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Abstract

A graph G is called circular super-critical if χc(G \ u) < χc(G) − 1 for every vertex u of G. In
this paper, analogous to a result of Dirac on chromatic critical graphs, a sharp lower bound on the vertex
degree of circular super-critical graphs is proved. This lower bound provides a partial answer to a question
of X. Zhu [The circular chromatic number of induced subgraphs, J. Combin. Theory Ser. B 92 (2004)
177–181]. Some other structural properties of circular super-critical graphs are also presented.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

An n-coloring of G is a mapping φ : V (G) �−→ {1, 2, . . . , n} such that φ(u) �= φ(v) for every
uv ∈ E(G). The least integer k such that G admits a k-coloring is called the chromatic number of
G, and is denoted by χ(G). A graph is called a chromatic critical graph if χ(G \ u) < χ(G) for
each vertex u of G. A k-chromatic critical graph is a chromatic critical graph G with χ(G) = k.

Let r ≥ 1 be a real number. A circular r -coloring of a graph G is a mapping ψ : V (G) �−→
[0, r) such that for every edge u of G, 1 ≤ |ψ(u)−ψ(v)| ≤ r −1 [11]. A graph is called circular
r -colorable if it admits a circular r -coloring. The circular chromatic number of G, denoted by
χc(G), is the least r such that G is circular r -colorable.

It was proved elsewhere [2,7] that χc(G) is always attained at rational number and

χ(G)− 1 < χc(G) ≤ χ(G) for any finite graph G. (1)
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If χc(G) = k
d , then a circular k

d -coloring of G is equivalent to a mapping ψ : V (G) �−→
{0, 1, 2, . . . , k − 1} with d ≤ |ψ(u)− ψ(v)| ≤ k − d for every uv ∈ E(G).

It is well known that the chromatic number decreases by at most 1 when one vertex is removed
from the graph. But this is not valid for the circular chromatic number. From (1), it is easy to
check that after removing a vertex from a graph, the decrease of the circular chromatic number
must be less than 2. But there are infinitely many examples showing that the decrease could be
arbitrarily close to 2.

If G is a chromatic critical graph, then the chromatic number decreases by exactly 1 on
removing an arbitrary vertex, i.e., a k-chromatic critical graph G is a graph with χ(G) = k
and χ(G \ u) = k − 1 for every vertex u of G. The study of chromatic critical graphs was started
by Dirac [3] who proved that for every k-chromatic critical graph G, δ(G) ≥ k − 1 and the
subgraph induced by an arbitrary cut set of G is not complete. Since Kk , the complete graph of
order k, is k-chromatic critical, the bound δ(G) ≥ k − 1 is sharp.

We may define, analogous to the concept of chromatic critical graphs, a circular critical graph
of a graph G with χc(G \ u) < χc(G) for each vertex u of G. Here, instead of considering the
circular critical graphs, we focus on a family of graphs that demands more. A graph G is called
circular super-critical if χc(G \ u) < χc(G) − 1 for each vertex u of G. A k

d -circular super-
critical graph is a circular super-critical graph with circular chromatic k

d . It is clear that there is
no r -circular super-critical graph for rational r ≤ 3.

Does there exist a circular super-critical graph? In [8], Zhu conjectured a negative answer to
this question. In [10], Zhu disproved his conjecture by constructing an infinite family of 4-regular
4-circular super-critical graphs G with χc(G − x) = 8

3 for every vertex x of G, and proposed
several new questions as follows.

Question 1 ([10]). Given integer n ≥ 5, is there a circular super-critical graph G with
χ(G) = n?

Question 2 ([10]). Is there a circular super-critical graph G such that for every vertex u of G,
χc(G)− χc(G \ u) ≥ 2 − ε for some ε < 2

3 ? Or even for any ε > 0?

Question 3 ([10]). Is there a graph G for which χc(G) �= χ(G) and yet there is a vertex u of
G such that χc(G)− χc(G \ u) > 1?

Since χc(G \ u) ≤ χc(G)− 1 implies χ(G \ u) = χ(G)− 1, every k
d -circular super-critical

graph is 	 k
d 
-chromatic critical. Therefore, every circular super-critical graph is 2-connected. We

will show that for every circular super-critical graph G, G is 3-connected and the complement of
G is 2-connected. Analogous to Dirac’s theorem that says δ(G) ≥ k − 1 for every k-chromatic
critical graph G, a sharp lower bound on the vertex degree of circular super-critical graphs is
proved.

2. Main results

Theorem 1. If G is a circular super-critical graph, then G is 3-connected and the complement
of G is 2-connected. Furthermore, for any cut set S of G of cardinality at least 3, the subgraph
induced by S contains at most |S|(|S|−1)

2 − 2 edges.

Theorem 2. If u is a vertex of a graph G with χc(G) − χc(G \ u) > 1, then d(u) ≥
χc(G\u)

χc(G\u)+2−χc(G)
.
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Theorem 2 provides us with a necessary condition for a graph to be circular super-critical. If
a graph G is circular super-critical, then for every vertex u, χc(G) − χc(G \ u) > 1 and hence
d(u) ≥ χc(G\u)

χc(G\u)+2−χc(G)
.

Since the function x
x−(χc(G)−2) is monotone decreasing on x ∈ (χc(G)− 2, χc(G)− 1], and

since χc(G \ u) < χc(G) − 1, δ(G) > 	 χc(G)−1
(χc(G)−1)+2−χc(G)


 = 	χc(G) − 1
 = χ(G) − 1 for
every circular super-critical graph, where χ(G)− 1 is Dirac’s bound on the minimum degree of
chromatic critical graphs.

The bound of Theorem 2 is best possible in the sense that for any integer n ≥ 4, there
exists a graph G and a vertex u of G such that χc(G) = n, χc(G) − χc(G \ u) > 1 and
d(u) = χc(G\u)

χc(G\u)+2−χc(G)
.

When n = 4, the graph G constructed by Zhu in [10] is a 4-circular super-critical graph with

d(x) = 4 = 8
3

8
3 +2−4

= χc(G\x)
χc(G\x)+2−χc(G)

for each vertex x . The other 4-chromatic example is as

follows. Given integer l ≥ 2, let G be the graph obtained from the odd circuit C2l+1 of length
2l + 1 by adding a new vertex u and joining u to every vertex of C2l+1. Then, χc(G) = 4,

χc(C2l+1) = 2l+1
l , and d(u) = 2l + 1 = 2l+1

l
1
l

= χc(G\u)
χc(G\u)+2−χc(G)

.

For n ≥ 4, let G be the graph obtained from the complement of the odd circuit C2n−1 by
adding a new vertex u and joining u to each of the other vertices. Then, χc(G) = χ(G) = n + 1,
χc(G \ u) = n − 1

2 and d(u) = 2n − 1 = χc(G\u)
χc(G\u)+2−χc(G)

.
The converse of Theorem 2 may not be true. To see this, let us consider the Petersen graph P .

It is known that χc(P) = χ(P) = 3 (see [9]). Since for an arbitrary vertex x of P , P \ x contains
C5 as an induced subgraph, χc(P \ x) ≥ 5

2 (in fact, it is easy to check that χc(P \ x) = 3). Hence
χc(P\x)

χc(P\x)+2−χc(P)
= χc(P\x)

χc(P\x)−1 ≤ χc(P\x)
1.5 ≤ 2. Therefore, 3 = d(x) ≥ χc(P\x)

χc(P\x)+2−χc(P)
for every

vertex x of P . But P is not circular super-critical.
Circular super-critical graphs are all chromatic critical. We may restrict our focus to

chromatic critical graphs. Theorem 3 below shows that if G is chromatic critical, then d(u) =
χc(G\u)

χc(G\u)+2−χc(G)
for every vertex u is almost sufficient for G being circular super-critical.

Theorem 3. Let G be a k-chromatic critical graph (k ≥ 3) with d(u) = χc(G\u)
χc(G\u)+2−χc(G)

for
every vertex u. Then, χc(G \ u) ≤ χc(G) − 1 and the equality holds iff d(u) = k − 1 and
χc(G) = k.

As a corollary of Theorem 2, we get an upper bound on the circular chromatic number of
circular super-critical graphs that yields a partial answer to Question 2.

Corollary 1. If G is a circular super-critical graph such that for some constant ε > 0,
χc(G)− χc(G \ u) ≥ 2 − ε for every vertex u of G, then χc(G) ≤ ε(δ(G)− 1)+ 2.

Proof. Since G is circular super-critical, by Theorem 2, for every vertex u, d(u) ≥
χc(G\u)

χc(G\u)+2−χc(G)
, i.e.,

χc(G \ u) ≥ d(u)(χc(G)− 2)

d(u)− 1

because d(u) > 1. Therefore, χc(G \ u0) ≥ δ(G)(χc(G)−2)
δ(G)−1 for some vertex u0 of degree δ(G).

Since χc(G)− χc(G \ u0) ≥ 2 − ε, χc(G)− 2 + ε ≥ χc(G \ u0) ≥ δ(G)(χc(G)−2)
δ(G)−1 , and hence

χc(G) ≤ ε(δ(G)− 1)+ 2 as desired. �
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Let G be a graph of order n. A vertex u of G is called a major vertex if d(u) = n − 1. If
G contains a vertex, say v, of degree at least n − 2, then there must exist a vertex, say w, in G
such that v is a major vertex in G \ w. Since a graph with a major vertex has the same circular
chromatic number as chromatic number, χc(G \ w) = χ(G \w) ≥ χ(G)− 1 ≥ χc(G)− 1.

Therefore, if 0 < ε < 1 and χc(G) − χc(G \ u) ≥ 2 − ε for every vertex u, then G is a
circular super-critical graph and δ(G) ≤ |V (G)| − 3, and hence χc(G) ≤ ε(δ(G) − 1) + 2 ≤
ε(|V (G)| − 4) + 2 ≤ ε|V (G)| + 2 − 4ε < ε|V (G)| + 2 for some ε > 0. In another words,
Corollary 1 says that for any constant ε > 0, Question 2 has no solutions in graphs with
χ(G) ≥ ε|V (G)| + 3.

3. Proofs of the theorems

The following two lemmas will be used in the proof of Theorem 1.

Lemma 1 ([5]). Let G be a graph such that the complement Gc of G is non-Hamilton. Then
χc(G) = χ(G).

Lemma 2 ([6]). Let G be a graph and u and v be two nonadjacent vertices of G such that in
any χ(G)-coloring of G, u and v always receive the same color. Then, χc(G) = χ(G).

To prove Theorem 1, we still need a lemma on the chromatic critical graphs. Let S be a cut
set of a graph G, G1 and G2 be two induced subgraphs of G such that V (G1)∩ V (G2) = S and
E(G1) ∪ E(G2) = E(G). We call G1 and G2 a pair of S-components of G.

Lemma 3. Let G be a k-chromatic critical graph, and S be a cut set of G that induces a
subgraph in which all vertices are pairwise adjacent except u and v. Then, there are two induced
subgraphs G1 and G2 of G such that

(1) in any (k − 1)-coloring of G1, u and v always receive the same color, and
(2) in any (k − 1)-coloring of G2, u and v always receive distinct colors.

The proof is easy and we omit it.

Proof of Theorem 1. Let χc(G) = r and χ(G) = 	r
 = k. Since the circular super-criticality
implies chromatic criticality, G must be 2-connected. Suppose that S is a cut set of G, and let G1
and G2 be a pair of S-components. Then, χc(G1) < r − 1 and χc(G2) < r − 1.

If |S| = 2, we let S = {u, v}, then uv �∈ E(G). By a theorem of Dirac [4] (see also Theorem
8.3 of [1]), we may suppose that in any (k − 1)-coloring of G1, u and v always receive the same
color. Therefore, r − 1 > χc(G1) = χ(G1) = k − 1 ≥ r − 1 by Lemma 2. This contradiction
shows that G is 3-connected.

If |S| ≥ 3 and the number of edges in the subgraph induced by S is no less than |S|(|S|−1)
2 − 1,

we may assume that all but two of the vertices, say u and v, of S are adjacent to each other. By
Lemma 3, G has a (k − 1)-chromatic subgraph, say G1, such that in any (k − 1)-coloring of G1,
u and v always receive the same color. A contradiction immediately follows from Lemma 2.

Let H be the complement of G. If H is separable, then H is non-Hamilton and H \ x is non-
Hamilton for every cut vertex x of H . By Lemma 1, χc(G) = χ(G) and χc(G \ x) = χ(G \ x)
for every cut vertex x . This contradiction shows that H is 2-connected. �

For a real number r > 0 and two real numbers p, q ∈ [0, r), we define the modulo r interval
from p to q , denoted by [p, q]r , to be [p, q] if p ≤ q , and to be [p, r) ∪ [0, q] if p > q .
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Proof of Theorem 2. Let χc(G) = r, χc(G \ u) = s and let r − s = t > 1. Let φ be a circular
s-coloring of G \ u.

First we claim that for each x ∈ N(u), there exists a vertex y ∈ N(u) such that
|[φ(x), φ(y)]r | ≤ 2 − t . Otherwise, assume that there exists an x ∈ N(u) such that

for every y ∈ N(u) \ {x}, |[φ(x), φ(y)]r | > 2 − t . (2)

Without loss of generality, we assume that φ(x) = 0. Let A = {y | y ∈ N(u) and 0 < φ(y) <
1}. If A �= ∅, then let α = maxy∈A{1 − φ(y)}. Otherwise, let α = 0. By (2),

α < 1 − (2 − t) = t − 1. (3)

Let r ′ = s + α + 1, and let ψ : V (G) �−→ [0, r ′) be defined as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(x) = 0.
ψ(u) = 1.
ψ(y) = r ′ − (s − φ(y)), if φ(y) ≥ 1.
ψ(y) = φ(y), if φ(y) < 1and y �∈ N(u).
ψ(y) = 2, if y ∈ A.

Since r ′ > s, it is clear that ψ(w) �= ψ(u) for each w �= u.
Letw1 andw2 be two vertices in V (G)\(A∪{u}). Then, |ψ(w2)−ψ(w1)| = |φ(w2)−φ(w1)|.

By the properness of φ, 1 ≤ |ψ(w2)− ψ(w1)| = |φ(w2)− φ(w1)| ≤ s − 1 < r ′ − 1 for every
adjacent pair w1, w2 ∈ V (G) \ (A ∪ {u}).

Let y be a vertex in N(u). Then, either ψ(y) = 2 < r ′ whenever y ∈ A, or r ′ >
r ′ − (s − φ(y)) = ψ(y) = α + 1 + φ(y) ≥ 2 whenever φ(y) ≥ 1. In either case,
1 ≤ ψ(y)− ψ(u) = ψ(y)− 1 < r ′ − 1.

Since for any two vertices y1, y2 with 0 < φ(y1) < 1 and 0 < φ(y2) < 1, |φ(y1)− φ(y2)| <
1, the properness of φ implies that {y | φ(y) < 1} ⊃ A is an independent set.

Finally, let w be a vertex in A (note that ψ(w) = 2) and y �= u be a vertex with φ(y) ≥ 1. To
show that ψ is a circular r ′-coloring of G, it suffices to prove that 1 ≤ |ψ(y)− ψ(w)| ≤ r ′ − 1
wheneverwy ∈ E(G). By the definition of α, φ(w) ≥ 1−α. Since r ′ > r ′−(s−φ(y)) = ψ(y) =
α+1+φ(y) ≥ 2, 0 ≤ ψ(y)−ψ(w) < r ′ −1. If 1 > ψ(y)−ψ(w) = ψ(y)−2 = α−1+φ(y),
then φ(y) < 2−α, and hence 0 < φ(y)−φ(w) < 2−α−(1−α) = 1. The properness of φ shows
thatψ is a circular r ′-coloring of G. That contradicts r ′ = s +α+1 < s +(t −1)+1 = s + t = r
by (3), and ends the proof of our claim.

Now, we apply the claim to prove our theorem. Choose v0 to be an arbitrary neighbor of
u; beginning from v0, there must be a sequence v1, v2, . . . , vl of neighbors of u such that
0 < |[φ(vi ), φ(vi+1)]r | ≤ 2 − t , i = 0, 1, . . . , l (mod l), and (∪l−1

i=0[φ(vi ), φ(vi+1)]r ) ∪
[φ(vl), φ(v0)]r = C . Therefore, d(u) ≥ s

2−t = χc(G\u)
χc(G\u)+2−χc(G)

as required. �

Proof of Theorem 3. Since G is k-chromatic critical,

χc(G \ u)

χc(G \ u)+ 2 − χc(G)
= d(u) ≥ δ(G) ≥ k − 1 ≥ χc(G)− 1, (4)

and
χc(G \ u)

χc(G \ u)+ 2 − χc(G)
≥ χc(G)− 1

⇔ χc(G \ u) ≥ (χc(G \ u)+ 2 − χc(G))(χc(G)− 1)
⇔ (χc(G)− 2)χc(G \ u) ≤ (χc(G)− 2)(χc(G)− 1)
⇔ χc(G \ u) ≤ χc(G)− 1.

(5)



B. Xu / European Journal of Combinatorics 28 (2007) 1270–1275 1275

The equalities hold in (5) iff the equalities hold in (4), i.e., d(u) = k − 1 and χc(G) = k. �
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