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The asymptotic and oscillatory behavior of solutions of damped nonlinear second 
order differential equations with deviating arguments of the type (a(t) $(x(t)) i(t)) 
+ p(t) n(t) + q(t) f(x[g(t)]) = 0 (‘= d/dt) is studied. Criteria for oscillation of all 
solutions when the damping coefficient “p” is of constant sign on [to, ‘jo) are 
established. Results on the asymptotic and oscillatory behavior of solutions of the 
damped-forced equation (a(t)cll(x(t))~.(f))‘+p(t)P(t)+q(t)f(xCg(t)l)=e(r), 
where q is allowed to change signs in [to, cc), are also presented. Some of the 
results of this paper extend, improve, and correlate a number of existing criteria. 
c 1994 Academic Press. Inc. 

1. INTRODUCTION 

In this paper we are concerned with nonlinear differential equations with 
deviating arguments of the type 

(a(t) 4wt)) 4t)Y + P(f) 4t) +4(t) “KaY(t =o (’ = WI, (1) 

where q, g, p, q: [to, co)+ R, $, f: R --f R= (-00, co) are continuous, 
a(t) > 0, q(r) 3 0 for t >, t,, and q is not identically zero on any ray of the 
form [tI, 00) for some tl > to, g(t) -+ co as t -+ 00, $(x)>O for all x, and 
xf(x) > 0 for x # 0. 
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The functions appearing in Eq. (1) will be assumed to be sufficiently 
smooth for a local existence and uniqueness theorem to hold for Eq. (1) on 
O<t,Qt<m 

In what follows, we consider only those solutions of Eq. (1) which are 
defined for all large t. A solution of Eq. (1) is called oscillatory if it has no 
last zero, otherwise it is called nonoscillatory. Equation (1) is called 
oscillatory if all its solutions are oscillatory. 

In recent years there has been an increasing interest in the study of the 
qualitative behavior of solutions of equations of type (1) and/or related 
equations; see, for example, the papers [l-21] and references cited therein. 

In the study of the differential equation 

(a(t) 4t)Y + cl(t) f(x(t)) = 0, (*) 

many criteria for oscillation exist which involve the behavior of the integral 
of q, however, a common restriction, namely j” (l/a(s)) ds = cc on the 
function a, is required. As examples to this study we cite the papers 
of Bhatia [I], Coles [3], Grace and Lalli [4], Graef, Rankin, and 
Spikes [9], and Wong [20]. 

Recently, Grace et al. [S-S] extended and improved some of the known 
oscillation criteria for Eq. (*) to more general equations of the form ( 1): 

In [ 131, Kulenovic and Grammatikopoulos obtained some results on 
the asymptotic and oscillatory behavior of the retarded strongly superlinear 
equation 

(a(t) 4t)Y +4(t) fw-g(t)l)= 0, (**) 

where the function f is required to satisfy J’” (du/f(u)) < co. 
Our main purpose in this paper is to study the asymptotic and 

oscillatory behavior of solutions of Eq. (l), where conditions on the 
functions a, p, and II/ are different from those imposed in [S-S]. In 
Section 2, we present some criteria which guarantee that every solution x(t) 
of Eq. (1) is either oscillatory or else x(t) -+ 0 monotonically as t -+ co. 
Such criteria can be applied to Eq. (1 ), where the damping coefficient “p” 
is either a nonnegative or a nonpositive continuous function on [to, cc). 
Oscillatory behavior of all solutions of Eq. (1) when it is strongly super- 
linear, i.e., when J +0 (Ic/( u)/f (u)) du < cc with retarded or advanced 
arguments, is established. In Section 3, we present some theorems for 
asymptotic and oscillatory behavior and/or behavior of the solutions of 
Eq. (1). These criteria are applicable to linear equations as well as 
equations of the type (l), where f ‘(x)/$(x) B k > 0 for x # 0. Finally, we 
consider the damped-forced equation 

(a(t) 4Wt)) 4t))’ + p(t) a(t) + 4(t) f(xCs(t)l) = e(t), 
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where q is of arbitrary sign on [to, CC), and obtain results which ensure the 
oscillation of the derivative of any solution of this equation or else x(t) -+ 0 
monotonically as t--f x. Examples are inserted in the text to illustrate the 
relevance of the theorems. 

Thus the present work is an attempt to make a systematic study of some 
general second order differential equations. The results are presented in a 
form which is essentially new. 

2. MAIN RESULTS 

In this section we are concerned with the oscillatory and asymptotic 
behavior of strongly sublinear and strongly superlinear differential equa- 
tions of the form of Eq. (1). The damping coefficient “p” is assumed to be 
nonnegative on [to, co). 

THEOREM 2.1. Assume that S(t) 2 0 for t > t, and 

,f’(x)>O for x#O ( ’ = d/dx), (2) 

and let there exist p E C*[ [to, co), (0, oo)] such that 

P(t)<% (p(t) p(t))’ 6 0, (a(t)b(t))‘>O for tat,. (3) 

s 
m 1 5 

4s) P(S) s 
p(z) q(T) dz ds = 00, 

ro 
(5) 

then every solution x of Eq. (1) is either oscillatory or x(t) + 0 monotonically 
as t-w. 

Proof: Let x(t) be a nonoscillatory solution of Eq. (1). Without loss of 
generality, we assume that x(t) # 0 for all t > t,,. Furthermore, we suppose 
that x(t) and x[q(t)] are positive for t > to, since the substitution u = -x 
transforms Eq. (1) into an equation of the same form subject to the 
assumptions of the theorem. Now, we consider the following three cases for 
the behavior of x. 
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Case 1. i is oscillatory. If i(t,) = 0 and q(tl) > 0 for some t, > t,, then 

(a(t)~(x(t))~(t))‘I,=,,= -4(~I)f(~Cd~I)l)~0 

from which we can prove that a(t) cannot have another zero after it 
vanishes once. Thus ,-C(t) has a fixed sign for all sufficiently large t. 

Case 2. ii->0 on [tl, co) from some t,>t,. We define 

w(t) = a(t) W(t)) i.(t) p(t) 

.f(xC&T(~)l) 
for tat,. 

Then for every t > t, we obtain 

a(t) = -P(t) q(t) -P(t) p(t) ,,x~~t\,,, + a(t) P(f) ~~:i3~f~\~ 
-a(t) p(t) g(t) 4wt)) f’(xCdt)l) m(f)1 i(t) 

f*(JQm) (6) 

Using conditions (2) and (3) we get 

G(t) 6 -P(t) 4(t) for tat,. 

Integrating the above inequality from cl to t we have 

s I p(s)q(s)ds~w(t,)-w(r)~w(t,)<O. 
11 

This contradicts condition (4). 

Case 3. 1~0 on [ti, co) for t, 2 t,. Suppose that lim,X, m x(t)= 6, 
b > 0. We claim that b = 0. To prove it, assume that b > 0, and define 

u(t) = a(t) ti(x(t)) a(l) p(t), t2 t,. 

Then, for t > t, we obtain 

c(f) = -p(t) 4(t) f(xCg(t)l) - AtI p(t) i(t) + 41) P(t) $(x(f)) i.(f). (7) 

Hence, for all t 3 t, we have 

u(t) = 4t,) -f(xCdt)l) J’ P(S) 4(s) ds + jh4ddl) X&)1 i(s) 
11 11 

X j' ~(7) q(7) d7 ds - j' (q(s) P(S)) -+I ds 
fl fl 

+ 1’ (a(s) b(s)) $(x(s)) 4s) ds. II 
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By the Bonnet theorem, for any t >, t,, there exist 4,) tz E [r,, t] so that 

and 

j’ (a(s) /qs))($(x(s)) a(s)) ds = a(tl) /qt,) 
fl j;“‘) i/i(u) du - jo’(“’ $Cu, du] 

SO, for every t 2 tl 

u(t) G M-f(b) j' P(S) q(s) ds, 11 

where M= u(t,) + p(t,) p(t,) x(t,) -a(tl) P(tr)(J$“’ r+b(u) do). By assump- 
tions of the theorem, there exists a t, >, t, such that 

u(t)< -~j’p(r)q(s)ds for t>t, 
11 

Thus, 

By condition (5) we get 

c 
.MZ) 
r(f2) Ii/(u) do -+ -a as t-+cc, 

a contradiction to the fact that x(t) > 0 for t 2 t,. Thus b = 0 and x(t) + 0. 

The following examples are illustrative. 

EXAMPLE 1. Consider the differential equations 

1 
(r3iY +; f + q(f) fwk(~)l) = 0, 

> 

* 1 
+ f i + q(t) fH-g(t)]) = 0 

(8) 

(9) 
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and 

( &(l +x’)s)‘+fi+&)l.(x[g(t),)=O, (10) 

where g(t) is a continuous and nondecreasing function for t > to = 1 and 
lim r+,g(t)=oo, q(t)=g”(t)(l+tp3), and f(x)=I$sgnx, cc>O. We 
take p(t)= 1. If 

J ’ g”(s) ds = 0(t*), 

then all the conditions of Theorem 2.1 are satisfied and hence every solu- 
tion x of Eqs. (8)-(10) is either oscillatory or x(t) -+ 0 monotonically as 
t + co. Each of Eqs. (8), (9), and (10) admits the nonoscillatory solution 
x(t) = l/t + 0 monotonically as t + co. 

Remark 1. One is tempted to believe that if we replace condition (5) by 
the stronger condition 

(11) 

then conditions (4) and (11) may ensure the oscillation of Eq. (1). In fact, 
this is not enough, since, if we take c( > 1 and g(t) = t in Eqs. (8t( 10) and 
let p(t) = l/t’, the hypotheses of Theorem 2.1 and condition (11) are 
satisfied. Therefore, we need further restrictions on the functions in Eq. (1). 

In the following theorem we study the oscillatory behavior of Eq. (1) 
subject to the conditions 

and 

ljqx)>c>O for all x (12) 

s It/(u) -du<co 
+o f(u) 

and 
s 

*(u) -du<co 
-of(u) 

(13) 

THEOREM 2.2. Let g(t) d t, g(t) B 0 for t 3 to, conditions (2), (12), and 
(13) hold, and assume that there exists a function p E C2[ [ to, w  ), (0, co )] 
such that conditions (3), (4), and (11) hold. Then Eq. (1) is oscillatory. 

Proof: Let x(t) be a nonoscillatory solution of Eq. (1). As in the proof 
of Theorem 2.1, three cases arise. The proof of Cases 1 and 2 is similar to 
the corresponding cases of Theorem 2.1. Hence we consider Case 3. By 
conditions (4) and (11) we conclude that x(t) -+ 0 as t + co. Let x(t) > 0 
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and ,~[g(t)] > 0 for t 3 t, 3 t, and consider the function M’ defined earlier in 
the proof of Theorem 2.1 (Case 2). Then for every t 3 t, we obtain 

%t) = -p(t) s(t) - p(t) p(t) 
i(t) Ii/(-x(t)) i(t) 

.f(xC~(~)l)+U(f~P(r),f(xC~(t)l) 

_ w(r) (W) f(xCg(t)l) 
f(xt-s(t)l) . 

(14) 

Using conditions (2) and (3) and the fact that g(t) d t for t > t, we get 

~(t)~~(t~)-j’p(~)q(~)d~-~,~~~(~)p()(i(x(’))i(s))ds 
11 m(s)) 

+ j’ (4s) b(s)) 
$(x(s)) 4s) ds _ 

11 
,f(x(s)) s 

f w(s) WCd~)l) 
fi ./-b-4!?(~)1) 

By the Bonnet theorem, for any t > t,, there exist [r , r2 E [t , , t] such that 

-.I 
f 1 _ p(s) &) $(x(s)) 4s) 

11 c f(x(s)) 
ds=~"(1')"(t')~::r:)~du 

K G(u) 
G -~~(l~)p(t,)j-~(~,)~du=M, 

and 

So, for every t 3 t, 

w(t) d M- j’ p(s) q(s) ds - j,: 4s) ~;;;;;$;, 
II 

where M = w(t,) + M, + M,, and hence by condition (4) we derive 

-w(t)> c+ w(s) df(xCg(s)l) 
fblx~)l) ’ 

(15) 

where C is a positive constant. So, for every t 2 t, 

w~s~df(xCgWI) -‘> -~f(xCgWl) 
.fca(~)l) ’ dtf(xEs(t)l)’ 
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and hence by integrating over [tl , t] we obtain 

ln+ C+ ‘w(s) 
L J 

~fcw~)l) 1 ~Inf(x[!Am 
11 fm?(s)l) fwIg(~)l)~ 

Thus, 

df(xCds)l) Cf(xCs(t,)l) 
c+Jr: w(s) .f(Jcd~)l) a fcdk(~)l) 

for all t 2 t,, 

so (15) yields 

1 
for every t > t, , 

where C, = Cf(x[g(tr)]), and consequently we have 

a contradiction to the fact that x(t) > 0 for t 3 t, . This completes the proof. 

The following two corollaries are immediate. We omit the proofs. 

COROLLARY 2.3. Let conditions (12) and (13) of Theorem 2.2 be replaced 

by 

O<$(x)<Cc1 for x#O (16) 

and 

J du J du 

+0fo- 
and -< co, 

-of(u) 
(17) 

respectively, then the conclusion of Theorem 2.2 holds. 

COROLLARY 2.4. Let condition (12) of Theorem 2.2 be replaced by condi- 
tion (17), then the conclusion of Theorem 2.2 holds. 

EXAMPLE 2. Consider the differential equations (8t( 10) with q(t) = t 
and 0 Q TV < 1. We let p(t) = l/t’, t 2 to > 0. It is easy to check that Eq. (8) 
is oscillatory by Theorem 2.2, while Eq. (9) is oscillatory by Corollary 2.3. 
Also, using Corollary 2.3 one can conclude that all bounded solutions of 
Eq. (10) are oscillatory. 
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Remark 2. We note that Theorem 2.2 is concerned only with the 
oscillatory behavior of ordinary and retarded sublinear differential equa- 
tions of the form of Eq. (1). It fails to apply to other cases. To illustrate this 
point we consider two special cases of Eq. (8), namely, the ordinary 
differential equation 

(1 + P)P 
(13i(l)).+f(t)+ t3 ix(t)l”sgnx(t)=O, cc>l,tbt,=l (18) 

and the advanced sublinear equation 

(f3P(t))~+j.i(t)+(t2+f)x1’3[r6]=0, t>t,= 1. (19) 

Each of these equations admits the nonoscillatory solution x(t) = l/t + 0 
monotonically as t + co. It is easy to check that the hypotheses of 
Theorem 2.2 are satisfied, using p(t) = t ~ ‘, except condition (13) in the case 
of Eq. (18) and the condition on function g in the case of Eq. (19). 

The case when Eq. (1) is of advanced typed is covered in: 

THEOREM 2.5. Let g(t) > t, g(t) > 0 fir t 2 t,, and conditions (2), (12) 
and (13) hold. Suppose that there exists a function p E C2[ [ t,, co), (0, a)] 
such that 

P(t) GO, ( aCg(t)l dg(t)l 1-41) 
a(t) t?(t) > 

‘<o 
, , (a(t) P(t))‘>0 for t 2 to. (20) 

If 

s 
x: 

P[ISb)l 4(s) d = x (21) 

and 

s 
cc 1 

4s) pMs)l 
ds= OcI, (22) 

then Eq. (1) is oscillatory. 

Proof: Let x(t) be a nonoscillatory solution of Eq. ( 1 ), say x(t) > 0 and 
x[g(t)] > 0 for t 2 rO. As in the proof of Theorem 2.1 we consider three 
cases for the behavior of 1. The case when i is oscillatory is similar to 
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Case 1 in Theorem 2.1. Now, consider Case 2. Suppose a(t) > 0, for t 3 t, 
for some t, > t,. Define 

u(t) = a(t) W(t)) 4t) p[g(t), 
f(x(t)) 

for tat,. 

Then for t > t, 

d(t)= -PCs(t)1 d~)f(;:~~;;'h~~ PCg(t)l fz+4r) P[g(r)l &t(t) 
X 

x e(t)) i(t) 
f(x(t)) 

-a(t)pCg(t), IC/(x(t))f'(x(t))4~) 
fW)) . 

(23) 

Using conditions (2) and (20) and the fact that g(t) > 0 for t 2 t, we obtain 

G(t) d -PCs(t)1 4(f) for t3tl. 

Integrating this inequality from t, to t we get 

u(t) d o(t,) - j-’ pCds)l q(s) ds. 11 

In view of condition (21) 

u(r) < 0 for all large t, 

which is a contradiction. 

Case 3. i(t) < 0 for t 3 t, 2 t,. We let 

V(r) = a(t) t@(t)) ii-(t) pCg(t)l 

f(-a(t)l) ’ 
tat,. 

Thus, 

w = -PCdt)ldt) - At) PCs(f)1 f(x;;(;,l, + a(t) PCg(t)l i(f) 

b+(t)) i(t) V(t) Lf(mt)l). 
’ f(-ds(t)l) -f(xCsWl) dt 

(24) 

Since g(t) 2 t for t > t, and a(t) $(x(t)) i(t) is nondecreasing for t 3 t, we 
obtain 

4Idt)l WCg(t)l) m(t)1 G a(t) W(t)) i(t) for tat,. (25) 
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Thus, (24) becomes 

V(t) 
A f(xCs(t)l). -fbMOl) dt 

The rest of the proof is similar to that of Theorem 2.2 and hence is omitted. 

Remark 3. In [S-S], we studied the oscillatory behavior of Eq. (1) 
subject to conditions of the form 

$(x)>c>O for x#O and 
i 

a 1 
- exp 
4s) 

and when p(t) = 0, we required that 

Such conditions are not required in the present paper. Moreover those 
conditions are not satisfied in case of Eqs. (8)-( 10) given in Example 1 and 
hence our earlier results in [S-S] are not applicable to Eqs. (8~( 10) when 
06 c( < 1 and q(t) = t. Thus, the results of this paper are stronger than 
those in [S-S]. 

The following results are concerned with the oscillatory and asymptotic 
behavior of strongly superlinear equations of the type (1). Note that the 
differential Eq. (1) is said to be strongly superlinear if the functions f and 
$ are such that 

s +*io,<* 5 +i(u),<*. 
f(u) 

and 
.f(u) 

(26) 

THEOREM 2.6. Let g(t) < t, g(t) > 0 for t > to, conditions (2) and (26) 
hold, and assume that there exist a function p E C’[ [to, co), (0, co)] such 
that 

P(t)20, (p(t) p(t))’ G 0, 
( 
&T(t)1 b(t) 

> 
- <o 

t?(t) ’ 
for t> t,. (27) 

Zf conditions (4) and (5) hold, then every solution x of Eq. (1) is either 
oscillatory or x(t) + 0 monotonically as t + co. 
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Proof: Let x(t) be a nonoscillatory solution of Eq. (1). Assume that 
x(t)>0 and x[g(t)]>O for t3to. As in the proof of Theorem2.1, three 
cases are considered. The case when i is oscillatory is similar to Case 1 in 
Theorem 2.1. For the Case 2, i.e., when a(t) > 0 for t 2 t, z 0, we consider 
the function w  defined in the proof of Theorem 2.1 (Case 2). Then for every 
t 3 t, we obtain (6) and using conditions (2) and (27) we get 

It is easy to check that the function (a(t) $(x(t)) a(t)) is nonincreasing for 
t >, t, , and, since g(t) 6 t for t > t, , we have 

a(t) $(x(t)) i(t) d @f(t)1 $bCs(t)l) %!(~)I~ t 2 t,. (28) 

Thus, 

@i(f) d -P(l) q(t) + a(t)1 b(t) Il/bCdt)l) Jut)1 i(t) 
s(t) .fca(~)l) ’ 

and hence 

x t44-g(~)l) m(s)1 i(s) 
[ 1 & 

fcu~)l) . 
(29) 

By the Bonnet theorem, for every t > t,, there exists < E [t,, t] so that 

i 
t d&)1 b(s) ~(XCd~)l) ads)1 k?(s) 
11 k(s) 1 fb-4g(~)l) I & 

= 4dt1)l AtI) xcg(~)3 $(u) & 
at,) I .~cg(fl)l f(u) 

< ds(t1)l P(t,) 
&!(t,) s 

O” *(u) -du=M,<oO. 
.en(rI)l f(u) 

Consequently (29) becomes 

w(t) 6 w(t,) + M, -jr P(S) q(s) 4 
fl 

and by condition (3) we obtain the desired contradiction. Next, for the 
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Case 3 we use the function u considered in the proof of Theorem 2.1 
(Case 3), and obtain (7). Then by condition (27) we get 

C(t) d -p(t) q(t) .f’(-d-s(~)l) -p(t) P(f) *t(f), tat,. 

The rest of the proof is similar so that of Theorem 2.1 (Case 3) and hence 
is omitted. 

THEOREM 2.7. Let g(t) d t, g(t) 3 0 for t 2 t,, and conditions (2) and 
(26) hold. Suppose there exists p E C” [ [ t,, sz ), (0, co )] such that 

P(t) >o, (p(t) P(t))’ d 0, (a(t)b(t)Y~O for t2t,, (30) 

and that conditions (5) and (21) are satisfied. Then the conclusion of 
Theorem 2.6 holds. 

Proof: The proof is similar so that of Theorem 2.6 except that the 
function u’ defined in Case 2 is replaced by the function V considered in the 
proof of Theorem 2.5 (Case 3). The details are omitted. 

THEOREM 2.8. Let condition (5) in Theorem 2.6 (respectively Theorem 2.7) 
he replaced by condition (11). Then Eq. ( 1) is oscillatory. 

Proof Let x(t) be a nonoscillatory solution of Eq. (l), say x(t) > 0 and 
x[ g( t)] > 0 for t 2 t,. As in the proof of Theorem 2.6, three cases are con- 
sidered for the behavior of i. The proof for the first two cases when i is 
oscillatory and when i(t) > 0, respectively, for t b t, is similar to the proof 
of Cases 1 and 2 in Theorem 2.6 (respectively Theorem 2.7). We consider 
the third case where a(t) < 0 for t 3 t, and use the function u considered in 
the proof of Theorem 2.1 (Case 3). Then for t b t, we obtain equality (7). 
Integrating (7) and using the hypotheses of Theorem 2.6 (respectively 
Theorem 2.7) we obtain 

a(t) ~(2) Il/Mt)) -t(t) 6 u(t,) < 0 for t3t,, 

or 

a contradiction to the fact that x(t) > 0 for t b t, This completes the proof. 

Next, we consider Eq. (1) with advanced argument and obtain the 
following criteria for its behavior. 

THEOREM 2.9. Let g(t) 2 t and g(t) B 0 for t 3 t,, let conditions (2) and 
(26) hold, and let there exist p E C’[ [t,, CC ), (0, cx, )] such that conditions 
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(30), (4), and (5) are satisfied. Then every solution x of Eq. (1) is either 
oscillatory or x(t) -+ 0 monotonically as t + 00. 

ProojY The proof is similar to that of Theorem 2.6 except that we make 
use of the advanced argument instead of the retarded one. The details are 
omitted. 

THEOREM 2.10. Let condition (5) in Theorem 2.9 be replaced by condi- 
tion (1 1 ), then Eq. (1) is oscillatory. 

Proof: The proof is similar to that of Theorems 2.8 and 2.9 and hence 
is omitted. 

In the following results we discuss the oscillatory and asymptotic 
behavior of Eq. (1) with advanced argument and nonpositive damping 
coefficient p( t ), t 3 t,. 

THEOREM 2.11. Let p(t) 6 0, g(t) > t, and g(t) 3 0 for t 3 t,, condi- 
tion (2) hold, and 

(31) 

Assume that there exists a function p E C’[ [to, co), (0, a)] such that 

P(t) 6 0, (p(t) p(t))‘> 0, (a(t) P(t))’ 2 0 for tat,. (32) 

If conditions (4) and (5) hold, then every solution x of Eq. (1) is either 
oscillatory or lim t _ m x(t) = 0 monotonically. 

Proof: Let x(t) be a nonoscillatory solution of Eq. (l), say x(t) > 0 and 
x[g( t)] > 0 for t > t,. As in the proof of Theorem 2.1, three cases arise. 
Since the first one coincides with Case 1 of Theorem 2.1, we consider the 
other two cases. Now, assume that Case 2 holds, i.e., suppose that x(t) > 0 
for t 2 t, and define the function w  as in the proof for Case 2 of 
Theorem 2.1 to get (6). In view of the hypotheses of the theorem we obtain 

4t) 
4t) 6 -P(t) 4(t)- P(l) P(f)f(x(t)j 

Using the Bonnet theorem and conditions (31), (32), and (4) we obtain the 
desired contradiction. Next, we consider Case 3, i.e., x(t) < 0 for t 2 t, , and 
define the function u as in the proof of Case 3 of Theorem 2.1 to obtain (7) 
which by conditions of the theorem reduces to 

4t) G -p(t) 4(t) f(xCs(t)l) + a(t) P(t) $(x(t) 4t)). 

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted. 

409/145/l-9 
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THEOREM 2.12. Let condition (5) in Theorem 2.1 1 be replaced by condi- 
tion ( 11 ). Then Eq. ( 1 ) is oscillrrtor~~. 

Prooj: The proof is similar to that of Theorem 2.11 and Theorem 2.8 
(Case 3) and hence is omitted. 

The following examples are illustrative: 

EXAMPLE 3. The differential equation 

(t’(1 +xz(r))~(r)l.ff-S(f)+x3(f)=o, t > t, > 0, (33) 

has a nonoscillatory solution x(t) = l/t -+ 0 as t -+ co. The conditions of 
Theorem 2.1 are satisfied if we choose p(r) = 1. We note that Theorem 2.6 
is not applicable to Eq. (33) since condition (26) is violated. 

EXAMPLE 4. Consider the differential equation 

(t(l+x2(t))I(t))‘-(1+71)i(r)+fx3(+0, t3to>0. (34) 

The conditions of Theorem 2.11 are satisfied for p(t) = 1 except that 
(p(t) p(t))’ = -7 6 0 for t 3 t,. Equation (34) has a nonoscillatory solution 
x(t) = J +O as t -+ m. On the other hand, we see that the equation 

(t(1 +x2(t)).?(t))‘- 1+; i(t)+~x’(t)=O, 
c > 

t2t,>o (35) 

is oscillatory by Theorem 2.12 with p(t) = 1. 

We note that Theorems 3 and 4 in [ 131 fail to apply to Eq. (35) since 
+(x) # 1 and p(t) # 0. 

EXAMPLE 5. Consider the differential equation 

((1+x2(t))~~(t))‘-(2t+gZ(t))~~(f)+Ix[g(t)]l3sgnx[g(t)]=0, (36) 

where g(t) is a continuous, nondecreasing function for t 3 t, z 0, g(t) 2 t for 
t2to, and cc>O. Here we let p(t)= 1. 

We observe the following: 

(i) Theorem 2.11 is not applicable to Eq. (36) if g(t) = t and c1= 1, 
since condition (31) is violated. 

(ii) Again Theorem 2.11 fails to apply to Eq. (36) if g(t) = t and 
a = 5, since the condition that (p(t) p(t))’ 2 0 for t 2 to is violated. 

(iii) If g(t) = t, and TV = f, we note that Theorem 2.1 fails to apply to 
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Eq. (36) since the condition on the sign of the damping coefficient p is 
violated. 

Note that Eq. (36) has x(t) = t, as a solution which is nonoscillatory. 

3. FURTHER RESULTS 

THEOREM 3.1. Let p(f)>O, g(f)bf, andg(f)>Ofor fat,, 

f'(x) ->k>O for x#O, 
I(/(x) 

(37) 

and suppose that there exists a function p E C’ [ [ f,, cc ), (0, 00 )] such thaf 

P(f)>0 and (p(f) p(f))‘<0 for f >, to. (38) 

If condition (5) holds and 

~MS)l P*(s) 
p(s) q(s) - 4kp(s) g(s) 1 ds = a, (39) 

then every solution x of Eq. (1) is either oscillatory or lim,, n(: x(f) = 0 
monotonically. 

Proof. Let x(t) be a nonoscillatory solution of Eq. (1) without loss of 
generality, and assume that x(f) > 0 and x[ g(t)] > 0 for t 2 t,. As in the 
proof of Theorem 2.1 (Case l), i(t) cannot oscillate for all large t, so we 
consider the other two cases. Let i(t) > 0 for t 2 t, > t,, and define the 
function W as in the proof of Theorem 2.1 (Case 2). The for t > t, we 
obtain (6). Since p(t) 20 and g(t) < t for t > to we get (28). Thus, (6) 
becomes 

G(f)< -p(t) q(t)+~w(t)-~~x~~~:::i [g;)f:p(t) W*(t). 
X a 

Using condition (37) we have 

k(t)< -p(t)q(t)+$+(t)- kdt) 
a(t)1 p(t) w*(t) 

=- 
[ 

p(f) q(f) /MN b*(t) 
W(t) i?(t) 1 

-[Ji-$g!g!] 
aCs(t)l D’(t) p(t) s(t)- 4kp(t) s(t) 1 9 t> t,. 
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Integrating the above inequality from t, to r we obtain 

which contradicts (39). The proof of the case when a(t) < 0 for t 3 t, 3 t,, is 
similar to the proof of Case 3 in Theorem 2.6. 

The proof of the following theorems is immediate. 

THEOREM 3.2. Let condition (38) in Theorem 3.1 be replaced by 

(I(t)A;P(t)p(tw for tat,. (40) 

Zf we assume ( 12) then the conclusion of Theorem 3.1 holds. 

THEOREM 3.3. Let condition (5) in Theorem 3.1 (respectively Theorem 3.2) 
be replaced by condition (1 1 ), then Eq. (1) is oscillatory. 

We consider the following: 

EXAMPLE 6. In the differential equation 

( t2 1 

1 +x2(t) .2(t) ‘+frn(t)+x(t)=O, 
> 

t >/ t, > 0, (41) 

the conditions of Theorem 3.1 are satisfied for p( 1) = t and hence every 
solution x of Eq. (41) is either oscillatory or x(t) -+ 0 monotonically as 
t + co. We note that Theorem 3.2 fails to apply to Eq. (41), since condi- 
tion (12) is violated. On the other hand, for the differential equation 

( 1 
t 2 - sin x(t) 

i(t) ‘+;ti(t)+x(t)=O, 
> 

t >, t, > 0, (42) 

all the conditions of Theorem 3.2 are satisfied for p(t) = 1 and hence every 
solution x of Eq. (42) is either oscillatory or x(t) -+ 0 monotonically as 
t -+ co. One can easily check that Theorem 3.1 fails to apply to Eq. (42) 
because the condition (38) is violated. 

Next, we have the following: 

THEOREM 3.4. Let condition (38) in Theorem 3.1 (respectively Theo- 
rem 3.3) be replaced by 

( 
4aw-;PwP(r) =Ht)GO 

> 
and i(t) b 0 for t> to, (43) 

then the conclusion of Theorem 3.1 (respectively Theorem 3.3) holds. 
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Proof. The proof is immediate and hence is deleted. 

In the following results we let p(t) Q 0 and g(t) = t jbr t > t,. 

THEOREM 3.5. Suppose that 

f'(x)$(x)>k,>O for x#O, (44) 

and let pE C’[[t,,, co), (0, CD)] such that 

P(t)<0 and (a(t) P(t)Y 3 0 for t3 t,. (45) 

If condition (5) holds and 

1 ds= o3, (46) 

then every solution x of Eq. ( 1) is either oscillatory or x(t) -+ 0 monotonically 
as t+oo. 

Proof Let x(t) be a nonoscillatory solution of Eq. (1) and assume that 
x(t) > 0 and x[g( t)] > 0 for t > to. Here, we distinguish three cases of the 
behavior of .a!-. The proofs of the cases when x is oscillatory and when 
x?(t) < 0 for t > t, are similar to those in Theorem 2.11. We consider only 
the case when i(t) > 0 for t > t, 3 t,. 

Define the function 

w(t) = a(t) ICl(x(t)) a(t) 
f@(t)) 

P(t)? t2 t,. 

It is easy to check that 

p’(t) p(t) 

4k, a(t) 1 
i.(t) p(t) p(t) 1 2 $GGm-- 

f(x(t)) 2 Jgif&ig 

P(l) q(t) - p2(t) p(t) 1 4k,a(t) ’ 

The rest of the proof is similar to the one in Theorem 3.1 and hence is 
omitted. 

By using the same technique as above we have the following theorem: 
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THEOREM 3.6. Let conditions (12) and (37) hold and assume that there 
exists a function p E C'[[to, x ), (0, x8)] suc,h that p(t) 3 0 ,fiw t 3 t,,. Lf; in 
addition to condition (5) 

H ’ P(S) q(s) - (a(s)P - (l/c) P(.s) dLs))* 1 ds = rj 
4kp(s) a(s) . ’ 

(47) 

then every solution x of Eq. (1) is either oscillatory or x(t) -+ 0 monotonically 
as t+a3. 

Proof. The proof is immediate and hence is omitted. 

THEOREM 3.7. Let conditions (12), (37), and (47) in Theorem 3.5 he 
replaced by conditions ( 16), (44), and 

(c14s) P(s) - P(.s) P(S))* 
4h, 4s) P(J) 1 ds = ~ 

(48) 

respectively, then the conclusion of Theorem 3.5 holds. 

THEOREM 3.8. Let condition (5) in Theorems 3.5-3.7 he replaced by 
condition (1 1 ), then Eq. (1) is oscillatory. 

The following examples are illustrative. 

EXAMPLE 7. The differential equation 

( 
t2+t~n’t(l+~*(t))*(rl)‘-2(ln~~I)i(t)+~X(f)=Ol t 3 t, > e, 

(49) 

has a nonoscillatory solution x(t) = (In t)/t + 0 monotonically as t + co. 
We not that all the conditions of Theorem 3.5 are satisfied if we choose 
p(t) = 1. 

EXAMPLE 8. Consider the differential equation 

(1(I+X’(t))~(I)).-2(ln~~l)iif)+~*(I)=0’ t 2 t, > e. (50) 

The hypotheses of Theorem 3.8 are satisfied for p(t) = 1 and hence all the 
solutions of Eq. (50) are oscillatory. We believe that none of the criteria in 
[l-21] can be applied to Eq. (50). 

Finally, we consider the forced equation of the form 

(a(t) W(t)) a(t))‘+ At) i(r) + s(t) f(xCs(t)l) = 4th (51) 
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where the functions a, g, p, $, and f are as in Eq. ( 1 ), and e, q : [to, co ) + R 
are continuous. In fact there is nothing known regarding the oscillatory 
and asymptotic behavior of Eq. (51) when q is of varying sign. Therefore, 
the purpose of the following results is to investigate Eq. (51) when q is of 
varying sign. 

THEOREM 3.9. In addition to the hypotheses Theorem 2.1, assume that 

l 

cc 

P(S) le(s)l dx < 03. (52) 

Let x(t) be any solution of Eq. (51). Then either a(t) is oscillatory or else 
x(t) -+ 0 monotonically as t + co. 

Proof. Let x(t) be a nonoscillatory solution of Eq. (51). Assume that 
x(t) > 0 and x[ g(t)] > 0 for t z t,. Here we need to consider two cases of 
behavior of i-. 

Case 1. ~(t)>OfortZt,,forsomet,>t,.Wedefinethefunctionwas 
in the proof of Theorem 2.1 (Case 2) and get 

a(t) = -P(t) s(t) + P(f) 
e(t) i(t) 

f(xCdt)l) - p(t) P%xCg(ol) 

+ a(t) P(t) $(x(f)) i(t) 
f(XM~)l) 

_ a(t) p(t) g(t) i(t) a?(t)1 4+(t)) f’bCdt)l) 
f2(xCdt)l) . 

Using the conditions of the theorem we obtain 

k(t) 6 -P(f) q(t) + P(t)f(;;(j;),). t>t,. 

Since x(t) is an increasing function for t b tl, there exist a t, > t, and a 
constant b >O such that x[g(t)] 2 b for t > t,. Thus 

1 
k(t) 6 -p(t) q(t) +s(b) p(t) le(t)l, t>t, 

or 

w(t)<M- ‘p(s)q(s)ds, s 12 

where M = w(tZ) + (l/f(b)) J,; p(s) le(s)l ds. The rest of the proof is similar 
to that of Theorem 2.1 (Case 2) and hence is omitted. 
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Case 2. .t( t) < 0 for t 3 t, for some I, 3 t,,. Consider the function u as in 
the proof of Theorem 2.1 (Case 3) then we get 

C(f) = -p(t) q(t) .f(~c!T(~)l) +p(r) e(t) - At) p(t) -i-(r) 

+a([) P(t) b@(r)) 4th 

Condition (4) implies that there exists T> t, such that 

As in the proof of Theorem 2.1 (Case 3) we obtain 

u(t) < u(T) + j-’ P(S) lee ds-f(xCdt)l) f/b) q(s) ds 
T  

,< u(T) + ji p(s) le(t)l ds -f(b) j’ P(S) q(s) ds, 
T  T  

where b = lim, _ 5 x(t). By conditions (4) and (52), there exists a T, > T so 
that 

for t>T,. 

The rest of the proof is similar to that of Theorem 2.1 (Case 3) and hence 
is omitted. 

THEOREM 3.10. Assume the conditions of Theorem 3.9 except conditions 
(3) and (5), and let the function p be nonincreasing on [t,, a). Zf x( t) is any 
solution of Eq. (52), then either a(t) is oscillatory or Ix(t)( decreases 
monotonically to a limit as t + w. 

Proof. The proof is similar to that of Theorem 3.9 (Case 1) and hence 
is omitted. 

For illustration we consider the following examples. 

EXAMPLE 9. Consider the differential equation 

=e~‘g(‘)(~+cost)+te~r-e~r, t>to=n/2, (53) 
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where g(t) is any nondecreasing continuous function on [7r/2, co), 
g(t) -+ co as t + cc, and c1> 0. Let p(t) = 1. Then all the conditions of 
Theorem 3.9 are satisfied and hence the conclusion of Theorem 3.9 holds. 
Equation (54) has the nonoscillatory solution x(t) = e - ’ + 0 monotonically 
as t-co. 

EXAMPLE 10. The differential equation 

(t’i(t))- + 2e’( 1 + cos t) i(t) + (1 + cos t) x[J] 

=eFG(l +cos t)+ t3epr-3t2e-‘, t 3 t, = n/2, (54) 

has the nonoscillatory solution x(t) = 2 + e-’ + 2 monotonically as t -+ co. 
All the conditions of Theorem 3.10 are satisfied with p(t) = 1. It is easy to 
check that Theorem 3.9 is not applicable to Eq. (54) since conditions (3) 
and (5) are violated. 

EXAMPLE 11. The differential equation 

.i-(l)+fi(t)+ f+sint x(t) 
( > 

=e -’ 
[ 

2+?-(l+cos t)Z ) 1 t 2 t, > 0, (55) 

has the oscillatory solution x(t) = e-’ sin t. All the conditions of 
Theorem 3.9 are satisfied with p(t) = 1. 

EXAMPLE 12. The differential equation 

cos t 
n(t)+~i(t)+~x(t-.]=7,, t 3 t, > 0, (56) 

has the nonoscillatory solution x(t) = 2 + sin t and i(t) = cos t which is 
oscillatory. The hypotheses of Theorem 3.9 (or Theorem 3.10) are satisfied 
with p(t) = 1. 

We believe that none of the known criteria can describe the behavioral 
properties of Eqs. (53)-(56). 

The following corollaries are immediate: 

COROLLARY 3.11. Let e(t) = 0 in Theorem 3.9 or Theorem 3.10 and let 
x(t) be any solution of Eq. (51). Then i(t) is oscillatory. 
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COROLLARY 3.12. Let condition (5) in Theorem 3.9 be replaced h?’ condi- 
tion (1 1 ). Furthermore, assume thut 

j 

I  1 ., 

4s) p(.s) ! 
p(u) /e(u)1 du d.s < x. 

ro 

Then the conclusion qf Corollar)) 3.11 holds. 

The following example is illustrative. 

EXAMPLE 13. The differential equation 

i(t)+ Zx[t-nl=O, t > t, > 0, 

has a nonoscillatory solution x(t) = 2 + sin t with i(t) = cos t. All the 
conditions of Corollary 3.11 are satisfied for p(t) = 1. 

Remark. It is easy to check that Theorem 3.10 can be applied to more 
general equations of the form 

(a(t) $(x(t)) 4t)Y + p(t) Wt)) a(t) + 4(t) f(xCs(t)l) = 4th (59) 

where a, e, g, p, f, and $ are as in Eq. (5 1) and y : R + R is continuous and 
y(y)>0 for ally. 

For illustration we consider the following example. 

EXAMPLE 14. Consider the differential equation 

a(t)+$(cosh2(t))2(t)+$&x[t-X] 

cos t cosh(cos t) 

t2 
for tZt,>O. (60) 

Here y(x) = cash(x) > 0 for all x, and hence by using the above remark 
we can apply Theorem 3.10 for p(t) = 1 and conclude that if x(t) is any 
solution of Eq. (60), then either i(t) is oscillatory or Ix(t)1 monotonically 
decreases to a finite limit as t 4 co. Equation (60) has the nonoscillatory 
solution x(t) = 2 + sin t, satisfying the above conclusion. 

Some Remarks. 1. The deviating argument g(t) is chosen to be either 
retarded or advanced and hence our results are applicable to ordinary, 
retarded, as well as advanced differential equations. As indicated earlier the 
deviating argument g(t) plays an important role in the study of the 
behavioral properties of Eq. (1) (see examples given above). 
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2. Our results can be applied to Eq. (1) when the damping coefficient 
“p” is either nonnegative or nonpositive. 

3. If $(x) = 1 and p(t) = 0, then Theorems 2.6-2.8 are related to 
Theorems 3 and 4 in [13]. 

4. The results of this paper extend and unify some of the results in 
[5-S]. In the case when the functions a, p, and tj in Eq. (1) satisfy condi- 
tion (7) given in [S], the extra conditions imposed in our results here can 
be discarded and hence our results become similar to the corresponding 
ones in [S-S] as well as in [l-4] and [9-211. We also mention that the 
results of this paper are quite general and can be applied to a larger class 
of nonlinear differential equations when some of the known criteria in 
Cl-211 may fail to apply (see above examples). 

5. In Theorems 3.9 and 3.10 we investigate the behavioral properties 
of Eq. (51) where the function q(t) is allowed to change sign on [ f,,, co). 
The forcing term “e” need not be oscillatory as is usually required. We 
impose no condition on e other than condition (52) and since the weight* 
function p(t) is nonincreasing on [to, CD), the forcing term e need not be 
small. The forcing term e in Eq. (51) can either preserve or destroy the 
oscillatory character of Eq. (1) as is the case in the following equations: 

The differential equation 

a(l)+~qr)+x(r)=o, t>o (61) 

has the oscillatory solutions (sin t)/t and (cos t)/t. All the conditions of 
Theorem 3.3 are satisfied for p(t) = 1. Next, the differential equation 

2 . 1 
i(t)+;x(t)+x(t)=s, t>o (62) 

has the oscillatory solution x(t) = (1 + 2 sin t)/2t. All the conditions of 
Theorem 3.9 are satisfied with p(t) = l/t. Finally, the differential equation 

- 

(63) 

has the nonoscillatory solution x(t) = l/Jt + 0 as t + 00. The hypotheses 
of Theorem 3.9 are satisfied with p(t) = l/t. 

It remains an open question to the authors whether the results of this 
paper remain true for Eq. (1) (or Eq. (52)) when q: [to, co)-+ R is a 
continuous function and is of varying signs on [to, co). 
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