
Volume 292, number 1,2, 249-253 FEBS 10369 
© 1991 Federation of European Biochemical Societies 00165793/91/$3.50 
• 4DONIS 001457939101076A 

N o v e m b e r  1991 

Interaction of modified neurotoxins from Naja nigricollis with the 
nicotinic acetylcholine receptor from Torpedo marmorata 

A Raman spectroscopy study 

Michel N6grerie t, Dimi t r ina  Aslanian ~, Franqoise  Bouet  2, Andr6  M6nez 2, Hof ing-Oanh  Nghi~m 3 a n d  
Jean-Pierre  Changeux 3 

tLaboratoire de PtLvsique des Solides, Universit~ P. et M. Curie, 7"13, 4 place Jussieu, 75252 Paris Cedex 05, France, 2Service de 
Biochimie, D~partement de Biologie, CEN Saclay, 91191 Gif/Yvette Cedex, France a n d  aNeurobiologie MolEculaire, lnstitut 

Pasteur, 25 rue du Docteur I~oux, 75724 Paris Cedex 15, France 

Received 5th September 1991 

Two derivatives of  or-toxin from Naja nigricollis venom were used in order to study, by resonance Raman spectroscopy, its interaction with tile 
nicotinic acetylcholine (AcCho) receptor from membranes of Torpedo marmorata electrocytes. The two modified toxins carry either an NO, group 
bound to Tyr 25 or a nitrophenylthioether (NPS) bound to Trp -'9, The comparison of the spectra of the free and bound derivatized toxins indicates 
that the environment of Tyr 2s is not perturbed upon binding to the AcCho receptor, but the surroundings of NPS bound to  Tfp 29 are changed. 
This result indicates that Tyr "-s is not involved in binding, while Trp  ~ of the ~-toxin may be in contact with the AcCho receptor. Examination of 
the spectrum of the AcCho receptor membrane after binding of the NPS-Trp toxin discloses some modifications ol ~ the vibrations of the tryptophan 

and cysteine disulfide bridge of  the receptor. These residues are possibly involved in toxin binding. 
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1. INTRODUCTION 

The acetylcholine nicotinic receptor is a major com- 
ponent of  the postsynaptic membrane of the electromo- 
tor synapse and the neuromuscular junction. This allo- 
steric membrane protein of  300 kDa possesses a penta- 
meric 'heterologous' organisation cz~76 where each cz- 
subunit carried a binding site of neurotoxins. Its initial 
identification from fish electric organ [I] and the subse- 
quent characterisation of its functional architecture [2- 
4] has received considerable help from the utilisation of 
snake venom cz-toxins [5-7] which behave as competi- 
tive antagonists of the physiological response and bind 
in a highly selective and slowly reversible manner to the 
acetylcholine binding site. The AcCho receptor-~-toxin 
complex displays a very low dissociation constant 
(Kd=2xl0 -~ M) suggesting that multiple side-chain in- 
teractions take place in toxin-receptor binding [8]. An 
important issue in the understanding at the molecular 
level of the mode of action of the neurotoxins is the 
identification of the side-chains involved in the binding 
sites of both molecules. Studies of the interaction of the 
toxin c~ from N. nigricollis using EPR [9], fluorescence 
spectroscopy [I0], chemical modifications [11] and pho- 
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tolabelling experiments [12] have been reported. Amino 
acids which belong to the binding site for cholinergic 
ligands on the cz-subunit have been identified by means 
of affinity reagents which covalently bind to the acetyl- 
choline binding site [13,14] or by binding of the 0t- neu- 
rotoxin to proteolytic fragments of  the ~-subunit [15- 
17]. These studies disclosed the importance of several 
residues of  the er-subunit: Trp t49, Tyr  19° and Cys 192-I93. 

Raman spectroscopy [18,19] is a particularly well- 
suited technique to investigate the interaction of prote- 
ins because many vibrations are environment-sensitive. 
However, to analyse the Raman spectra of the receptor- 
toxin complex a method that allows the 2 molecules to 
be distinguished is required. For this purpose, we have 
used two derivatives of toxin ct from N. nigricollis, on 
which 2 kinds of chromophores are specifically bound. 
One derivative had incorporated an NO2 group bound 
to the conserved Tyr 2s, and the other carries a nitrophe- 
nylthioether group (NPS) bound to the invariant Trp 29 
[7]. Resonance Raman spectroscopy makes possible the 
enhancement of the vibrations of a single group by 
irradiating the sample with an excitation wavelength 
close to an electronic absorption band of the added 
chromophores. For the tyrosyl and tryptophanyl 
derivatives an excitation with argon ion laser at 458 nm 
gives rise, respectively, to resonance and pre-resonance 
conditions, and these chemical groups can be readily 
identified by their vibrational characteristics. 
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2. MATERIALS AND METHODS 

Postsynaptic membranes were prepared according to [20,21] from 
Torpedo marmorata electric organ in the presence of pretense inhibi- 
tots. The postsynaptie membranes were washed, concentrated by cen- 
trifugation and were used immediately after preparation. The concen- 
tration of  toxin binding sites of  the receptor was measured with tritia- 
ted toxin ~ as described by [22]. The protein concentration was typi- 
cally 10-20 mg/ml, and the specific activity 2.5-3.0/amol of  toxin 
sites/g of  protein (0.4--0.5 g of active receptor/g protein). 

The two derivatives [25-Cj-nitrophenol]toxin ~ and [29-C.,-[(nitro- 
phenyl)thioether]indole]toxin ~ were prepared as described in [7] and 
[I 1]. respectively. The freeze-dried modified toxins were dissolved in 
10--" M Tris buffer, pH 7.4. to obtain a concentration of 20 mg/ml. 

The binding to the AeCho receptor was performed by incubating 
(12 11 at 4°C) membranes with modified toxins in molar excess com- 
pared to agonist sites. Excess of  toxin was removed by 3 centrifuga- 
tions (5000 × g, 5 rain) and dilution steps: the toxin-saturated 
membranes were used immediately. Even in the case of  modified 
toxins, the dissociation constants were very low; thus at equilibrium, 
the quantity of free toxin was not significant. The pre-resonance 
spectra were those of bound, modified toxins. 

The Raman experiments have been carried out as described in [7]. 

3. RESULTS AND DISCUSSION 

3. I. Toxin modified at Tyr '~ 
In this first interaction experiment, we have used 

toxin ~ whose conserved tyrosine is modified by addi- 
tion of an NO, group. We recorded the Raman spectra 
of nitrotyrosyl toxin free in solution and bound to the 
postsynaptic membrar, e at pH 7.5 with 458 nm excita- 
tion. The resonance vibrations of the nitrophenol chro- 
mophore are the conspicuous features in both spectra 
(Fig. 1). The spectrum of  the nitrotyrosyl toxin free in 
solution (Fig. la) discloses a very strong peak located 
at 1341 cm -t. This v~(N02) vibration of  the nitrophenol 
chromophore, the intensity of which is the largest, 
comes from resonantly enhanced symmetric stretch, 
and is sensitive when a change in phenol state occurs, 
and the NO, group can be used as a probe of tyrosine 
environment [23]. The minor peaks located at 776, 830. 
898 and 1270 cm -~, whose intensity is lower, are assign- 
ed to the chromophore. The 830 cm -~ phenol ring vibra- 
tion has also been shown to be sensitive to the phenol 
state [24] and provides another probe for the environ- 
ment of  the tyrosine. 

The main peak located at 1341-1342 cm -~ appears in 
both spectra (Fig. !) with the same frequency (a differ- 
ence of I cm -~ is within the spectral resolution). The 
frequency, as well as the intensity ratio of the other 
peaks assigned to the chromophore, particularly that 
located at 830 cm 'l characteristic of  the hydrogen- 
bonded phenol of Tyr, clearly remain unchanged when 
the toxin is bound (Fig. lb). The minor peaks of  the 
nitrotyrosyl toxin are hidden or deformed by those of 
the membrane. In the spectrum of the toxin-AcCho 
receptor complex many vibrations of the membrane are 
present but not resolved because of the presence of 
strong peaks from the chromophore (the 1669 and 1445 
cm ~ components are respectively due to amide I and 

~(CH2) vibrations of the postsynaptic membrane). The 
invariance of Raman vibrational signals from the nitro- 
phenol-modified tyrosine shows that the hydrogen bond 
in which the tyrosinic phenol participates, as shown 
previously, is not modified. This indicates that the en- 
vironment of Tyr z5 is not disturbed by the binding of  the 
toxin to the receptor. 

The vibrations o f  the nitrophenol group were studied 
under resonance conditions [23] in the case of egg-white 
lysozyme. It is assumed that the frequencies of 1340 and 
1330 cm -t correspond, respectively, to a hydrophilic and 
a hydrophobic environment with a strong H-bond in- 
volving the phenol. We have observed a value of 1340 
cm -~ for the NO,-Tyr of the toxin, which is assumed to 
be involved in a strong H bond on the basis of  the 
tyrosine vibrational component located at 830 cm-'. 
Moreover', the toxin is not denatured as indicated by the 
high remaining toxicity and by its unchanged affinity 
towards the M~l antibody [7]. This value of  the v(NO2) 
frequency could be related to • ~e fact that Tyr zs of  the 
homologous erabutoxin does not appear completely 
buried, upon examination of  the X-ray structure, albeit 
inaccessible [25]. Bat, if Tyr -~5 was involved in direct 
binding to a side-chain of the receptor by means of a 
phenol H-bond, this frequency would change. Thus, the 
presence of a H-bond involving Tyr zS, and the absence 
of  modifications for 2 environment-sensitive vibrations 
(830 and 1341 cm-~), together with the absence of sub- 
stantial change in toxin affinity binding after nitration, 
indicate that Tyr 2s is not directly involved in the com- 
plex formation between toxin and AcCho receptor. 
Rather it plays a structural role, by stabilizing the r -  
sheet structure of the c~-toxin. 

3.2. Tox#l modified at Trp "~ 
The absorbance maximum of NPS-Trp 29 toxin is lo- 

cated at 366 nm, and the chromophore is in pre-reso- 
nance with excitation at 458 nm. The very strong peak 
from vs(NO,) vibration in pre-resouance conditions lo- 
cated at 1342 cm 'j in free NPS-toxin spectrum (Fig. 2a) 
is shifted to 1347 cm '~ when the toxin is bound (Fig. 2b). 
This shift could be due to the addition of the 2 signals 
located at 1342 cm-' in the free toxin spectrum and 1352 
cm --~ in the free AcCho receptor membrane spectrum 
(Fig. 2c) and not directly due to the interaction. The 
intensity of v(NO.,) must only be compared to another 
one from the bound chromophore, because the concen- 
tration of Trp-NPS modified toxin was lower when the 
toxin was bound. The intensity of this vibration decrea- 
ses in comparison with another chromophore vibration: 
the stretching vibration v(q~-N) which is very weak in the 
case of the free toxin (Fig. 2a) appears enhanced at 1228 
cm -t after binding (Fig. 2b). We readily assigned the 
peak located at 1228 cm ~~ to the chromophore bound 
to the toxin since no peak is seen in the spectrum of the 
free receptor membrane (Fig. 2c). An increase in in- 
tensity of this vibration has been observed [26] in the 
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case of  arsanylazotyrosine when the nitrogen is involved 
in the formation of  an intermolecular H-bond. This 
increase of  intensity of the v(O-N) vibration with respect 
to that of  the vs(NO,.) could therefore indicate a change 
in the polarity of  the environment of the chromophore 
NPS added to the Trp 29 Of the s-toxin. This spectral 
modification may reveal a contact or close proximity 
between the receptor surface and NPS covalently bound 
to Trp. We do not see directly the T r p  z9 t o  which the 
NPS is bound. However, the presence o f  the bulky NPS 
group likely gives rise to a steric hindrance, and the 
proximity of  the NPS chromophore and AcCho recep- 
tor after binding of  the modified neurotoxin ~ strongly 
indicates that Trp 29 is in contact with the receptor in the 
native toxin bound to the acetylcholine receptor. The 
decrease of  affinity of NPS-Trp toxin [11], which does 
not arise from an alteration of  secondary structure [7], 
is consistent with this view. 

3.3. The AcCho receptor membrane 
Contrary to the case of  nitrotyrosyl toxin bound to 

the receptor-membrane (Fig. lb), the vibrations of  the 
membrane are not hidden by those of the NPS and are 
distinguishable in the spectrum of Trp-NPS toxin- 
AcCho receptor complex (Fig. 2b), albeit with a lower 
signal/noise ratio; it can be compared to the spectrum 
of  the unbound receptor-membrane (Fig. 2c). Several 
amino-acid vibrations are sensitive to the conformation 
and to the environment of  the vibrating groups [24,26- 
29]. Since the low signal/noise ratio does not permit an 
extensive interpretation, we will focus only the discus- 
sion to the two most obvious spectral changes. 

In the spectrum of the free Trp-NPS toxin (Fig. 2a), 
the aromatic ring vibrations from Trp (1151, 1569 and 
1617 cm -~) are weak and not visible in the spectrum of 
toxin-AcChR complex (Fig. 2b). The most conspicuous 
signal from Trp in the spectrum of the native receptor 
membrane is located at 1583 cm-L The intensity of  this 
vibration dramatically decreases when the toxin is 
bound to the receptor. A qualitative comparison can be 
made using the aliphatic vibrations as a standard [27], 
located at 1444 cm -~ in the spectra of  Fig. 2b and c. This 
vibrational band, which is a mixture of the ~(CH2) and 
~(CH3) deformations from aliphatic side-chains and 
from lipids, is expected to remain unchanged upon 
binding of  the toxin since the lipids are not concerned 
by the binding, and the receptor remains in the resting 
state [30], i.e. does not change conformation. Therefore, 
the change of  the vibration located at 1583 cm 0~ may 
reflect a difference in Trp environment upon complex 
formation: these Trp residues may belong to the recep- 
tor and/or to the toxin. It has been reported [29] that the 
fi'equency of  this v(C=C) vibration of  the indole ring of 
Trp in proteins could be shifted when modifications in 
the polarity of environment occur. We observed in the 
case of the enzyme acetylcholinesterase changes of the 
Trp vibration located at 1580 cm "~ upon different envi- 
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Fig. 1. Raman spectra of nitrotyrosyl toxin (a) free in Tris buffer, pH 
7.5, and (b) bound to postsynaptic membrane in the same buffer 
conditions. 20=458 nm; 7"-- 10°C; P=50 roW; spectral slits, 4 cm -~. All 
the peaks are due to the nitrophenol chromophore. Frequencies in 
cm -t and assignments of the main vibrations (v is stretching vibration): 
776-778, para-disub, benz. 830: ring vib. 898: ring vib. 1270: 
v(NO2)+v(C-.OH). 1341-1342: v(NO2)sym. 1538-1543: v(NO,) 

asym. 

ronments [31]. The change in indole vibrations may be 
due to the involvement of Trp residues in the site of 
binding of toxin ~, but it is not possible to determine 
which of the Trp are involved. Since several side-chain 
interactions are involved in neurotoxin binding [8,11] 
we cannot extend this interpretation to the agonist bind- 
ing site. Indeed, the binding site of neurotoxins could 
be larger and overlap the binding site of  acetylcholine. 
Our observations could be related to the mapping expe- 
riments of the active site of  the receptor. A radioactive 
photo-affinity label, which acts as a competitive antago- 
nist of the cholinergic receptor [13], has been covalently 
bound to 4 residues of  the ~-subunit (Trp 149, Tyr 19°, 
Cys ~92, Cys193). Moreover, the covalent binding of this 
label is prevented by the presence of a snake venom 
toxin. These residues are conserved in the known se- 
quences of the AcCho receptor ~-subunits from differ- 
ent species [32] and lie in a domain of the ct-subunit 
primary structure which faces the synaptic cleft, accord- 
ing to the models of  tertiary structure predicted from 
the sequence analysis [33,34]. Thus, these 4 amino acids 
are likely involved in the acetylcholine binding site. Pos- 
sibly, the Trp 149 is that (or one of those) implicated in 
the vibrational change that we observed. 

Conspicuous modifications are visible in the region 
of disulfide vibrations in the receptor spectrum upon 
toxin binding. As the v(S-S) stretching vibrations do 
not appear in Trp-NPS toxin spectrum (Fig. 2a), we 
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Fig. 2. Raman spectra of Trp-NPS modified toxin (at free in buffer and 
(b) bound to postsynaptic membrane, compared with (c) native mem- 
brane in the same conditions. 2o=458 nm; T=I0°C; spectral slits, 
4 cm- i; p= 50 mW for (a); P= 80 mW for (b) and (c). Frequencies (cm -~) 
and assignments for NPS-Trp modified free (a) and bound (b) toxin 
(+rob. peaks or bands with contribution from the membrane. ~ is the 
phenyl ring. v is stretching vibration, t~ is deformation vibration: 
719-723: v(C-C)nitrophenyl. 858-860: nitrophenyl ring. 1045-1058: 
orthophenyl ring vib. 1108-1113: v(C-C)nitrophenyl.  1151-1151 
(+rob): v(C-C)+v(O-N) indole vib. 1220-1228: v(¢-N) 1307-1305 
(+rob); nitrophenyl ring vib. 1342-1347 (+rob): v(NO:) sym. 1454: 
d;(CH,)+d(CH.0. 1524-1517: v(NO,) asym. 1552-1617: indole ring vib. 

Assignments for Raman spectra of native membrane (c) and mem- 
brane with NPS-toxin (b) (+fox, contribution from toxin): 512-531: 
v(S-S) Cys. 745-753: Trp vib. 881-882: v(C-C)+~(N-H) Trp, 999- 
1002: Phe ring rib. 1123-1125: v(C-C)+v(C-N) side-chains. 1254- 
1261: amide I!I. 1300 (~tox): ~(CH:) side-chains. 1352: pyrrole ring 
vib. 1444: t~(CH0+c~(CH~)side-ch.+lip. 1580-1583: Trp+Phe, 1655-- 

1660 (+tox): amide I. 

readily assigned the peaks present at 515 and 531 cm 
in the spectrum of the complex (Fig. 2b) to disulfide 
bridges in postsynaptic membrane. The same vibrations 
appear at 512 and 528 cm '~ respectively, and are very 
weak when the toxin is not bound to AcCho receptor 
(Fig. 2c). The low intensity of  the v(S-S) vibrations 
preclude a description of disulfide geometry in the na- 
tive membrane. However, in the presence of the modi- 
fied toxin, an important increase of intensity for the 531 
cm ~ component was noticed, which possibly indicates 
a change in the conformation of the dihedral angle 
z(SS--CC) for some AcChr disulfide bridges [35,36]. In- 

terestingly, this i~lcrease does not seem directly related 
to the number of  disulfide bridges present in the protein. 
Moreover, the v(S-S) vibration is not enhanced by elec- 
tronic resonance; the intensity at 528 cm -~ is very weak 
in the spectrum of the antwe membrane (Fig. 2c) with 
458 nm excitation, and no peak is visible for the free 
modified toxin (Fig. 2a). This increase in intensity may 
hypothetically correspond to the phenomenon de- 
scribed by [37]. These authors have shown the possibil- 
ity of  an 'energy transfer by vibrational resonance' for 
these two vibration modes, the frequencies of  which are 
very close. If such a vibrational coupling gives rise to 
the enhancement of  the vibration at 531 cm -~, the 
groups in contact and vibrating at close frequency could 
be a disulfide in AcCho receptor and the Trp-NPS in 
modified toxin. In that case, these side-chains would be 
involved in the binding of both molecules. A vibrational 
indole ring mode exists at a frequency close to that o f  
the v(S-S). Indeed, a Trp vibration has been observed, 
the intensity of which is weak, near 544 cm -t in the cases 
of  the lysozyme spectrum [38] and retinal opsin mem- 
brane spectrum [39]. 

Several experiments have shown the presence of  a 
disulfide formed by C y s  192 a n d  C y s  193 of the c~-subunit 
within or very close to the binding site [13,14,40]. One 
may note that this disulfide bridge involve,,; two adjacent 
cysteines, and does not appear critical for the overall 
tertiary structure and thus may have another important 
function. It has been suggested [13] that the electronega- 
tive subsite of  AcCho receptor ~-subunit could be 
formed by one or several of  these 4 residues respectively 
by means ofthe phenolic. OH of Tyr 19°, the sulfur atoms 
o f C y s  192193 and the nitrogen of  the T r p  j49 indole ring. 
These side-chains could have an importance in the bind- 
ing interactions and/or in the architecture of the agonist 
site. The modification of  the side-chains environment o f  
AcCho receptor, particularly the cysteines, as a conse- 
quence of  the binding of the cz-toxin requires further 
investigations. 
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