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In this paper, we examine user registration patterns in empirical WLAN traces, identify
elusive patterns that are abused as user movements in constructing empirical mobility
models, and analyze them to build up a realistic user mobility model. The examination
shows that about 38–90% of transitions are irrelevant to actual user movements. In order
to refine the elusive movements, we investigate the geographical relationships among
APs and propose a filtering framework for removing them from the trace data. We then
analyze the impact of the false-positive movements on an empirical mobility model. The
numerical results indicate that the proposed framework improves the fidelity of the
empirical mobility model. Finally, we devise an analytical model for characterizing realistic
user movements, based on the analysis on the elusive user registration patterns, which
emulates elusive user registration patterns and generates true user mobile patterns.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

As portable devices become popular, such as Personal Digital Assistants (PDAs), Portable Media Players (PMPs), and MP3
player, and many enhanced service features incorporated into the devices are available through Wi–Fi interfaces, such as
real-time video streaming, network games, and web browsing, Wi–Fi Hot Spots gain more responsibility for connecting
nomadic people to the Internet. On the other hand, many wireless applications use location information to carry out hand-
offs, provide location-based services, or improve the quality of services. However, since IEEE 802.11-based Wi–Fi Hot Spots
do not fully support user mobility and cannot provide location information for users, mobile users may experience inferior
connectivity due to inappropriate hand-off and service unavailability due to inaccurate paging (or positioning). Hence, we
need to predict user mobile patterns, at least the association patterns of users or their wireless devices, since the accurately
predicted mobile scenario assists us to precisely pinpoint the current location of the user, and it also directs us to carry
out seamless hand-off procedure, so that the prediction consequently impacts on the connectivity and the performance of
wireless networks.

At the initial stage of the research when no empirical trace data was available, theoretical models have been developed,
many of which relied on random theory such as random walk, random waypoint and random direction model, assuming
the users decide their next move in a random manner. But since random theory does not fit well in reality, other supple-
mentary theoretical models such as Gauss–Markov model or Obstacle mobility model have emerged as well. However, once
Dartmouth College released a large set of WLAN trace data to the wireless community [1], empirical trace-driven mobility
models have been developed, such as in [2–5], and also several empirical trace sets have been available to develop more
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realistic mobility model for WLAN users. In comparison with the theoretical models, the empirical mobility models are
superior in capturing the real aspects of user movements. For example, the models in [6] and [2] discovered that users are
most likely to stay in only one access point (AP) while connecting to the Internet, and even if they roam around in the
network, their associations are usually confined within a geographically close area.

In this paper, we firstly present that these WLAN empirical traces include elusive user registration patterns that degener-
ates the fidelity of mobility model, and then build a filtering framework that can effectively remove false user registrations
(re-associations). Note that the false-positive user registrations result from the dense deployment of APs, and so, as the
density of APs increases up to a certain level, the number of elusive registration increases and consequently the quality
of empirical models proportionally degrades. In order to remove the false-positive registrations, we suggest to take into
account the spatial relationships among APs in dealing with the real trace, especially in the dense WLANs. The spatial re-
lationship actually verifies if the transition between any pair of two APs is geographically possible when it appears in the
trace. The investigation shows that about 90% of the Dartmouth College trace data and 38% of the UCSD trace data [7]
transitions are irrelevant with actual user movements. The difference between the two traces comes from the method of
generating the traces: the UCSD trace was a polling-based trace while the Dartmouth College trace was an event-based one,
so that the former produced a relatively low proportion of irrelevant transitions. Based on this observation, we propose
a filtering framework for extracting true user registration patterns from the trace data. In the framework, we classify the
re-associations into positive and false-positive registrations and use only positive data in building up an empirical mobility
model, where positive re-associations are considered as real user movements and false-positive re-associations are consid-
ered as transitions between APs caused by external effect (such as signal fluctuation) rather than actual user movements.
We use a large collection of user registration patterns gathered from the Dartmouth College campus network collected from
April 2001 to July 2004 [8] to validate the effectiveness of the proposed framework. Then we analyze the impact of the
false-positive registrations on an empirical model. For the evaluation, we use Model T [2]. The numerical results indicate
that the refined trace data produces a more accurate empirical model in perspective of statistical accuracy. Based on the
examination and analysis on user registration patterns, we develop a simple empirical user mobility model for estimating
the future mobile or association patterns of the users. The proposed model characterizes the effect of false-positive reg-
istrations in addition to positive registrations on realistic registration scenario of the users. Especially, the emulation for
false-positive registration is important because the dense WLAN environment inevitably creates such false-positive transitions
and continues to last for a quite long (or whole) period of time. In order to build up realistic empirical model, we utilize
the SNMP log from Dartmouth College collected from November 2003 to February 2004 [9], from which we observed that
fluctuating channel state creates the false-positive transitions and then extracted topological features of the transitions when
these transitions happen.

The rest of the paper is organized as follows. We briefly discuss about existing empirical mobility models in Section 2.
In Section 3, we introduce the Dartmouth trace data and explain the proposed framework of refining the trace data. We then
examine the impact of false-positive registration on actual mobility model in Section 4, where we also use the UCSD trace
data in addition to the Dartmouth trace data. Next, we propose a simple analytical model for modeling user association
patterns and evaluate the model based on prediction rate in Section 5. Finally, we conclude the paper in Section 6.

2. Related work

In this section, we will briefly introduce several trace data, empirical mobility models, and the previous work that have
been developed to extract positive registration patterns from the real trace.

Trace data. The Dartmouth College trace data [1] consists of association, re-association, and disassociation events of mobile
users collected from distinct APs in the campus-wide WLANs. Trace data in MIT [10] and UCSD [7] used polling method to
record user associations at every periodic interval. Although there is no explicit work to present that event-based trace is
better than the polling-based trace, we use the Dartmouth college data for building up the filtering framework since we
do not want to miss any short timescale movement which may not be captured in the interval used in the polling-based
method. But we do use the UCSD trace data to verify the effect of the proposed filtering framework. Recently, Rhee et al.
have released human mobility track logs using GPS from 44 participants from five different sites [5]. In vehicular networks,
there is a publicly available data set of GPS traces collected by 500 taxi cabs in San Francisco for over two years [11].

Mobility models. The Model T [2] is an empirical model that can generate a synthetic trace with statistic information based
on the Dartmouth College trace data (from April 2001 to March 2003). In the model, the whole set of APs is clustered using
MCL (Markov Clustering) graph clustering algorithm [12] according to the number of transitions between APs, showing a
distinct hierarchy in user registration patterns. Its subsequent work in [13] extends the model by including the transitions to
and from OFF states of wireless devices, and it also provides a method for determining the residence time at each APs based
on its popularity gradient, which is determined by the popularity of previously and currently associated APs. Lee et al. [3]
characterized steady-state and transient behaviors of user mobility, and represented the mobility by a semi-Markov process.
It mainly investigates how user mobility is correlated in time at different time scales. Yoon et al. [4] built up a realistic
mobility model by combining association data (between WLAN users and APs) with an actual map of Dartmouth College
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campus, where the map is converted into a graph representation. Kim et al. [14] introduced a predictive association control
algorithm based on past mobility patterns. In addition, Lee et al. [15] produces synthetic human walk traces by expressing
the patterns that involves (i) truncated power-law distributions of flights, pause times and inter-contact times, (ii) fractal
waypoints and (iii) heterogeneously defined areas of individual mobility.

Optimizing registration patterns. The work presented in [16,17] identified ping-pong phenomenon in the trace data. The
phenomenon occurs when a WLAN device is located within multiple transmission ranges of APs and the unreliable wireless
channel continuously triggers the re-association procedure among them even if there is no real user movements. The work
in [3] and [4] proposed detailed methods for removing the transitions occurred due to ping-pong phenomenon. Lee et al. [3]
devised a method for eliminating them in the way that all the APs involved to a ping-pong phenomenon are replaced with
dominant APs. In the method, transition is classified as a ping-pong transition if the sequence of transitions form a round
trip between two or three APs. Yoon et al. [4] filtered out the ping-pong re-association with an average moving filter, which
produces similar results to those obtained in [3]. Even though both works deal with ping-pong phenomenon to construct
better mobility models, they do not verify if the transitions in a trace are really possible in perspective of geographical
relationships among AP locations and/or human mobile speed.

3. Filtering framework

In this section, we first explain the empirical data from Dartmouth College to give a better understanding about the
proposed framework. We then explain how to devise the framework for filtering out false-positive user registration patterns.

3.1. Empirical trace data

We use the trace data that the Dartmouth College collected from April 2001 through July 2004 [8]. The data covers
602 APs in 161 buildings and there are 13 888 different WLAN users in total. The users can be divided into Wi–Fi users and
VoIP users according the Operating System type. However, we use the whole user data without using the classification. The
campus area is about 200 acres which indicates a sufficiently dense WLAN environment (about 743 APs/km2). The trace
data consists of association, re-association and disassociation events, each of which occurs when a user associates from OFF
state to specific AP, when (s)he re-associates from an AP to another AP, and when (s)he disassociates from an AP going to
OFF state, respectively.

In addition to the trace data, we also use the location information of APs [18] in this study consisting of x, y and z
coordinates, where the z coordinate indicates the floor of the AP, and name of the building at which the AP is located. Note
that we have assumed that all buildings in the campus stand on a flat ground and each floor has equal height of 10 ft.

Since only 500 APs do have information about their locations, we use only the trace data involved to those APs and users
who visited to them. This reduces the number of mobile users to 5845 users, but the number is still large enough for our
analysis. In order to verify the AP locations, we overlap the actual map of the Dartmouth College [19] and the MATLAB plot
of the location data, which is shown in Fig. 1. The black squares in the figure fit well within the buildings (brown shaded
areas) which shows the locations of APs match well with the locations of buildings.

3.2. Filtering-out false-positive transitions

In this section, we define false-positive user registration patterns for elusive transitions that are abused as user’s physical
movements, and propose a framework for filtering them out from the original trace data. Let i denote the AP with which a
user was previously associated, j denote the AP with which the user plan to associate, and T f represent the false-positive
transitions. Firstly, we divide T f into three classes: (1) transition from i to j where both APs are in the same building but
there are one or more floors between them where at least one AP is located (T f ,s); (2) transition from i to j where each
AP is in different building from each other but the transition is not geographically possible since there is no connecting
infrastructure between two buildings, or another AP exists between the two APs (T f ,d); (3) ping-pong transition (T f ,p).

In order to detect transitions in first two cases, we use only building name and floor information since we do not have
any obstacle information inside the buildings. Recall we assume that a user will associate another AP in the same floor since
the barrier between floors is assumed to prevent any association through it. Additionally, the Cisco specification states that
the transmission range of the AP indoors is from 130 to 350 feet, which makes it reasonable to assume that a user will
associate APs in the same floor. Note that some buildings are connected to each other through a skywalk or a connecting
infrastructure at all floors even though they are different buildings in the trace data. For example, ResBldg83 and AcadBldg18
are connected to each other at all floors and thus can be regarded as the same building as shown in Fig. 2(a). In order to
detect this, we employ the Google Earth [20]. As shown in Fig. 2(b), the Google Earth offers 3-D building presentation in a
great detail so that we can confirm not only the existence of the connection but also the location of skywalk. Note that 28
buildings are fully connected to each other and 7 buildings has a skywalk connected to another building at the Dartmouth
campus.
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Fig. 1. The AP locations plotted on Dartmouth College map where the symbol of black squares indicate individual APs.

(a) (b)

Fig. 2. An example of connected but differently marked buildings. (a) Resbldg83 and AcadBldg13 are connected to each other according to the map. (b) The
Google Earth presents how Resbldg83 and AcadBldg13 are connected to each other.

As for the third case, we define ping-pong transition when transitions are satisfied with:

(a) j ∈ Bnu and
(b) pnu = pnmax ,

where

(i) Bnu is the set of APs in nuth transition of user u, which contains at most l different recently associated APs.
(ii) pnu is the ping-pong counter operating in what follows:
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Fig. 3. Number of ping-pong transitions versus pnmaxF .

pnu =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 1Bn ( j) = 0 and pnu−1 = 0,

or nu is a transition to the OFF state,

pnu−1 − 1 if 1Bn ( j) = 0 and 0 < pnu−1,

pnu−1 + 1 if 1Bn ( j) = 1 and pnu−1 < pnmax ,

pnmax if 1Bn ( j) = 1 and pnu−1 = pnmax ,

(1)

where pnmax is the maximum value of pnu and 1A(·) is the indicator function which is

1A(x) =
{

0 if x /∈ A,

1 if x ∈ A.
(2)

In the above algorithm of identifying ping-pong transitions, the l value indicates how many APs are involved to ping-pong
transitions. Admitting that the ping-pong transitions mostly occur between two APs, we observed that they occur in a
fair amount between up to four APs in dense area of APs. In order to accommodate the ping-pong transitions involved to
multiple APs and simultaneously avoid removing positive re-associations, we employ the variable of pnu in the algorithm.
As shown in (1), pnu increases when the current associated AP already exists in Bnu and decreases when it does not. The
current transition is counted as ping-pong transition only when pnu has reached the maximum value pnmax . The reason
why we introduce pnmax in Eq. (1) is because we would like to give a tolerance threshold to transitions between a pair of
APs before they are regarded as ping-pong transitions from the trace data. We can henceforth effectively remove ping-pong
transitions by setting the pnmax value appropriately. Note that larger (smaller) pnmax value reduces (increases) ping-pong
decisions while increasing (decreasing) correctness of the decision. To find an optimal pnmax value, we first identified a ping-
pong session as a sequence of consecutive ping-pong transitions, and then analyzed the relationship between the lengths
and number of sessions according to pnmax values. Finally, we can predict to what extent the pnmax value influences on
estimating the number of ping-pong transitions.

Fig. 3 presents the number of ping-pong transitions as pnmax increases. We observe from the figure that the number
sharply decreases from pnmax = 1 to pnmax = 2, but after that slowly decreases. So, we use l = 4 and pnmax = 2 for the
proposed framework.

Note that the algorithm sets pnu to 0 when it goes to OFF state since a user is likely to move to a different location
when (s)he turns on his (her) device again after (s)he terminates his (her) session.

Finally, we determine the transition count for each class of T f as follows:

|T f ,s| =
|U |∑

u=1

Nu∑
nu=1

E(Ai, j), bi = b j, (3)

|T f ,d| =
|U |∑ Nu∑

E(Ai, j), bi �= b j, (4)

u=1 nu=1
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|T f ,p| =
|U |∑

u=1

Nu∑
nu=1

1Bnu
( j) ·

⌊
pnu

pnmax

⌋
, (5)

where u is a WLAN user index, U is the set of WLAN users, nu is the transition index of user u’s trace, Nu is the total
number of transitions in user u’s trace, Ai, j is the set of APs positioned over the shortest path from i to j with respect to
the number of passing floors, bi is the building name at which i is located, and E(·) is the step function defined as

E(A) =
{

0 if |A| = 0,

1 if |A| > 0.
(6)

When we use (3)–(5) to analyze the Dartmouth College trace data, we found out that each false-positive transition, T f ,s ,
T f ,d , and T f ,p occupies 280 611, 1 345 309 and 4 360 764 in total 5 138 484 transitions, respectively. Since false-positive
transitions occupy more than 90% (≈ 90.36%, after removing duplications) of total re-association transitions, we expected
false-positive transitions to impose a great impact on empirical mobility models. Note that about 38% of total transitions in
UCSD trace were false-positive where only T f ,p was measured due to lack of location information of UCSD APs.

4. Performance evaluation on the filtering framework

In this section, we analyze the impact of false-positive transitions on the accuracy of empirical mobility models. For the
analysis, we employed Model T [2] to compare the accuracy between two empirical models, each of which was made from
the original and refined trace,1 respectively. Since Model T in [2] was constructed with a different data from what we used,
we performed the whole analytical procedure specified in [2] again with the data sets used for developing the proposed
filtering framework (Dart04) and trace data from UCSD.

As the metrics of comparison, we used: (i) transition probability distributions, (ii) cluster size versus Weibull parameters, and
(iii) characteristics of AP clustering since these metrics play the important role of deriving the Model T. As mentioned in
Section 2, clustering the APs according to the number of transitions shows that user registration patterns form a distinct
hierarchy within each cluster and between clusters. Note that transitions within a cluster are called intra-cluster transitions
and transitions between clusters are called inter-cluster transitions. The readers are referred to [2] for a detailed account of this
clustering.

4.1. Transition probability distributions

For a cluster C , we created a |C | × |C | intra-cluster transition matrix N to obtain intra-cluster transition probability
distribution as defined in [2] where N(u, v) is the number of intra-cluster transitions from AP u to AP v in C . The intra-
cluster transition matrix M for C is then

M(u, v) = N(u, v)∑
i N(u, i)

, (7)

where we included the OFF state as stated in [13].
Inter-cluster transition probability matrix was made in the similar manner except that each AP is replaced by individual

cluster and the whole network is treated as one large cluster. The resulting distributions were fitted into Weibull CDF which
is:

F (x) = 1 − e−( x
a )b

, (8)

with non-linear least squares fit with robust option in the MATLAB curve fitting tool.
Finally, we obtained the transition probabilities for both the original and refined traces. The results for intra-cluster

(|C | = 12 for Dart04 trace and |C | = 7 for UCSD trace) and inter-cluster transitions are shown in Figs. 4 and 5, respectively.
Specific numerical results in the perspective of the goodness-of-fit measures for Dartmouth trace data in all cluster sizes
are shown in Tables 1 and 2. Table 1 shows the results for intra-cluster transitions while Table 2 shows those results for
inter-cluster cases. Note that some entries in Table 1 were not available because the distribution of clusters for the original
and refined trace were different from each other and thus produced different output with MCL tool. As we can see for both
tables, the Weibull CDF fits much better for the refined trace in both intra- and inter-cluster cases. This result means that
the false-positive transitions make the fitting errors in Model T. The results for UCSD trace data also showed improvements
in goodness-of-fit measure for both intra- and inter-cluster cases.

1 We use the terminology of “refined trace” for the trace that we obtained by removing false-positive transitions in the original trace.



J. Hong, H. Kim / Journal of Computer and System Sciences 77 (2011) 869–883 875
(a) (b)

(c) (d)

Fig. 4. Comparison between intra-cluster transition probabilities. (a) Empirical CDF and its Weibull fit for intra-cluster transition probabilities when |C | = 12
in the original trace (Dart04 trace). (b) Empirical CDF and its Weibull fit for intra-cluster transition probabilities when |C | = 12 in the refined trace (Dart04
trace). (c) Empirical CDF and its Weibull fit for intra-cluster transition probabilities when |C | = 7 in the original trace (UCSD trace). (d) Empirical CDF and
its Weibull fit for intra-cluster transition probabilities when |C | = 7 in the refined trace (UCSD trace).

4.2. Cluster size vs. Weibull parameters

Multiple CDF-based modeling corresponding to each cluster size produces a huge amount of modeling parameters since
clustering creates tens of cluster sizes and we need two Weibull parameters (a and b) for each cluster size. Model T [2]
provides a higher level of abstraction that reduces the number of these parameters, which fits each Weibull parameter with
the following exponential equation:

y = p1e−p2x + p3. (9)

Before proceeding to detailed modeling, we note the characteristics of each Weibull parameters as follows in order to
give the insight about its relation with cluster size. The first parameter a is called the scale parameter and the second
parameter b is called the shape parameter. The former stretches out the Weibull pdf when it increases while the latter
(b) is fixed, which relaxes the steepness of the Weibull CDF. The latter changes the shape of its pdf from a monotonically
decreasing form to a bell-shaped one when it increases from 0 while the former (a) is fixed. According to Eq. (7), the
transition probabilities between each pair of APs are expected to decrease as cluster size increases, resulting a continuous
decrement of parameter a. However, the effect of varying cluster size on parameter b remains ambiguous.

Fitting the parameters of original and refined trace data into Eq. (9) gives a better insight of these parameters. We
employed the same fit options as used in Section 4.1, and presented the results in both Table 3 and Fig. 6. As expected,
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(a) (b)

(c) (d)

Fig. 5. Comparison between inter-cluster transition probabilities. (a) Empirical CDF and its Weibull fit for inter-cluster transition probabilities in the original
trace (Dart04 trace). (b) Empirical CDF and its Weibull fit for inter-cluster transition probabilities in the refined trace (Dart04 trace). (c) Empirical CDF and
its Weibull fit for inter-cluster transition probabilities in the original trace (UCSD trace). (d) Empirical CDF and its Weibull fit for inter-cluster transition
probabilities in the refined trace (UCSD trace).

Table 1
Goodness-of-fit measures for intra-cluster transitions between the original and refined trace.

|C | rmse, original rmse, refined R2, original R2, refined

3 0.0378 0.0179 0.9822 0.9960
4 0.0440 0.0185 0.9731 0.9956
5 0.0429 0.0152 0.9743 0.9964
6 0.0453 0.0181 0.9689 0.9949
7 0.0609 0.0235 0.9331 0.9922
8 0.0378 0.0216 0.9822 0.9887
9 0.0320 0.0099 0.9854 0.9983

10 0.0454 0.0183 0.9553 0.9911
11 0.0118 0.0383 0.9981 0.9826
12 0.0705 0.0207 0.9078 0.9861
13 0.0454 0.0196 0.9562 0.9913
14 0.0164 N/A 0.9931 N/A
15 0.0286 N/A 0.9865 N/A
16 N/A 0.0174 N/A 0.9916
17 0.0473 N/A 0.8786 N/A
21 0.0294 N/A 0.9816 N/A
22 N/A 0.0230 N/A 0.9903
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Table 2
Goodness-of-fit measures for inter-cluster transitions between the original and refined trace.

rmse, original rmse, refined R2, original R2, refined

Inter 0.00504 0.00277 0.9978 0.9981

Table 3
Parameter values and Goodness-of-fit measures for fitting Weibull parameters.

original refined

a b a b

p1 1.129 p1 2.222 p1 1.506 p1 0.6334
p2 0.3864 p2 0.3871 p2 0.5213 p2 0.2603
p3 0.01332 p3 0.2651 p3 0.009609 p3 0.2902

rmse 0.0169 rmse 0.1074 rmse 0.0106 rmse 0.1007
R2 0.9778 R2 0.8043 R2 0.9875 R2 0.4664

(a) (b)

Fig. 6. Distribution of Weibull parameters and its fitted curves. (a) Dartmouth College trace data. (b) UCSD trace data.

parameter a is fitted well with the monotonically decreasing exponential curve. However, parameter b seems to be set with
any value in the range of [0,1] rather than being well fitted with the curve. This can be interpreted in the way that the
shape of Weibull CDF per cluster size is similar to each other.

4.3. Characteristics of AP clustering

Once we obtained clusters, the original trace of Dartmouth College had clusters of sizes {2,3,4,5,6,7,8,9,10,11,12,13,

14,15,17,21} and the refined trace had {2,3,4,5,6,7,8,9,10,11,12,13,16,22}. Even though two distributions of cluster
sizes do not differ much from each other, the APs in each cluster became more geographically packed after removing false-
positive transitions. The average distances between APs in each clusters were computed with following equation:

∑
i, j∈C

√
(xi − x j)

2 + (yi − y j)
2

|C | · |C − 1|/2
, i �= j, (10)

where the denominator indicates the number of AP pairs in cluster C and the nominator indicates the sum of distances of
the AP pairs in C.

By averaging the results for all clusters, the average distance for the original trace was 348.03 feet and that for the refined
trace was 203.49 feet. The result is shown in Fig. 7. Clusters of the same size have been averaged.

One interesting result after refining the original trace is that 50 clusters have the same APs that belongs to specific
buildings (including connected building). For example, the APs in the cluster of |C | = 22 in the refined trace exactly matched
with the APs in AcadBldg10. This is noticeable since only 11 clusters have those exact matchings in the original trace.
Combined with the result from average distances, we can interpret this result as the evidence that many transitions are
irrelevant to actual user movement.
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Fig. 7. Average distance between APs.

5. Realistic user registration model

In this section, we propose an analytical model for user registration patterns, inclusive of false-positive and positive user
registrations, by which we can improve the accuracy in predicting (estimating or modeling) user association patterns in
WLANs. Note that false-positive transitions occur even when the user device is almost immobile in a dense WLAN environ-
ment (as discussed in Section 3), so that they should be incorporated into user mobility model, especially when the network
environment is assumed to be dense. Definitely, positive transitions are considered as real user movements.

In order to model the false-positive transitions, we use the SNMP log provided from Dartmouth College [9] where we
extracted the principal features of the transitions because it provides the RSSI values of WLAN devices polled from APs
in every five minutes. This enabled us to directly see how a WLAN device changes its association when it is within the
transmission range of several contending APs. As for the positive transitions, we exploit the Bayesian classifier with a small
modification to generate registration patterns for each user according to each user specific mobile patterns in the given
geographical property. Different from many mobility models, including [2], which focus on the probability distributions
from total registration statistics to determine the next association for an individual user, we capture the mobile patterns for
each user with a recent registration history of each individual user.

5.1. Modeling false-positive user registrations

As discussed in Section 3, in case of large number of APs in the WLAN, such high density of APs incurs a false-positive
transition even though the user is stationary. Therefore, we need to include the false-positive registration patterns in empir-
ical mobility model. Note that a recent update on the locations of APs in Dartmouth College [21] supports this argument
since 70% more number of APs has been installed at the campus. Additionally, the user density per AP also becomes severe
in indoor environments because the area to which users can move around is very limited, compared to outdoor envi-
ronment. Therefore, by including the false-positive patterns, we realistically emulate user mobile patterns (or registration
patterns) for WLAN users, and also we can use it to develop intelligent hand-off algorithm and/or load-balancing algorithm.

The fundamental question is how we can identify false-positive registrations to reflect them into a prospective mobility
model, and the next question is what types of false-positive registrations we need to emulate in the prospective model.

How to decide false-positive registrations. Since one of main criteria that determines the link state is the received signal
strength (RSS) and the distance between an AP and a user device can be estimated with the RSS value, we decide to use
the RSS value to determine false-positive registrations. We collect a set of RSS values for each user (or WLAN device), each
of which is measured from each neighboring AP. Based on these information, we then classify the different pattern of
residence time at each AP during the period of false-positive registrations, which is used to determine what AP dominates
to connect with the user during the period. For example, Fig. 8 presents two different distributions of user residence time:
the total residence time of AP 362 and 364 in Fig. 8(a) (the numbers on the rightmost side denote the residence times)
is almost equal to each other, whereas those time in Fig. 8(b) are varying over APs. We make use of SNMP log data from
Dartmouth College collected from November 2003 to February 2004 which includes RSSI values for each user measured
from the latest packet received from APs. But, since the data was collected by a polling method at every five minutes, there
exists inconsistency with the syslog trace data. Note that the terminology “syslog trace data” is identical to “the syslog trace
data” and is used to be distinguished from the SNMP log data, and that each record in Fig. 8 consists of date, time, a day of
the week, AP identifier, and the residence time. To address this inconsistency problem, we average the RSSI values measured
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(a) (b)

Fig. 8. Examples for presenting distinct patterns of false-positive transitions. (a) Syslog trace of a user who has almost equal distribution of residence time
between two APs. (b) Syslog trace of a user who has different distribution of residence time between two APs.

(a) (b)

Fig. 9. The area of incurring false-positive registrations. (a) A set of theoretical points when false-positive transitions occur (di = d j). (b) A realistic area
when false-positive transitions occur (|di − d j | < α).

during the residence time to represent the RSSI value for each association. Additionally, there exists another inconsistency
in the RSSI values from January 2004 to February 2004. The inconsistency is that two types of measurement units for RSSI
values appear in the period, which actually happens when Cisco 350 APs migrated from running VxWorks to the Cisco IOS.
Cisco IOS recorded the RSSI values in dBm unit where VxWorks recorded those values in normalized value ranging from 1
to 100. For this reason, we excluded these two months SNMP data and used the data from the remaining two months.

We made the following assumptions in the course of developing user registration model for false-positive user registra-
tions:

(i) the transmission range (or power) of all APs are identical;
(ii) false-positive transitions occur between two APs;

(iii) no obstacle is assumed to exist;
(iv) the channel noise that affects the RSSI value is constant.

As the first step, we consider the most simple case when there are only two contending APs i and j, and the WLAN
device is located at the same distance from i and j, namely di and d j . The configuration is presented in Fig. 9(a), where the
dashed line indicates that the user can reside within any spot along the line to satisfy the above assumption. Note that this
configuration presents the simplest environment in order for a WLAN device to generate false-positive transitions because
the theoretical RSSI value of each AP is equal to each other and the fluctuation of the channel state directly affects the
associations.

We then extend the positions over the dashed line by giving a tolerance value of α to the difference between di and d j
considering various radio parameters:

|di − d j| < α. (11)

This extension is described with the shaded area of Fig. 9(b).
In the configuration of Fig. 9(b), one of the APs starts to connect to the user device, but, due to the unreliable channel

state due to various types of interference, it loses its connection with the device after for some period of time, where this
time interval is inversely proportional to α. That means the farther the user moves away from AP i (AP j) and approaches
AP j (AP i), the less AP i (AP j) gets the chance to associate with the user. This can be explained with the following Friis
formula that specifies the relationship between the RSSI value and the transmission power of AP:
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Pt
= Gt Gr

(
λ

4πd

)θ

, (12)

where Pr is the power received by the receiving antenna, Pt is the power input to the transmitting antenna, Gt and Gr are
the antenna gain of the transmitting and receiving antennas, respectively, λ is the wavelength and d is the distance between
AP and the WLAN device, and θ is the path loss parameter in between 2 and 4. If we remove all the constants and the fixed
variable Pt , only the relationship between Pr and d remains (Pr ∝ 1/dθ ). Thus, α is dependent on Pt , where Pt increases,
α also increases. Since deciding the exact value of α requires the knowledge of all the variables, including Pt and di,d j ,
which we cannot infer even from the SNMP log data, we leave it as a variable.

How to classify false-positive transitions w.r.t. residence time. Then, we will discuss about the residence time ratio, rres , in the
area that may incur false-positive transitions. Note that the residence time ratio, rres , is defined as the following value:

rres = min(si, s j)

si + s j
, (13)

where si and s j indicates the residence time in AP i and j, respectively. By intuition, rres will decrease as |di − d j | increases
because the dominant AP is more likely to seize the association with the WLAN device for a longer period of time that the
other APs, and so the recessive AP becomes the numerator in Eq. (13).

We now empirically derive a model for rres with the SNMP log data. Since we do not have any location data of WLAN
users, which is required to determine the distances between each user and APs, we will infer |di(τρ) − dk(τρ)| from
|RSSIi(τρ) − RSSIk(τρ)|, where ρ is the index for a SNMP time instance, di(τρ) is the distance between AP i and the user
at the time instance τρ and RSSIi(τρ) is the measured RSSI value at the time instance τρ . Note that AP k is the AP that
contends with AP i for the next association with the user and is not AP j. Also we assume that |RSSIi − RSSI j | and |di − d j |
have a positive relationship from Eq. (14), which is:

|RSSIi − RSSIk| ∝
∣∣∣∣ 1

dθ
i

− 1

dθ
k

∣∣∣∣. (14)

We first extracted T f for all users as described in Section 3 but only between two APs in this case (recall the second
assumption). Then, we track the syslog trace and SNMP log data simultaneously to judge false-positive user registrations and
obtain the residence time of APs and RSSI values of WLAN devices. Note that in this procedure of tracking, we need to
synchronize the registration pattern in the syslog trace and RSSI values in SNMP log because the model basically relies on
the syslog trace and the SNMP log is only referred to obtain RSSI value when false-positive registration is detected. When
we detect a false-positive transition, we collect all the RSSI values of AP i and AP k while the user is associated with AP i.
In the case that we observed multiple RSSI values from the same AP, we averaged those values. Thus, |RSSIi(τρ)− RSSIk(τρ)|
value(s) measured during the period of association with AP i can be described by the following normalized RSSI value (in
syslog trace):

RSSIik(ti, t j) = 1

Mti ,t j ,(i,k)

Mti ,t j ,(i,k)∑
h=1

∣∣RSSIi(τρ) − RSSIk(τρ)
∣∣, (15)

where ti denotes the association time instance of i and Mti ,t j ,(i,k) denotes the number of available RSSI sets (RSSIi,RSSIk)
that are measured between [ti, t j]. We then compute rres using the relationship si = t j − ti . In the procedure of discovering
the relation between rres and RSSIik(ti, t j), we arrange 10 number of bins by equally dividing the value of RSSIik(ti, t j), assign

the computed rres value to an appropriate bin indexed with the � RSSIik(ti ,t j)

10 �, and average the rres values in the collected set
in the end. This approximation is acceptable because we simply want to discover the relationship between RSSIik(ti, t j)

and rres . The empirical results for this classification is presented in Fig. 10.
In Fig. 10, the blue line tagged with cross marks presents the results of the above calculations. We can see that until

RSSIik(ti, t j) � 20, rres does not vary much. This results from (1) little difference between RSSIi and RSSIk values and (2) the
effect of threshold value of |RSSIi −RSSIk| set in WLAN cards to prevent frequent hand-offs. After that point, however, we can
see that rres drops in a steady manner except the last rres value, which was distorted by one WLAN device that continuously
associated to AP i with 1 � RSSIi � 10 instead of AP k with 60 � RSSIk . We thus deliberately removed this special case form
the data set. After this removal, we have more stable results: the green dashed line tagged with circle marks in Fig. 10
shows the result. With the results presented with the green dashed line, we can fit the residence time with the exponential
equation in Eq. (9). When p1 = 0.272, p2 = 0.05627 and p3 = 0.1779, the fitting result showed goodness-of-fit measures
R2 = 0.9889 and rmse = 0.003679. This fitting was proved to be the best in our investigation among other distributions,
such as power law and linear polynomial.

5.2. Modeling positive user registrations

The main objective of modeling positive transitions is to obtain real user movements, which is different from false-
positive transitions in that the distances between a user and APs are physically changed over time. We basically use the
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Fig. 10. RSSIik(ti , t j) vs. rres .

Algorithm 1 Algorithm for generating positive transitions
Require: i is the current associated AP,

j is the next associating AP,
reg_datau is the registration data of u,
−→x is the vector storing the CDF data.

1: |U | ← user input
2: Nu ← user input or a given probability distribution
3: for u in U do
4: i ← Pick from any AP that has P (i) > 0
5: for 1 to Nu do
6: −→x ← Create_CDF(reg_data_u, i)
7: rand_no ← Create_rand(0,1)

8: j ← AP that has closest CDF value with rand_no
9: end for

10: end for

Bayesian approach to achieve this goal. The reason why we use this approach is because each user has his (or her) own
specific association patterns, which varies greatly depending on user characteristics and topological (and/or geographical)
environment. Specifically, among the Bayesian classification, we use the Minimum–Error–Rate classification which is as
follows:

Decide j if P ( j|i) > P
(

j′|i), ∀ j′ �= i, j′ ∈ J i, (16)

where P ( j) is the probability that the user associates with AP j after current association with AP i is released and the J i is
the set of all candidate APs with which the user can associate after the current association. Note that P ( j|i) is the posterior
probability which is mainly used for the decision. Assuming we have sufficient data at the starting point of modeling, it
is possible to generate synthetic trace for each user by calculating P ( j′|i), j′ ∈ J i , in Eq. (16). However, applying Eq. (16)
directly to the association pattern data gives fixed result for the same input i and u since the classifier will always choose
j which has the maximum P ( j|i) value. We thus modify the classifier to build a CDF from P ( j′|i) values creating F (index j′ )
and let the classifier pick one as j, where F (index j) has the closest value to a randomly picked number in range [0,1]. This
will give other APs a chance to be selected even though their posterior value is small.

Positive transition generating algorithm. Based on the modified Bayesian classifier, we define an algorithm to model positive
user registration, which actually generates positive user registrations. The detailed algorithm is referred to Algorithm 1. The
algorithm assumes that the registration history data of user u is given in advance, and uses the following functions:

(1) Create_CDF(reg_datau, i): creates CDF of P ( j′|i) values extracted from reg_datau ;
(2) Create_rand(0,1): creates a random number drawn between the range [0,1].

In the algorithm, the number of users |U | can be determined according to the network scale, and the number of transi-
tions of each user Nu has a distribution. From our statistical result, an example of well fitted distribution of Nu is Gamma
or Weibull distribution.
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Fig. 11. Comparison between prediction algorithms.

The modified Bayesian classifier can also be applied to predict the next AP for user’s reassociation, which can effectively
assist any hand-off procedures. The specific method for the prediction is similar to Algorithm 1 but we need to use the real
trace data in order to follow the sequence of real trace and verify the correctness of the prediction. Another major difference
with Algorithm 1 is that we need to update reg_datau whenever there is a transition from h to i, where h is the previously
associated AP. Note that since we simulate the WLAN device, there is a limit on the capacity of reg_datau regarding the
computational overload.

We compare the proposed prediction method with two other methods. One method is when we remove the capacity
constraint of res_datau , and the other one is when we use the whole transition statistics from the real trace and build a
transition matrix that stores all the transitions from trace data. The latter actually removes the effect of dealing each user
separately.

The result is shown in Fig. 11, where total denotes the prediction made from total statistics and others used user-specific
approach with (or without) the size limit of reg_datau . The figure indicates that user-specific approach gives a much better
result compared to the total method. Surprisingly, limiting the capacity of the registration data gives a slightly better result,
implying that locality of user association patterns plays an important role.

6. Conclusion

In this paper, we investigated the trace data collected from the Dartmouth College WLAN networks, and identified
elusive user transitions that are abused as actual user movements. We then proposed a framework of filtering out the
false-positive transitions in order to retain only actual user movements in empirical mobility models. We employed Model T
and its extension to verify the effect of the proposed framework on real mobility model. The evaluation has been done
by comparing the transition probability distribution and cluster characteristics between the original and refined Dartmouth
College trace, and also done with UCSD trace. Similar statistical results from the two trace data shows that removing elusive
registration patterns improves the fidelity of empirical mobility models. Based on the refined trace and the examination on
the user registration patterns in the dense Wi–Fi networks, we proposed a realistic mobility model, inclusive of false-positive
and positive registrations. Especially, one part of the modeling that emulates positive registrations can predict the prospective
position of individual users based on a short-term history of user registration patterns. We presented that the prediction
statistically is better than when we fully use the whole set of trace data.

We have several research directions for future research. We plan to investigate additional set of parameters to determine
false-positive registration patterns and also to elaborate the algorithm for emulating positive registrations in the way of
reducing the complexity of the algorithm. We also would like to integrate both registration models into a singe integrated
framework in order to produce more realistic user mobile patterns in real Wi–Fi HotSpot networks.
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