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Abstract

A graph G is called circular super-critical if x.(G \ u) < xc(G) — 1 for every vertex u of G. In
this paper, analogous to a result of Dirac on chromatic critical graphs, a sharp lower bound on the vertex
degree of circular super-critical graphs is proved. This lower bound provides a partial answer to a question
of X. Zhu [The circular chromatic number of induced subgraphs, J. Combin. Theory Ser. B 92 (2004)
177-181]. Some other structural properties of circular super-critical graphs are also presented.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

An n-coloring of G is amapping ¢ : V(G) — {1, 2, ..., n}suchthat ¢ () # ¢ (v) forevery
uv € E(G). The least integer k such that G admits a k-coloring is called the chromatic number of
G, and is denoted by x (G). A graph is called a chromatic critical graph if x (G \ u) < x(G) for
each vertex u of G. A k-chromatic critical graph is a chromatic critical graph G with x (G) = k.

Let r > 1 be a real number. A circular r-coloring of a graph G is a mapping ¥ : V(G) —>
[0, r) such that for every edge u of G, 1 < | (u) — ¥ (v)| <r—1[11]. A graph is called circular
r-colorable if it admits a circular r-coloring. The circular chromatic number of G, denoted by
Xc(G), is the least r such that G is circular r-colorable.

It was proved elsewhere [2,7] that x.(G) is always attained at rational number and

x(G) — 1 < x.(G) < x(G) for any finite graph G. (D
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If x.(G) = S, then a circular S—coloring of G is equivalent to a mapping ¢ : V(G) +——
{0,1,2,...,k— 1} withd < |Y¥(u) — ¥ (v)| < k — d forevery uv € E(G).

Itis well known that the chromatic number decreases by at most 1 when one vertex is removed
from the graph. But this is not valid for the circular chromatic number. From (1), it is easy to
check that after removing a vertex from a graph, the decrease of the circular chromatic number
must be less than 2. But there are infinitely many examples showing that the decrease could be
arbitrarily close to 2.

If G is a chromatic critical graph, then the chromatic number decreases by exactly 1 on
removing an arbitrary vertex, i.e., a k-chromatic critical graph G is a graph with x(G) = k
and x (G \ u) = k — 1 for every vertex u of G. The study of chromatic critical graphs was started
by Dirac [3] who proved that for every k-chromatic critical graph G, §(G) > k — 1 and the
subgraph induced by an arbitrary cut set of G is not complete. Since Ky, the complete graph of
order k, is k-chromatic critical, the bound §(G) > k — 1 is sharp.

We may define, analogous to the concept of chromatic critical graphs, a circular critical graph
of a graph G with x.(G \ u) < x.(G) for each vertex u of G. Here, instead of considering the
circular critical graphs, we focus on a family of graphs that demands more. A graph G is called
circular super-critical if x.(G \ u) < x.(G) — 1 for each vertex u of G. A s—circular super-
critical graph is a circular super-critical graph with circular chromatic 5 It is clear that there is
no r-circular super-critical graph for rational » < 3.

Does there exist a circular super-critical graph? In [8], Zhu conjectured a negative answer to
this question. In [10], Zhu disproved his conjecture by constructing an infinite family of 4-regular
4-circular super-critical graphs G with x.(G — x) = % for every vertex x of G, and proposed
several new questions as follows.

Question 1 ([/10]). Given integer n > 5, is there a circular super-critical graph G with
x(G) =n?

Question 2 ([10]). Is there a circular super-critical graph G such that for every vertex u of G,
Xc(G) — xc(G \ u) = 2 — ¢ for some ¢ < %? Or even for any ¢ > 07

Question 3 ([10]). Is there a graph G for which x.(G) # x(G) and yet there is a vertex u of
G such that x.(G) — xc(G\u) > 1?

Since x.(G \ u) < x.(G) — 1 implies x (G \ u) = x(G) — 1, every s—circular super-critical
graph is (51 -chromatic critical. Therefore, every circular super-critical graph is 2-connected. We
will show that for every circular super-critical graph G, G is 3-connected and the complement of
G is 2-connected. Analogous to Dirac’s theorem that says §(G) > k — 1 for every k-chromatic
critical graph G, a sharp lower bound on the vertex degree of circular super-critical graphs is
proved.

2. Main results

Theorem 1. If G is a circular super-critical graph, then G is 3-connected and the complement
of G is 2-connected. Furthermore, for any cut set S of G of cardinality at least 3, the subgraph
induced by S contains at most w — 2 edges.

Theorem 2. If u is a vertex of a graph G with x.(G) — x.(G \ u) > 1, then d(u) >
Xc(G\u)
Xe(G\u)+2—xc(G)*



1272 B. Xu / European Journal of Combinatorics 28 (2007) 1270-1275

Theorem 2 provides us with a necessary condition for a graph to be circular super-critical. If
a graph G is circular super-critical, then for every vertex u, x.(G) — x.(G \ u) > 1 and hence

_ xe(G\w)
dW) = s

. . x
Since the function O

since xe(G \ 1) < xe(G) = 1.3(G) > [ iy ] = [%e(G) = 11 = x(G) — 1 for
every circular super-critical graph, where x (G) — 1 is Dirac’s bound on the minimum degree of
chromatic critical graphs.

The bound of Theorem 2 is best possible in the sense that for any integer n > 4, there
exists a graph G and a vertex u of G such that x.(G) = n, x.(G) — xc(G \ u) > 1 and

N ACAU N
dW) = @020 . o y .
When n = 4, the graph G constructed by Zhu in [10] is a 4-circular super-critical graph with
8

4 - _3 Xe(G\x)
d) =4 =705 = Z@o @
follows. Given integer [ > 2, let G be the graph obtained from the odd circuit Cy;41 of length

2] + 1 by adding a new vertex u and joining u to every vertex of Co;41. Then, x.(G) = 4,
2041
_ 2041 _ _ T _ (G\w)

Xc(Cay1) = ==, andd(w) =21 +1 = f = m

For n > 4, let G be the graph obtained from the complement of the odd circuit C,—1 by
adding a new vertex u and joining u to each of the other vertices. Then, x.(G) = x(G) =n+1,

(G

The converse of Theorem 2 may not be true. To see this, let us consider the Petersen graph P.

Itis known that x.(P) = x (P) = 3 (see [9]). Since for an arbitrary vertex x of P, P\ x contains

Cs as an induced subgraph, x.(P \ x) > % (in fact, it is easy to check that x.(P \ x) = 3). Hence
Xe(P\X) _ _Xc(P\x) Xe(P\X) _ Xe(P\X)
T PP = z(Pw1 = “ 15 = 2. Therefore,3 = d(x) = =5 cpy for every
vertex x of P. But P is not circular super-critical.
Circular super-critical graphs are all chromatic critical. We may restrict our focus to

chromatic critical graphs. Theorem 3 below shows that if G is chromatic critical, then d(u) =

is monotone decreasing on x € (x.(G) — 2, x.(G) — 1], and

for each vertex x. The other 4-chromatic example is as

m for every vertex u is almost sufficient for G being circular super-critical.
Theorem 3. Let G be a k-chromatic critical graph (k > 3) with d(u) = m for
every vertex u. Then, x.(G \ u) < x.(G) — 1 and the equality holds iff d(u) = k — 1 and

xc(G) = k.

As a corollary of Theorem 2, we get an upper bound on the circular chromatic number of
circular super-critical graphs that yields a partial answer to Question 2.

Corollary 1. If G is a circular super-critical graph such that for some constant ¢ > 0,
Xc(G) — xc(G \ u) = 2 — ¢ for every vertex u of G, then x.(G) <e(6(G) — 1) + 2.

Proof. Since G is circular super-critical, by Theorem?2, for every vertex u, d(u) >
Xc(G\uw) .
TG\ 2— (G 1€
dW)(x:.(G) —2)
G - GUWRXAY) = &)
xc(G\u) > 200 -1

because d(u) > 1. Therefore, x.(G \ ug) > %

Since xc(G) = xe(G \ uo) = 2 =&, xe(G) =2+ = xc(G \uo) = G2 and hence
%c(G) < e(8(G) — 1) +2asdesired. O

for some vertex ug of degree 6(G).
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Let G be a graph of order n. A vertex u of G is called a major vertex it diu) = n — 1. If
G contains a vertex, say v, of degree at least n — 2, then there must exist a vertex, say w, in G
such that v is a major vertex in G \ w. Since a graph with a major vertex has the same circular
chromatic number as chromatic number, x.(G \ w) = x (G \ w) > x(G) — 1 = x.(G) — 1.

Therefore, if 0 < ¢ < 1 and x.(G) — x.(G \ u) > 2 — ¢ for every vertex u, then G is a
circular super-critical graph and §(G) < |V(G)| — 3, and hence x.(G) < €(6(G) — 1) +2 <
e(lVG)| —4)+2 <¢elV(G)|+2—4e < ¢|V(G)| + 2 for some ¢ > 0. In another words,
Corollary 1 says that for any constant ¢ > 0, Question 2 has no solutions in graphs with
x(G) = elV(G)| +3.

3. Proofs of the theorems
The following two lemmas will be used in the proof of Theorem 1.

Lemma 1 ([/5]). Let G be a graph such that the complement G¢ of G is non-Hamilton. Then
xe(G) = x(G).

Lemma 2 ([6]). Let G be a graph and u and v be two nonadjacent vertices of G such that in
any x (G)-coloring of G, u and v always receive the same color. Then, x.(G) = x(G).

To prove Theorem 1, we still need a lemma on the chromatic critical graphs. Let S be a cut
set of a graph G, G| and G be two induced subgraphs of G such that V(G1) N V(Gy) = S and
E(G1) U E(G3) = E(G). We call G and G a pair of S-components of G.

Lemma 3. Let G be a k-chromatic critical graph, and S be a cut set of G that induces a
subgraph in which all vertices are pairwise adjacent except u and v. Then, there are two induced
subgraphs G1 and G, of G such that

(1) in any (k — 1)-coloring of G1, u and v always receive the same color, and
(2) in any (k — 1)-coloring of G2, u and v always receive distinct colors.

The proof is easy and we omit it.

Proof of Theorem 1. Let x.(G) = r and x(G) = [r] = k. Since the circular super-criticality
implies chromatic criticality, G must be 2-connected. Suppose that S is a cut set of G, and let G
and G be a pair of S-components. Then, x.(G1) <r — 1 and x.(G2) <r — 1.

If |S| =2, welet S = {u, v}, then uv ¢ E(G). By a theorem of Dirac [4] (see also Theorem
8.3 of [1]), we may suppose that in any (k — 1)-coloring of G1, u and v always receive the same
color. Therefore,r — 1 > x.(G1) = x(G1) = k — 1 > r — 1 by Lemma 2. This contradiction
shows that G is 3-connected.

If | S| > 3 and the number of edges in the subgraph induced by S is no less than
we may assume that all but two of the vertices, say u and v, of S are adjacent to each other. By
Lemma 3, G has a (k — 1)-chromatic subgraph, say G1, such that in any (k — 1)-coloring of G,
u and v always receive the same color. A contradiction immediately follows from Lemma 2.

Let H be the complement of G. If H is separable, then H is non-Hamilton and H \ x is non-
Hamilton for every cut vertex x of H. By Lemma 1, x.(G) = x(G) and x.(G \ x) = x(G \ x)
for every cut vertex x. This contradiction shows that H is 2-connected. [

NIEY)
BBI=b g,

For a real number r > 0 and two real numbers p, g € [0, r), we define the modulo r interval
from p to ¢, denoted by [p, q],, tobe [p, g]if p < ¢g,and tobe [p,r)U [0, g]if p > q.
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Proof of Theorem 2. Let x.(G) =r, x.(G\u) =s andletr —s =1t > 1. Let ¢ be a circular
s-coloring of G \ u.

First we claim that for each x € N(u), there exists a vertex y € N(u) such that
[[¢(x), (M) ]| < 2 — t. Otherwise, assume that there exists an x € N («) such that

forevery y € N(u) \ {x}, [[¢(x), p(W)]| > 2 —1. 2)

Without loss of generality, we assume that ¢ (x) =0.Let A ={y | y e N(u) and 0 < ¢(y) <
1}.If A # ¢, then let o = maxyea{l — ¢(y)}. Otherwise, let @ = 0. By (2),

a<l—-Q—-t)=t-1. 3)
Letr' =s+a+ 1,andlet ¥ : V(G) — [0, r’) be defined as
Y (x) = 0.
V() =1.
V() =r'—(s—9¢@(). ife(y) =1
Yv(y) =o0), if¢(y) < landy & N(u).
Y(y) =2, ify e A.

Since r’ > s, it is clear that ¥ (w) # ¥ (u) for each w # u.

Let wy and wy be two vertices in V (G)\ (AU{u}). Then, | (w2) — ¥ (w1)| = | (w2)—d (wy)].
By the properness of ¢, 1 < [y (w2) — ¥ (w1)| = |@p(w2) — @ (wy)| <s — 1 < r’ — 1 for every
adjacent pair wi, wy € V(G) \ (AU {u}).

Let y be a vertex in N(u). Then, either ¥(y) = 2 < r’ whenever y € A, or r' >
r'— (6 —¢1®) = ¥ = a+ 1+ ¢(y) > 2 whenever ¢(y) > 1. In either case,
1<y —-vw =y —-1<r' -1

Since for any two vertices y1, yo with0 < ¢(y1) < 1land 0 < ¢(y2) < 1, |[¢p(y1) — p ()| <
1, the properness of ¢ implies that {y | ¢(y) < 1} D A is an independent set.

Finally, let w be a vertex in A (note that ¥ (w) = 2) and y # u be a vertex with ¢(y) > 1. To
show that v is a circular r’-coloring of G, it suffices to prove that 1 < |y (y) — ¥ (w)| <r' — 1
whenever wy € E(G). By the definition of a, ¢ (w) > 1—a. Sincer’ > r'—(s—¢(y)) = ¥ (y) =
at+l+¢(y) 22,0 <y —yw) <r'=1LI1>¢@)—¢w) =¢@)-2=a—1+¢(),
then ¢ (y) < 2—a,andhence 0 < ¢(y)—¢(w) < 2—a—(1—w) = 1. The properness of ¢ shows
that v is a circular r’-coloring of G. That contradicts r’ = s+a+1 <s+(t—1)+1=s+t=r
by (3), and ends the proof of our claim.

Now, we apply the claim to prove our theorem. Choose vy to be an arbitrary neighbor of
u; beginning from vg, there must be a sequence vy, v2, ..., v; of neighbors of u such that
0 < llp@), ¢irDl| < 2 —1,i = 0,1,...,1 (mod 1), and (UZg[¢(v0), ¢ (vis1)],) U

[¢(v)), d(vo)], = C. Therefore, d(u) > ﬁ = m asrequired. [

Proof of Theorem 3. Since G is k-chromatic critical,
Xc(G\ u)

%e(G\ 1) +2 — xc(G) =du)>38(G)>k—12=> x.(G)—1, @
and
x(GA ) > xc(G) —1
xe(G\ 1) +2 — x(G)
Xc(G\u) > (xc(G\u)+2— x(G))(x:(G) — 1) )

(Xe(G) =D xe(G\ 1) = (Xe(G) = 2)(Xe(G) — 1)
Xe(G\u) = xe(G) — 1.

IR
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The equalities hold in (5) iff the equalities hold in (4),1i.e.,d(u) =k — 1 and x.(G) = k. O
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