{2M},
$$

and an N such that $n \geq N$ implies

$$
\|T^n x_m\| < \frac{\epsilon}{2}.
$$

Then it follows

 $\|T^{n}x\| < \epsilon$, for $n \ge N$.

Under the conditions of Lemma 2, $\overline{H}_0 \subset H_1$.

THEOREM 8. If T is any bounded operator satisfying condition (15) , then H_1 enjoys the following properties:

- (i) $TH_1 \subset H_1$, $T^*H_1 \subset H_1$;
- (ii) $(TT^* T^*T) H C H_1;$
- (iii) $T \mid H_1^{\perp}$ is normal.

Proof. We follow the outline of similar proofs given by C. Apostol [5].

(i) The invariance of H_1 under T^* holds under the more general condition (15'). We start from the identity

$$
T^nT^*x = (T^nT^* - T^*T^n)x + T^*T^n x, \qquad x \in H_1,
$$

next, we take norms

$$
|| T^{n} T^{*} x || \leq || (T^{n} T^{*} - T^{*} T^{n}) x || + || T^{*} || \cdot || T^{n} x ||,
$$

and when $n \rightarrow \infty$, by condition (15'), we obtain

$$
\lim_n \|T^n(T^*x)\| \leqslant \lim_n \|(T^nT^* - T^*T^n)x\| + \|T^*\| \lim_n \|T^n x\| = 0.
$$

(ii) Let $x \in H$,

$$
T^{n}(TT^{*}-T^{*}T)x=(T^{n+1}T^{*}-T^{*}T^{n+1})x+(T^{*}T^{n}-T^{n}T^{*})Tx,
$$

take norms and, at limit, obtain

$$
\lim_n \| T^n(TT^* - T^*T)x \|
$$

$$
\leqslant \lim_n \|(T^{n+1}T^* - T^*T^{n+1})x\| + \lim_n \|(T^*T^n - T^nT^*)\| \cdot \| Tx \|.
$$

Finally, condition (15) gives

$$
\lim_n \|T^n(TT^* - T^*T)x\| = 0.
$$

(iii) H_1^{\perp} , invariant under both T and T*, is invariant under $TT^* - T^*T$. For every $x \in H_1^{\perp}$ we have

$$
(TT^* - T^*T)x \in H_1^{\perp}.
$$

On the other hand, by (ii),

$$
(TT^* - T^*T)x \in H_1,
$$

and hence

$$
(TT^* - T^*T)x \in H_1^{\perp} \cap H_1 = (0).
$$

COROLLARY 3. A quasicommuting partial isometry T is decomposed by H_1^{\perp} and H_1 in the direct sum

$$
T = U \oplus V, \tag{16}
$$

where U is unitary and V satisfies

$$
\lim_{n} \| V^{n} x \| = 0, \quad \text{for every } x \text{ in the domain of } V.
$$

Proof. By Lemma 2, $\overline{H}_1 = H_1$, and then properties (i) and (iii), of foregoing Theorem 8, accomplish the decomposition of T. $U = T | H_1^{\perp}$ is a normal partial isometry with its zero part included in $V = T | H_1$, thus unitary.

We observe that T decomposed as in (16) is not necessarily spectral.

A partial isometry $T \in Q(H)$ such that $H_1 = H$, but $||T^n|| = 1$ for every n is given by (14) if A is a diagonal contraction with multipliers (ξ_i), and $\lim_{i} \xi_i = 1.$

THEOREM 9. Let T be a partial isometry satisfying condition $(15')$. If

$$
R(T) \subset R(T^*) \qquad or \qquad R(T^*) \subset R(T),
$$

then T is normal.

Proof. We confine the proof to the case

$$
R(T) \subset R(T^*). \tag{17}
$$

Since by condition (17), $Tⁿ$ is a partial isometry with initial space $R(T^*)$, for any n (see [11]), we have

$$
|| T^{n} x || = || Tx ||, \qquad || T^{n} T^{*} x || = || T^{*} x ||,
$$
\n(18)

and

$$
\parallel T^*T^nx\parallel=\ \parallel Tx\parallel\ ,\qquad x\in H
$$

From the identities

$$
T^*T^n x = (T^*T^n - T^nT^*) x + T^nT^*x,
$$

\n
$$
T^nT^*x = (T^nT^* - T^*T^n)x + T^*T^n x,
$$

by taking norms, we obtain

$$
\begin{aligned}\n\parallel T^*T^nx\parallel \leq & \|(T^*T^n-T^nT^*)\,x\,\parallel +\parallel T^nT^*x\,\parallel\,,\\
\parallel T^nT^*x\,\parallel \leq & \|(T^*T^n-T^nT^*)\,x\,\parallel +\parallel T^*T^*x\,\parallel\,. \n\end{aligned}
$$

With the help of relations (18) and condition (15') we obtain

$$
\|Tx\| = \|T^*x\|, \qquad \text{for every} \qquad x \in H,
$$

thus T is normal.

LEMMA 3. Let T be a partial isometry. $||T^n|| = 1$ iff there exists a sequence (x_i) of unit vectors such that

(1)
$$
\lim_{n \to \infty} \| T^{n-1} x_i \| = 1,
$$

(II) $\lim_{n} (I - T^*T) T^{n-1} x_i = 0.$

Proof. If: Since T^* is isometric on $R(T)$,

$$
|| T^n x_i || = || T^* T^n x_i ||,
$$
\n(19)

and then by (II),

$$
|\|T^{n-1}x_i\| - \|T^*T^n x_i\| \leq \|T^{n-1}x_i - T^*T^n x_i\| \to 0. \tag{20}
$$

In view of condition (I), with the help of (20), we obtain

$$
\lim_{i} \|T^*T^n x_i\| = 1,
$$

and then by (19),

$$
\lim_{m\to\infty}||Tx_i||=1.
$$

Only if: If $||T^n|| = 1$, there exists a sequence (x_i) of unit vectors such that

$$
\lim ||T^n x_i|| = 1. \tag{21}
$$

From

$$
\parallel T^nx_i\parallel\,\leqslant\,\parallel T^{n-1}x_i\parallel\,\leqslant\, 1
$$

condition (I) follows.

Furthermore, from

$$
T^{n-1}x_i = (I - T^*T) T^{n-1}x_i + T^*T(T^{n-1}x_i),
$$

we have

$$
\|T^{n-1}x_i\|^2=\|(I-T^*T)T^{n-1}x_i\|^2+\|T^*T(T^{n-1}x_i)\|^2,
$$

or equivalently,

$$
||T^{n-1}x_i||^2 - ||T^*T(T^{n-1}x_i)||^2 = ||(I - T^*T)T^{n-1}x_i||^2.
$$

Conditions (I) and (21) complete the proof:

 $0 = \lim_{i} \| T^{n-1} x_i \|^2 - \lim_{i} \| T^n x_i \|^2 = \lim_{i} \| (I - T^*T) T^{n-1} x_i \|^2.$

THEOREM 10. Let T be a partial isometry. If for some k and h , $1 \leqslant k \leqslant n-1, 0 \leqslant h \leqslant n,$

$$
\overline{R(T^k)} + \overline{R(T^*T^h)}
$$
 is closed,

and

$$
\overline{R(T^k)} \cap \overline{R(T^*T^h)} = (0),
$$

then $||T^n|| < 1$ and $T \in Q(H)$ with $U = T | H_1^{\perp} = 0$.

Proof. Suppose $||T^n|| = 1$. Choose (x_i) of unit vectors such that conditions (I) and (II) of Lemma 3 be satisfied. Condition (II) gives

$$
\lim_{i} (T^{n-1}x_i - T^*T^n x_i) = 0, \tag{22}
$$

but by condition (I)

$$
\lim_{i} T^{n-1}x_i \neq 0. \tag{23}
$$

Since

$$
T^{n-1}x_i \in \overline{R(T^k)}, \qquad T^*T^n x_i \in \overline{R(T^*T^n)},
$$

(22) and (23) contradict the direct sum

$$
\overline{R(T^k)} \oplus \overline{R(T^*T^h)}.
$$

Thus $||T^n|| < 1$, and then $\lim_{n} ||T^n|| = 0$, $H_1 = H$ and, subsequently, $T \in Q(H)$.

ACKNOWLEDGMENT

The authors wish to acknowledge their appreciation to S. K. Berberian for his helpful suggestions and interest in the problem.

REFERENCES

- 1. N. DUNFORD, Spectral theory II. Resolution of the identity, Pacific J. Math. 2 (1952), 559-614.
- 2. N. DUNFORD, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
- 3. W. G. BADE, Unbounded spectral operators, Pacific J. Math. 4 (1954), 373-392.
- 4. J. SCHWARTZ, Perturbation of spectral operators, and applications, I. Bounded perturbations, Pacific J. Math. 4 (1954), 415-458.
- 5. C. APOSTOL, Propriétés de certains opérateurs bornés des espaces de Hilbert II, Rev. Roum. Math. Pures Appl. 12 (1967), 759-762.
- 6. S. K. BERBERIAN, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114.
- 7. P. R. HALMOS AND J. E. MCLAUGHLIN, Partial isometries, Pacific J. Math. 13 (1963), 585-596.
- 8. J. DIEUDONNÉ, "Foundations of Modern Analysis," Academic Press, New York/ London, 1960.
- 9. C. APOSTOL, Propriétés de certains opérateurs bornés des espaces de Hilbert, Rev. Roum. Math. Pures Appl. 10 (1965), 643-644.
- 10. P. R. HALMOS, "A Hilbert Space Problem Book," Van Nostrand, Princeton, N. J., 1967.
- 11. I. ERDELYI, Partial isometries closed under multiplication on Hilbert spaces, J. Math. Anal. Appl. 22 (1968), 546-551.