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Oncogenic ras has been shown to downregulate Fas
receptor expression and increase Fas ligand expres-
sion and thus contribute to resistance to Fas-medi-
ated cell death in several cell types. The effects of ras
on Fas-mediated apoptosis have not been studied in
melanoma. We studied the effects of activated N-ras
by measuring Fas, Fas ligand, and FLIP expression as
well as susceptibility to Fas-ligand-induced cell death
in transfectants of WM35, a radial growth phase
human melanoma cell line. Based on quantitative
polymerase chain reaction and fluorescence-activated
cell sorter analysis, we found that the ras transfec-
tants expressed less Fas mRNA and surface Fas
receptor. Cr’' release cytotoxicity assays demon-
strated less susceptibility to Fas-mediated apoptosis
in ras transfectants, correlating with the Fas mRNA
and protein expression results. Ras inhibition with
the specific inhibitor FTI-277 showed that downre-

gulation of Fas in the ras transfectants could be
reversed. This correlates with cytotoxicity experi-
ments showing that ras inhibition increases suscepti-
bility to Fas-mediated apoptosis. The control
transfectants expressed FLIP but ras did not affect
FLIP expression. The control and ras transfectants
did not express Fas ligand as demonstrated by
reverse transcriptase polymerase chain reaction and
fluorescence-activated cell sorter analysis.
Cytotoxicity assays further confirmed that these
melanoma ras transfectants do not express functional
Fas ligand. These results suggest that ras contributes
to tumor progression by decreasing susceptibility to
Fas-mediated cell death at least in part through
downregulation of Fas receptor at the transcriptional
level. Key words: FLIP/Fas ligand/FT1-277. J Invest
Dermatol 119:556—-561, 2002

ncogenic ras mutations have been well associated

with tumor progression. Approximately 36% of

melanomas have a ras mutation, of which N-ras is

the most common (Ball et al, 1994). Ras mutations

are more commonly associated with melanoma
progression from radial growth phase to vertical growth phase.
Melanoma demonstrates increased cell motility and loss of
anchorage-dependent growth when mutated ras is introduced,
thus increasing its tumorigenicity (Fujita et al, 1999).

The ras gene product is synthesized as a cytoplasmic precursor,
which requires post-translational processing for activity. The
critical modification is farnesylation of the cysteine residue in the
CaaX motif (where C = cysteine, a = aliphatic, X = any amino
acid) located near the carboxyl terminus of all ras proteins. Once
farnesylated, the mature ras protein is attached to the plasma
membrane where it participates in signal transduction pathways that
control cell growth and differentiation.

Ras contributes to tumor progression by altering normal growth
and proliferation pathways. Ras affects susceptibility to apoptosis
through changes in normal apoptotic machinery (Evan and
Littlewood, 1998; Lowe and Lin, 2000). Ras has been shown to
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protect various cell types from anoikis (Khwaja et al, 1997), c-myc-
induced apoptosis (Kauffmann-Zeh ef al, 1997), and death receptor
pathways such as Fas-mediated apoptosis (Fenton et al, 1998; Peli
et al, 1999; Yang et al, 2000).

Fas-mediated apoptosis involves many factors to induce cell
death. The Fas receptor (CD95, APO-1) is a type I transmembrane
receptor that is a member of the tumor necrosis factor (TINF)
receptor family (Nagata, 1997). It has a cytoplasmic death domain
that binds with Fas-associated death domain (FADD/MORT1)
upon activation by Fas ligand (FasL) (Boldin et al, 1995; Chinnaiyan
et al, 1995). Caspase-8 (FLICE/MACH) is activated by binding to
FADD, which is already bound to the Fas receptor to form the
death-inducing signaling complex (DISC). Caspase-8 activates
downstream eftector caspases, which leads to cell death.

FasL is a type II transmembrane receptor that is a member of the
TNF family (Suda et al, 1993; Suda and Nagata, 1994). It is
expressed on activated T cells and binds to Fas receptor to induce
cell death in Fas-bearing target cells. FasL expression in immune-
privileged sites such as the eye and testis (Bellgrau et al, 1995;
Griffith ef al, 1995) induces cell death of Fas-bearing activated T
cells and reduces inflammation. Tumors exhibit this type of defense
against activated T cells by expressing FasL (Walker et al, 1997).

Flice inhibitory protein (FLIP, I-FLICE, CASPER) is a
downstream inhibitor of Fas-mediated apoptosis. It binds to
FADD in the DISC and prevents activation of caspase-8 (Hu et
al, 1997; Irmler et al, 1997). Cells that exhibit high levels of FLIP
show resistance to Fas-mediated cell death (Hu et al, 1997; Irmler
et al, 1997).
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Many studies have investigated the different factors involved
with Fas-mediated cell death in melanoma. Fas receptor expression
is variable depending on the cell line or tumor stage (Ugurel ef al,
1999). Conflicting data exist on whether or not melanoma
expresses FasL. Some studies have found FasL to be present
(Hahne et al, 1996; Ugurel et al, 1999) whereas other studies have
found that FasL is not expressed in melanoma (Chappell ef al,
1999). Melanoma cell lines express FLIP but the levels are variable
depending on the cell line (Irmler ef al, 1997; Ugurel et al, 1999).
The eftects of ras on Fas receptor expression, FasL expression, FLIP
expression, and susceptibility to FasL-induced cell death, however,
have not been studied in melanoma. We report that ras decreases
susceptibility to Fas-mediated cell death through downregulation of
Fas receptor expression with no eftects on FLIP or FasL expression.

MATERIALS AND METHODS

Cell lines and chemicals WM35 radial growth phase human
melanoma cell line was obtained from the Wistar Institute (Philadelphia,
PA). Plasmid control transfectants (WM35 neo) and N-ras transfectants
(WM35 N-ras) of WM35 were established as described in a previous
study (Fujita et al, 1999). They were grown in 5% fetal bovine serum
RPMI 1640 (Gibco BRL), 400 ug per ml G418 (Gemini Bioproducts,
Woodland, CA). Jurkat and K562 cell lines were purchased from ATCC
(Rockville, MD). K562 cells were used as negative controls as they do
not express Fas or FasL. K562 cells were transfected with human FasL to
establish G10 transfectants as described in a previous study (Duke et al,
1999). G10 cells were used as a positive control for FasL in
immunofluorescent staining and as effector cells in cytotoxicity assays.
L1210-Fas is a mouse leukemia cell line transtected with human Fas.
L1210-Fas cells were used as positive control target cells in cytotoxicity
assays as they express Fas. L1210-Fas cell line was a gift from Dr. P.
Golstein (Marseilles, France). K562 cells were grown in suspension
culture medium (RPMI 1640 containing 10% heat inactivated fetal
bovine serum, 2 mM glutamine, 42 UM 2-mercaptoethanol, 100 pug per
ml gentamicin). G10 and L1210-Fas cells were grown in the same
suspension culture medium with 600 ug per ml G418. The ras
farnesylation inhibitor FTI-277 was purchased from CalBioChem (La
Jolla, CA).

Antibodies Phycoerythrin-labeled antthuman CD95, phycoerythrin-
labeled mouse IgG control, biotinylated antihuman CD95L, and
streptavidin—phycoerythrin antibodies were purchased from Pharmingen
(San  Diego, CA). Immunoblot antibody antihuman FLIP (rabbit
polyclonal IgG) was obtained from Upstate Technology (Lake Placid,
NY). Goat antirabbit horseradish peroxidase (HRP) antibody was
purchased from Biorad (Hercules, CA). Anti-actin (goat polyclonal IgG)
and antigoat HRP antibodies were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA).

Ras activation assays Ras activation assays were performed using the
manufacturer’s reagents and instructions (Upstate Biotechnology, Lake
Placid, NY). Briefly, cells were harvested and lysed using the
manufacturer’s lysis buffer. Raf~1 RBD agarose conjugated beads were
used to precipitate activated ras proteins. Proteins were detached from
beads and analyzed by Western blot.

Immunofluorescent staining Cells (1 X 10°) were harvested using
phosphate-buffered saline/ethylenediamine tetraacetic acid (PBS/EDTA).
Cells were centrifuged at 1000 rpm (Beckman Model TJ-6 centrifuge)
for 5 min at room temperature. Cells were washed in PBS before they
were resuspended in 100 pl antibody staining solution (0.1% sodium
azide, 5% goat serum in PBS). Ten microliters of antihuman CD95 or
antihuman CD95L antibody were added to each sample and the samples
were incubated at room temperature for 15 min in the dark. Samples
were washed with PBS twice before 10 ul streptavidin—phycoerythrin
antibody was added to samples stained with anti-CD95L. Samples were
incubated at room temperature for 10 min in the dark, were washed
with PBS twice, and then were fixed with 1% paraformaldehyde in PBS.
Cells were analyzed by flow cytometry (Beckman Coulter XL, Beckman
Coulter, Miami, FL) at the University of Colorado Health Sciences
Center Cancer Center Flow Cytometry Core (Denver, CO).

Cytotoxicity assays Cells were harvested with PBS/EDTA. Sodium
chromate (100 uCi, ICN Pharmaceuticals, Irvine, CA) was added to
5 X 107 cells in 1 ml medium (RPMI 1640 with 10% fetal bovine
serum) and incubated at 37°C in 5% CO, humidified air for 1 h. Cells
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Figure 1.N-ras decreases susceptibility to Fas-mediated apoptosis.
(A) WM35 neo and WM35 N-ras clones were incubated with various
ratios of effector cells (G10) in Cr®' cytotoxicity experiments. Significant
differences between the WM35 N-ras clones and WM35 neo cell lines
were seen at four effector target ratios (p-value < 0.05 for ratios 0.5:1,
2:1, 5:1, 10:1). Data reflect mean * SEM of multiple pooled
experiments in triplicate (1 = 9). This graph represents the results of
three independent experiments. (B) WM35 N-ras S1 clone was
incubated with FTI-277 10 uM (Nras FTI) or dimethylsulfoxide (Nras
DMSO) for 48 h at 37°C in 5% CO, humidified air and tested in Cr°!
release assays. Final DMSO concentration was 0.1% for both conditions.
This graph represents the results of two independent experiments.
Significant differences were seen at four effector to target ratios (p-value
< 0.05 for ratios 0.5:1, 2:1, 5:1, 10:1). Data represent mean = SEM for

multiple pooled experiments (n = 6).

were washed with 2 ml medium twice and incubated at 37°C in 5%
CO, humidified air for 1 h in 2 ml medium. Cells were washed with
2 ml medium and resuspended to a concentration of 5 X 10* cells per
ml. Aliquots of 100 pl of labeled cells (5000 cells) were loaded into 96-
well V-bottomed microtiter plates in triplicate. Triton X (1%) was added
to determine maximum Cr’' release. Medium was added to determine
spontaneous release. Effectors were diluted to appropriate concentrations
for various effector to target ratios. Samples were centrifuged (1000 rpm
and the centrifuge was immediately turned off with brake off) and
incubated 12-14 h at 37°C in 5% CO, humidified air. Following
incubation, 100 pl of cell-free supernatant was harvested and read in a
gamma counter (Beckman Gamma 5500, Beckman Coulter, Fullerton,
CA). Percent specific cell death was calculated using the following
formula: (¢ — s5)/(m — s) X 100, where e represents the amount of
radioactivity released from target cells incubated with effector cells, s
represents the amount of spontaneous release of radioactivity from the
target cells (target cells incubated with medium), and m represents the
maximum amount of radioactivity released when target cells are lysed
with Triton X-100.
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Real-time polymerase chain reaction (PCR) RNA extracts were
prepared according to the Trizol Reagent protocol (Sigma, St. Louis,
MO). Primers forward 5-ACCCGCTCAGTACGGAGTTG-3" and
reverse 5-GGTAGGAGGGTCCAGATGCC-3" and TagMan probe 5’-
TCGGAGGATTGCTCAACAACCATGC-3" were used for real-time
PCR. The final concentration of RNA samples was 1 pg per pl in
sterile diethyl pyrocarbonate treated water. Samples were given to the
Real Time PCR Core Facility at the University of Colorado Health
Sciences Center (Denver, CO). Real-time PCR was carried out using
ABI PRISM 7700 following the manufacturer’s instructions (PE
Biosystems, CA). The ABI PRISM 7700 determines the initial copy
number of the target template by analyzing the cycle-to-cycle change in
fluorescence signal as a result of the amplification of template during
PCR. The fewer cycles it takes to reach a detectable level of
fluorescence, the greater the initial copy number. The initial template
concentration from each sample is determined by comparison with the
standard curve.

Reverse transcriptase PCR RNA extracts were prepared according
to the Trizol Reagent protocol (Sigma). Approximately 5 lg of RNA
was converted to cDNA wusing Superscript II-RT (Gibco BRL)
according to the manufacturer’s instructions. FasL DNA product was
amplified using 50 mM KCI, 10 mM Tris—-HCIl, 2.5 mM MgCl,,
0.2 mM dNTPs, 0.2 mM 5" and 3" oligonucleotide primers, and 2.5 U
Taq polymerase (Gibco BRL) in a final volume of 50 ul. The PCR
took place in 0.2 ml Gene Amp microtubes (Perkin Elmer, Cetus,
Norwalk, CT) and samples were run in the automated DNA Thermal
Cycler GeneAmp PCR System 9600 (Perkin Elmer, Cetus) using the
following settings: 94°C for 1 min, 55°C for 1 min, 72°C for 30 s for 30
cycles. PCR products were run through 1% agarose gels with 0.5 ug per
ml ethidium bromide. Gels were analyzed on Chemi-doc (Biorad,
Hercules, CA). Primer sequences for FasL were forward 5-ATATTC-
CAAAGTATACTTCCG-3' and reverse 5~-CACTGAATACAACATT-
CTCGG-3'. Primer sequences for glyceraldehyde-3-phosphate dehydro-
genase were 5'~-GGTCGGAGTCAACGGATTTG-3’ and 5-ATGACC-
CCAGCCTTCTCCAT-3".

Western blots Cells were detached with PBS/EDTA. Samples were
washed in PBS and lysed in 100 ul protein lysis bufter [7 M urea, 2 M
thiourea, 4% CHAPS, 1 mM EDTA, 0.1 mM ethyleneglycol-bis(B-
aminoethyl ether)-N,N,N’,N’-tetraacetic acid, 1 mM phenylmethyl-
sulfonyl fluoride, protease inhibitor (Boehringer Mannheim, Mannheim,
Germany)]. Samples were placed on ice and analyzed for protein
concentration using the Biorad Protein Assay. Protein concentration was
determined by analysis on Bio-Kinetics reader EL312e (Biotek
Instruments, Winooski, VT) at wavelength 570 nm. In each lane,
100 pg of protein was loaded into polyacrylamide gels (4% stacking and
10% resolving gels). Gels were run at 12 mA current per gel. Proteins
were transferred to Immobilon-P PVDF membranes (Millipore, Bedford,
MA) on Biorad Transblot SD Semi-Dry Transfer Cell apparatus at 25 V
for 15 min. Membranes were probed with the antibody of interest in
PBS with 5% milk and 0.02% sodium azide. Blots were washed with
PBS for 5 min, then TBS/Tween for 5 min X 3, then PBS for 5 min.
They were probed with HRP-conjugated secondary antibody in PBS
with 5% milk, and were incubated in HRP substrate (Pierce West Pico
or Pierce West Fempto developing solutions, Rockford, IL) for 5 min at
room temperature. They were viewed and analyzed using Chemi-doc
(Biorad).

RESULTS

Effects of N-ras on susceptibility to Fas-mediated
apoptosis To determine relative amounts of ras activity in
WMB35 transfectants, we tested control (WM35 neo) and ras

Figure 2. N-ras decreases surface Fas receptor expression in
WM35 cells. (4) WM35 neo and WM35 N-ras clones were stained
with immunofluorescent antibodies and analyzed by FACS. (B)
Immunofluorescence ratios determined by dividing mean fluorescence of
cells stained with antthuman Fas by mean fluorescence of cells stained
with mouse IgG (control antibody). The graph represents results of three
independent experiments. SEM is shown (n = 3). p-value < 0.05 for all
N-ras clones. (C) WM35 N-ras S1 clones treated with DMSO (Nras
DMSO) or FTI-277 10 uM (Nras FT1-277) for 48 h were stained for
surface Fas expression. Final DMSO concentration for both conditions
was 0.1%. This graph represents results from four independent
experiments. SE is shown (n = 4). p-value < 0.005.
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(WM35 N-ras) transfectants in ras activity assays. WM35 N-ras had
30% more ras activity than WM35 neo (data not shown). We then
tested WM35 neo and WM35 N-ras transfectants in chromium
release cytotoxicity assays to determine the effects of N-ras on
susceptibility to Fas-mediated apoptosis. Both WM35 neo and
WM35 N-ras clones were more resistant to Fas-mediated cell death
than the positive control cell line (Fig 14). All three WM35 N-ras
clones showed less susceptibility to Fas-mediated apoptosis than
WM35 neo, however (Fig 1A4). Fas-mediated cell death of WM35
neo was comparable to that of the parent cell line WM35 (data not
shown).

Inhibition of ras farnesylation is an effective way to block ras
activity (Gibbs et al, 1993; Lerner et al, 1995). Farnesylation
inhibitors may selectively prevent development of tumors with
deregulated ras signals by blocking the function of mutant ras in
transformed (neoplastic) cells without affecting normal cells (Kohl et
al, 1994, 1995). Treatment of WM35 N-ras with FTI-277, a
farneslyation inhibitor, decreased ras activity by 20% (data not
shown). When WM35 N-ras was treated with FTI-277, suscep-
tibility to Fas-mediated cell death was significantly increased
compared to untreated WM35 N-ras cells (Fig 1B). Treatment of
WM35 neo cells with FTI-277 did not affect susceptibility to Fas-
mediated cell death (data not shown).

Effects of N-ras on surface Fas receptor expression To
further understand the mechanism by which ras aftects susceptibility
of these melanoma cells to Fas-mediated apoptosis, we investigated
the effects of ras on Fas surface receptor expression. WM35 neo and
WM35 N-ras clones were stained with immunofluorescent
antibodies for Fas and analyzed by fluorescence-activated cell
sorter (FACS). Immunofluorescence ratios showed that WM35 N-
ras clones expressed 1.5-2-fold less surface Fas receptor than
WM35 neo (Fig2A4, B). The difference in background
fluorescence of WM35 neo and WM35 N-ras is probably due to
the larger morphologic size of ras transfectants. Treatment of
WM35 N-ras with FTI-277 increased the surface expression of the
Fas receptor 1.2-fold (Fig 2C), correlating with the increase in cell
death as seen in (Fig 1B). FTI-277 did not change Fas surface
receptor expression in WM35 neo cells (data not shown).

Effects of N-ras on Fas mRNA expression To determine if
activated N-ras affected Fas expression by transcriptional regulation,
we used real-time PCR to quantitate Fas mRINA levels in these cell
lines. WM35 N-ras showed a 44% decrease in Fas expression at the
mRNA level (Fig 34). Inhibition of ras with FTI-277 showed a

(A)
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157% increase in Fas mRINA levels in WM35 N-ras (Fig 3B)
correlating with the trend of increased surface protein expression
and increased susceptibility to Fas-mediated cell death.

Effects of N-ras on FLIP expression Factors downstream of
Fas receptor activation such as FLIP may also influence the
susceptibility of a cell to Fas-mediated apoptosis. FLIP protein
levels were measured to determine if ras regulated Fas-mediated
apoptosis by modulating expression of this protein. Western
analysis showed that there was no difference in FLIP protein
expression between WM35 neo and WM35 N-ras (Fig 44). Ras
inhibition also showed no effects on FLIP protein expression
(Fig 4B).

Effects of N-ras on FasL expression Various studies have
shown conflicting results about FasL expression in melanoma. We
tested for FasL expression by staining for surface protein and by
reverse transcriptase PCR. WM35 neo did not express FasL and
expression of activated ras in WM35 N-ras did not induce FasL
expression (Fig 54, B). Furthermore, when WM35 neo and
WM35 N-ras were used as killer cells in cytotoxicity experiments,
they did not induce cell death in susceptible cells (Fig 5C).

DISCUSSION

The mechanism by which melanoma progresses from radial growth
phase to the more invasive vertical growth phase may be related to
decreased susceptibility to triggers of cell death. Activated ras has
been associated with tumor progression in many cancers and may
contribute to tumor progression in melanoma. Our studies support
that activated ras affects Fas-mediated cell death by downregulating
Fas expression at the transcriptional level and thus decreasing the
susceptibility of these melanoma cells to Fas-mediated apoptosis.
These results are consistent with findings from other studies, which
demonstrate transcriptional regulation of Fas receptor expression by
ras in other cell types (Fenton et al, 1998; Peli et al, 1999). The
promoter region of the Fas receptor gene is CpG dinucleotide rich,
which suggests that gene regulation may be affected by methylation
(Behrmann ef al, 1994). Others have shown that blocking
methylation in ras-transfected epithelial cells leads to increased
Fas receptor expression, further supporting the effects of ras on
transcriptional regulation of this death receptor (Peli ef al, 1999).
The increase in Fas mRNA expression was much greater,
however, than the modest increase in surface Fas receptor
expression when these cells were treated with ras inhibitors. This
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may represent the increase in transcriptional activity that has not yet
been manifested at the protein level. It is possible that these
inhibitors may have an effect on translational regulation and
translocation of the Fas receptor to the cell membrane surface,
which are not well understood.

Fas receptor expression, however, does not necessarily correlate
with susceptibility to FasL-induced cell death (Owen-Schaub ef al,
1994; Shima et al, 1995). Factors downstream of Fas receptor
activation such as FLIP, IAPs, and activation of bcl-2 family
members may influence a cell’s susceptibility to Fas-mediated
apoptosis regardless of the surface Fas receptor expression. FLIP
expression has been described as a mechanism by which tumors are
able to escape immune surveillance (Djerbi et al, 1999; French and
Tschopp, 1999; Medema et al, 1999). Our studies show that FLIP is
present in melanoma, which is consistent with other studies.
Activated ras, however, does not affect FLIP expression in these

(A)

WM35 neo
WM35 Nras

Fup —> il

ACtiN =y — e —

(B)

Nras DMSO
Nras FTI-277

FLIP.—> S - —
actin =

Figure 4. N-ras does not affect FLIP expression. (A4) Protein
extracts of WM35 neo and WM35 N-ras S1 clone were tested for FLIP
protein expression by Western blot analysis. This reflects results from
two independent experiments. (B) Protein extracts of WM35 N-ras S1
clone treated with DMSO (Nras DMSO) and WM35 N-ras treated with
FTI-277 (Nras FTI-277) were tested for FLIP protein expression by
Western blot analysis. This reflects results from two independent
experiments.

Figure 5. N-ras does not increase FasL expression. (4) Total RNA
extracts of WM35 neo and WM35 N-ras S1 clone were tested for FasL
expression by reverse transcriptase PCR. Jurkat cells were activated for
2h with 10 mg per ml phorbol myristate acetate and 5 mg per ml
ionomycin. (B) WM35 neo and WM35 N-ras S1 clone were stained
with mouse IgG (control antibody) and antihuman FasL. The FasL-
positive G10 cell line was used as a positive control. (C) WM35 neo and
WM35 N-ras S1 clone were tested as effector cells against Fas-positive
target cells (L1210-Fas) in Cr’' release cytoxicity assays. SD is shown.
This is representative of two independent experiments.
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cells and thus is not a mechanism by which ras protects this
melanoma cell line from Fas-mediated apoptosis. Other studies
have suggested susceptibility to Fas-mediated apoptosis may involve
factors from the caspase-9 pathway such as bcl-2 and bel-xL (Li et al,
1998; Ugurel et al, 1999). We are currently investigating the effects
of the bcl-2 family on susceptibility of these ras transfectants to Fas-
mediated cell death.

Other tumors express FasL and may use this as a mechanism to
evade the immune response. For this particular melanoma cell line,
WM35, however, FasL is not expressed and ras does not induce
FasL expression as seen in human glioma cells (Yang et al, 2000).
Thus, FasL does not play a role in increasing the tumorigenicity of
WMB35 as it advances from radial growth phase to vertical growth
phase.

Our studies suggest that ras may contribute to the tumor
progression of melanoma by increasing resistance to Fas-mediated
apoptosis by downregulating Fas receptor expression. More studies
need to be conducted to further understand the effects ras may have
on factors downstream of Fas receptor expression. Ras inhibitors
such as farnesylation inhibitors have demonstrated effects on tumor
regression and prevention of tumor progression in mice (Sebti and
Hamilton, 2000). The increase in susceptibility to Fas-mediated cell
death in melanoma induced by ras inhibition suggests that
farnesylation inhibitors may be efficacious in treatment of mela-
noma if used in combination with other immunotherapeutic or
chemotherapeutic agents.
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