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Microarray platforms enable the investigation of allelic variants that may be correlated to phenotypes.
Among those, the Affymetrix DMET (Drug Metabolism Enzymes and Transporters) platform enables
the simultaneous investigation of all the genes that are related to drug absorption, distribution, metabo-
lism and excretion (ADME). Although recent studies demonstrated the effectiveness of the use of DMET
data for studying drug response or toxicity in clinical studies, there is a lack of tools for the automatic
analysis of DMET data. In a previous work we developed DMET-Analyzer, a methodology and a support-
ing platform able to automatize the statistical study of allelic variants, that has been validated in several
clinical studies. Although DMET-Analyzer is able to correlate a single variant for each probe (related to a
portion of a gene) through the use of the Fisher test, it is unable to discover multiple associations among
allelic variants, due to its underlying statistic analysis strategy that focuses on a single variant for each
time. To overcome those limitations, here we propose a new analysis methodology for DMET data based
on Association Rules mining, and an efficient implementation of this methodology, named DMET-Miner.
DMET-Miner extends the DMET-Analyzer tool with data mining capabilities and correlates the presence
of a set of allelic variants with the conditions of patient’s samples by exploiting association rules. To face
the high number of frequent itemsets generated when considering large clinical studies based on DMET
data, DMET-Miner uses an efficient data structure and implements an optimized search strategy that
reduces the search space and the execution time. Preliminary experiments on synthetic DMET datasets,
show how DMET-Miner outperforms off-the-shelf data mining suites such as the FP-Growth algorithms
available in Weka and RapidMiner. To demonstrate the biological relevance of the extracted association
rules and the effectiveness of the proposed approach from a medical point of view, some preliminary
studies on a real clinical dataset are currently under medical investigation.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Personalized medicine refers to the possibility to tailor thera-
pies on the basis of the genome of patients, under the assumption
that different genomic variants may impact on the response to
drugs Wang and Liotta [19], Stranger et al. [17], Lombardi et al.
[11], and Rumiato et al. [14]. A main driver for the development
of personalized medicine is the availability of novel
high-throughput platforms such as microarray, at a relative low
cost, Wang and Liotta [19] and Stranger et al. [17], enabling the
large scale screening of genomes of patients for possible known
or unknown genetic variants (i.e. Single Nucleotide
Polimorphisms or allelic variants) and then the further selection
of drugs on the basis of the patient’s genotype, in order to maxi-
mize their efficacy or to reduce their toxicity.

A set of SNPs and allelic variants, known to be related to
Adverse Drug Reactions (ADR), have been determined in the past
Li et al. [10]. ADRs occur most frequently when a drug has a narrow
therapeutic index. The therapeutic index is a measure of the
amount of drug that may cause lethal effect. When a drug has a
narrow therapeutic index it means that there exists little difference
between the lethal and the therapeutic dose. Consequently the
investigation of these polymorphism may avoid the incorrect
dosage of drugs and then the insurgence of reactions since their
presence/absence favorites ADRs.

The DMET (Drug Metabolism Enzymes and Transporters) plat-
form developed by Affymetrix is used to detect in human samples
the allelic variants on 225 genes that are related with drug
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absorption, distribution, metabolism and excretion (ADME) Li et al.
[10]; variations are detected considering 1936 probes and with
respect to a reference population.1 Many recent works demon-
strated the role of genetic variations in ADME genes in association
with the heterogeneity in drug treatment effects Lombardi et al.
[11], Rumiato et al. [14], Di Martino et al. [5,6], Shiotani et al. [15],
Hu et al. [9], Mizzi et al. [12], and Wakil et al. [18].

In a classical case-control study, the DMET platform generates a
np� ns matrix of alleles, where np is the number of probes
(np ¼ 1936 for current DMET chips) and ns is the number of sam-
ples (patients). Each value of such a matrix is represented by a
string that may theoretically take all the possible symbols
‘‘s1=s2’’, where s1; s2 2 S ¼ fA;C;G; T;�g, or the ‘‘NoCall’’ symbol. S
contains all the nucleotides symbols and the special symbol ‘‘–’’,
that is used to denote insertion/deletion of nucleotides, while
‘‘NoCall’’ indicates that the DMET platform has not been able to
detect the nucleotide Wang and Liotta [19] and Li et al. [10].

The development of novel algorithms able to manage and mine
SNP data in case-control studies and to provide information for
clinical decision is currently a novel research area. In fact, DMET
data must be first preprocessed and then analyzed in order to find
correlation between the genotype and the condition of samples
(e.g. type of drug treatment or response to a drug). To the best of
our knowledge, the main available tools to process DMET data
are those provided by Affymetrix, and DMET-Analyzer Guzzi
et al. [7].

The apt-dmet-genotype software of the Affymetrix Power
Tools suite, or the DMET Console platform Sissung et al. [16], gen-
erally allow only the sequential preprocessing of binary data and
simple data analysis operations, but do not allow to test the asso-
ciation of the presence of SNPs with the response to drugs.

On the other hand, DMET-Analyzer Guzzi et al. [7] is a recent
software platform for the automatic statistical analysis of DMET
data that employs the well-known Fisher test and several statisti-
cal corrections such as Bonferroni or False Discovery Rate.
DMET-Analyzer also supports the visualization of the polymor-
phisms detected on the entire dataset as a heat-map to give an
immediate visual feedback to the user. Finally, it annotates signif-
icant SNPs with information provided by Affymetrix libraries and
with links to the dbSNP database (for short genetic variations -
http://www.ncbi.nlm.nih.gov/SNP/) and to the PharmaGKB
(Pharmacogenomics Knowledge Base - http://www.pharmagkb.
org), Hernandez-Boussard et al. [8], giving various information
(e.g. pathways) related to pharmacogenomics.

Although DMET-Analyzer has demonstrated its validity in sev-
eral clinical studies Lombardi et al. [11], Rumiato et al. [14], and
Di Martino et al. [5,6], it presents a main limitation: the association
among the presence of SNPs and the classes of samples (patients),
is determined through the use of the well known Fisher’s test, thus
it is able to discover only the association among a single allelic
variants and the clinical conditions.

Nevertheless, many diseases such as cancer are known to be
multi-factorial, i.e. related to variants in more than a single gene.
Unfortunately, the mining strategy of DMET-Analyzer is not able
to cope with multiple variants. Because it determines only single
variants, it is not able to group all of them in a single, easy to
understand, and biologically relevant, information.

To overcome those limitations, we developed DMET-Miner, a
novel methodology for the concurrent analysis of genomic variants
in more than a gene. DMET-Miner is based on the association rules
mining methodology Agrawal et al. [1], a well known methodology
in the data mining field. Usually association rules are discovered in
1 Genotyping or genotypization determines differences in the genetic profile
(genotype) of an individual by examining the individual’s DNA sequence and
comparing it to another individual’s sequence or to a reference sequence.
transaction databases by finding and mining frequent item sets in
an efficient manner, thus we formulated the problem of finding a
set of candidate allelic variants correlated to the patient’s classes,
as the finding of Frequent Sets of allelic variants and then as the
extraction of association rules from those frequent sets.

In particular DMET-Miner presents two order of innovations
with respect to DMET-Analyzer: (i) In addition to DMET-Analyzer
functions, DMET-Miner supports the extraction of association rules
from DMET datasets, while DMET-Analyzer only supports the
exhaustive execution of Fisher tests and related statistical correc-
tions; (ii) DMET-Miner uses optimized data structures that gives
good performance results in rule extraction also with huge DMET
datasets. The use of a modular software architecture will also allow
to easily add new machine learning algorithms with minimal
effort.

In summary, DMET-Miner is a software platform able to easily
read data produced by the Affymetrix DMET platform and then
to extract relevant knowledge by computing frequent item sets
in an efficient manner, as well as extracting association rules that
link allelic variants in more than one probe with the conditions
of patients (e.g. subjects responding or not responding to drugs
in oncology). The whole DMET-Miner methodology is based on
two main steps: (i) Transformation of a DMET dataset into a trans-
action database and (ii) learning of significant rules from the trans-
action database by mining frequent item sets.

The main contributions of the presented work are:

� The identification of candidate genotype variants related to
pharmacogenomics of drugs (e.g. drug efficacy or Adverse
Drug Reaction – ADR) by using frequent item sets and associa-
tion rules mining.
� An efficient implementation of the association rule mining

strategy that uses optimized data structures adapted to SNPs
data, as opposed to general purpose data mining platforms.
� The full integration of this novel mining approach into

DMET-Analyzer Guzzi et al. [7], an already available user
friendly software, that is able to manage DMET data produced
by DMET Console and that spares the user of coping with mul-
tiple tools/data format.
� A first step to integrate a data mining strategy into an overall

clinical process related to pharmacogenomics. The validation
of the effectiveness of our approach in a clinical scenario is
under investigation by the medical group of our University.

To evaluate the effectiveness of our approach we considered
various synthetic DMET datasets. We mined those datasets and
compared the results using both our novel DMET-Miner rule learn-
ing methodology as well as the association rules mining algorithms
provided in several open source data mining platforms, such as
Weka and RapidMiner. Preliminary experiments on those synthetic
DMET datasets show how DMET-Miner outperforms off-the-shelf
data mining suites considering the response time and memory
occupancy, while maintaining coherent rules.

The rest of the paper is structured as follows. Section 2 pre-
sents, respectively, the overall proposed methodology for mining
frequent itemsets in a DMET SNP dataset (Section 2.1), the syn-
thetic DMET datasets used in our experiments (Section 2.2), the
DMET-Miner algorithm and its main data structures
(Section 2.3), a short example about the use of the DMET-Miner
software tool (Section 2.4), and the related work (Section 2.5).
Section 3 presents experimental results obtained by mining a
synthetic DMET dataset, and underlines the key form of learned
association rules. Section 4 discusses possible approaches to
interpret in a clinical context the association rules produce by
DMET-Miner. Finally, Section 5 concludes the paper and outlines
future perspectives.

http://www.ncbi.nlm.nih.gov/SNP/
http://www.pharmagkb.org
http://www.pharmagkb.org


Table 1
A simple DMET SNP microarray data set. S and P respectively refer to sample and
probe identifiers.

Probes Samples

S1 S2 S3 � � � SN

P1 G/A A/G A/G � � � T/T
P2 G/A A/G A/G � � � T/C

..

. ..
. ..

. ..
. � � � ..

.

PM G/A A/G A/G � � � T/C
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2. Materials and methods

2.1. Learning association rules from DMET SNP data

Association rule extraction is a common method in data mining
used for discovering associations and relations among features in
databases. Historically, the work from Agrawal et al. introduced
such methodology for discovering associations in transaction data-
bases in order to support marketing decision Agrawal et al. [1]. The
work from Cheng et al. surveys main algorithms for mining fre-
quent itemsets, Cheng et al. [4].

Here we focus on the development of a SNP-based association
rule mining platform able to mine genomic data with application
to pharmacogenomics. In fact, groups of SNPs may influence the
efficacy or toxicity (adverse drug reaction) of drugs in different
classes of patients Alonso et al. [2] and Cannataro et al. [3]. Our
approach is based on the following steps:

� Initial Preprocessing of DMET dataset consisting in computing
the frequency of each allele for each probe (this step is useful
to compute Fisher’s Test in an efficient way).
� Removing of possible uninformative probes by iteratively

applying the Fisher’s test.
� Generation of Transaction database, obtained by transposing

the filtered input dataset.
� Learning Rules through an optimized FP-Growth algorithm.

2.2. Synthetic DMET SNP dataset

The DMET datasets used in our experiments have been obtained
by using a Random DMET Generator (RDG) that we developed for
this project. At the core of RDG, there is a random function f að�Þ
able to generate a pairwise of alleles i.e. fa1=a2g, where
fai; i ¼ 1;2g belongs to the alleles set symbols A. Formally:
faig 2 A ¼ fA;C;G; T;�g [ {‘‘NoCall’’}. A contains all the nucleotides
symbols and the special symbols: ‘‘–’’, that is used to denote inser-
tion/deletion of nucleotides, and ‘‘NoCall’’, that is reported by the
DMET platform when it has not been able to detect the nucleotide.
To build a m� n SNP DMET table, RDG iteratively fills each element
of the table ði; jÞ, where i is the probe identifier (for current DMET
platform, m ¼ 1936) and j is the sample (e.g. patient) identifier.
The user has to provide in input the number of samples n (a posi-
tive number) and the number of probes m (the default value is
1936) and the label (e.g. healthy vs diseased) of each sample (by
default the first half of samples is labeled as class A and the
remaining as class B). An example of synthetic SNP DMET dataset
is reported in Table 1.

In order to extract relevant rules, we follow logical steps as
depicted in Fig. 1. These steps are described in details below.

1. Loading and conversion of the input DMET dataset into a trans-
action database. Input data table produced by DMET Console (see
e.g. Table 1) is initially loaded and transposed obtaining a n�m
matrix of alleles named T, where n is the number of samples
(patients) and m is the number of probes (m ¼ 1936 for current
DMET chips). In this way, each row of the table T represents a
transaction, where all SNPs detected in a patients, on the various
probes, are the items of the transaction. Table 2 shows the trans-
formed matrix T for the input dataset of Table 1.

Table 2 is then used to extract itemsets. Thus, in order to
explain the overall process, we here recall some main concepts that
we use in the following.

Let I ¼ fi1; i2; . . . ; ing be a set of items, where an item is identi-
fied by a specific SNP into a cell ði; jÞ of Table T.

Let T the set of transactions, formally a transaction over I is a
couple T ¼ ðtid; IÞ, where tid is the transaction identifier and I is
an item or itemset. The number of items present in a transaction
is defined as transaction width. A transaction Tj contains an itemset
J, if J is a subset of Tj, this is J � T .

Let D ¼ ft1; t2; . . . ; tmg be a set of transactions, called
DMET-Dataset D hereafter. Each transaction in D is identified by a
unique ID of the corresponding sample or patient.

2. Computing frequent itemsets and extracting association rules.
We now may start the mining phase by applying the following
steps:

1. find all combinations of items in a set of transactions that occur
with a specified minimum frequency threshold (called
Frequent Items Set).

2. calculate rules that highlight the probability that one or more
items are contained into frequent items sets.

The strength of frequent item sets extraction is based on the
ability to discover interesting relationships hidden in large data
sets. This feature is based on a very important property of the item-
set also known as Support count. Support count refers to the num-
ber of transactions that contain a particular item or itemset.
Formally, the Support-Count Scð�Þ of an item X; ScðXÞ can be stated
as follows: ScðXÞ ¼ jf8ti � X ^ ti 2 Tgj, where j � j denotes the cardi-
nality of the set. In other words, ScðXÞ is the fraction of transaction
of T containing the item/item-set X.

Association models extract rules that express the relationships
among items into frequent itemsets. For example, a rule belonging
to the frequent itemsets composed by the following elements
fA=A;G=C; C=Tg might be stated as: IF ðA=A ^ G=CÞ THEN C=T that
can be read as: if A=A and G=C are included in a transaction, then
C=T likely should also be included; this rule, for example, may be
related with a complex disease such as cancer or diabetes.
2.3. The DMET-Miner algorithm

This section describes the core algorithm of DMET-Miner and its
optimizations used to reduce the space search, i.e. used to reduce
the number of frequent itemsets examined to extract association
rules.

Given a dataset D, our problem is to discover all frequent pat-
terns with respect to a user support threshold minsupport

(Minimum Support).
After the transformation of the input table into a transaction

database, the algorithm tries to reduce the search space through
an apposite preprocessing methodology in order to reduce the
number of possible candidate combinations. The filtering method-
ology is based on the use of the well known Fisher’s Test and the fil-
tering technique removes all the rows from the original DMET
dataset for which it is not possible to accept the null hypothesis
ðpvalue P FThrÞ. After the filtering step, the resulting table is trans-
formed into a transaction database (let see Fig. 2). Such transfor-
mation is mandatory since the extraction of frequent itemsets is
more efficient with this data format (see Fig. 2 (step a.1)). In order
to discriminate among alleles of different probes that have the
same name (i.e. A/A of the probe X and A/A of the probe Y) we



Fig. 1. DMET-Miner Workflow. The right side of figure shows the main data formats from the input table to extracted rules.

Table 2
Transposed DMET microarray dataset. S and P respectively refer to sample and probe
identifiers.

Samples Probes

P1 P2 � � � PM

S1 G/A G/A � � � G/A
S2 A/G A/G � � � A/G
S3 A/G A/G � � � A/G

..

. ..
. ..

. ..
. ..

.

SN T/T T/C � � � T/C
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designed a unique probe identification system by adding to each
allele the name of the probe (i.e. X.A/A and Y.A/A) as shown in
Fig. 2 (step a.2).

The resulting table is transformed into a hashmap
data-structure called Transaction DB (TDB), where the transaction
id (TID) is the entry of the map and the matching items set (value)
is encoded into hash-set by means of a hash-function, making pos-
sible to compress the items and to guarantee constant time for
standard operations such as: inserting, deleting and searching
items in the hash-set (see Fig. 2 (step a.3)).

Despite the preprocessing, we noted that in real datasets the
number of items that compose the TDB is huge enough. Thus, a fur-
ther compression step is necessary in order to better manage the
enumeration and generation of frequent itemsets. For this reason,
we decided to represent the dataset by means of a tree structure
as shown in Fig. 3, for which the traditional phase of frequent item-
sets generation and enumeration is not necessary.

The Enumeration of the frequent itemsets is done using a
Depth-First-Search, (DFS, in short), sorting in descending order the
items in each transaction. It is usually best to process the items
in the order of decreasing frequency. The reason for this behavior
is that the average size of the conditional TDB tends to be smaller
if the items are processed in this order. Moreover, the order of the
items influences only the search time, not the result of the
algorithms.
Another aspect to take into account in order to improve the exe-
cution time is how the TDB is represented. Algorithms that enu-
merate itemsets generally differ in how transaction databases are
represented: horizontally (Horizontal Representation), vertically
(Vertical Representation), or in a hybrid fashion (Hybrid
Representations), which combines a horizontal and a vertical
representation.

In our solution we implemented a FP-Tree (Frequent Pattern
Tree) inspired data-structure joined to a hybrid TDB representation.
The main idea is to represent a TDB by means of a prefix tree, com-
bining transactions with the same prefix. And in the same time, the
FP-Tree keeps track of the same item contained in different trans-
actions by linking the prefix tree nodes referring to the same item
into a frequent items list (see Fig. 2 (step a.4)).

In order to have fast access to the FP-Tree node, the frequent
items list is used as fast access point to each frequent item
(ScðIÞP minsup) discovered into the TDB and the related support,
and modeled as a tree (see Fig. 2 (step a.4) and 3).

Our algorithm needs to scan twice the TDB. The first pass is nec-
essary to discover the frequency of each item into the TDB, in order
to fill the frequent items list with all items (frequent items) for
which ScðIÞP minsup and sorting the items according to their
descending frequency. The second TDB scan is related with the
deletion of all items for which their support is ScðIÞ < minsup and
the remaining items are ordered according to descending fre-
quency in the transactions. Sorting the items in the order of
descending frequency allows to obtain a compact tree, limiting
the number of different possible prefixes. This is done using the
element contained into the frequent items list as backbone of the
FP-Tree and mapping each transaction in the TDB on it.

The mapping is based on two main operations: support-update
and node-creation. If during the mapping, the current element in
the FP-Tree matches with the current element in the transaction,
the function support update, that updates the support of the current
node, is activated. Whereas if the current node in the FP-Tree does
not match with the current node in the transaction, the function



Fig. 2. Main phases of analysis into DMET-Miner.

Fig. 3. Use of the frequent item list to access, in an efficient way, the FP-Tree.
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node creation, starting from the current item, creates a new node,
adding it in the FP-Tree as children of the current FP-Tree node
and the remaining elements in the current transaction are added
as children of the last created FP-Tree node (as shown in Fig. 4).

Finally, mining of frequent patterns is based on a recursive
methodology of Tree visiting, in particular we defined an inverted
DFS (Deep First Search) scan method to explore the FP-Tree.

Algorithm 1 shows the pseudo code of the core DMET-Miner
algorithm.

Algorithm 1. DMET-Miner Core Algorithm.
Fig. 4. Support-update and node-creation in DMET-Miner: when the item
AM 1-A=A is added to the tree, it is necessary to just update its own support by
increasing it; when we have to add the item AM 3-A=A, the function node-creation
is called since there is not match between the current item and the current node in
the tree; the last item (AM 5-A=A) into the transaction, is added as child of the node
AM 3-A=A.
Require: A DMET input dataset D
1: Data Structure initialization: T; TDB; FPTree
2: for all rows 2 T do
3: if ðrowsDistribution 6 ThrÞ then
4: discardðrowÞ
5: else
6: pvalue computeFisherTestðrowÞ
7: if ðpvalue > rThrÞ then
8: discardðrowÞ
9: end if

10: end if
11: end for
12: for all rows 2 T do
13: TDB row
14: frequentItemsList:supportUpdate row
15: end for
16: for all items 2 TDB do
17: if itemfreq 6 minsupp then
18: TDB:removeðitemÞ
19: end if
20: end for
21: for all t 2 TDB do
22: descendingSortingðitems 2 tÞ
23: end for
24: FPTree frequentItemsList
25: for all t 2 TDB do
26: map each item of t on FPTREE
27: if perfectmatch then
28: supportUpdate
29: else
30: nodeCreation
31: end if
32: end for

33: for all ðitem 2 frequentItemsListÞ do
34: cpb ðitem; FPTreeÞ
35: repeat
36: if cpbnodefreq < minsupp then
37: removeðcpbnodeÞ
38: end if
39: until cpb ¼£

40: saveRuleðÞ
41: end for
2.4. Using DMET-Miner to discover association rules

Fig. 5 shows the workflow of execution of a typical analysis con-
ducted using DMET-Miner.

Initially the user loads data into DMET-Miner (see Fig. 5a). Then,
the user has to attribute the right class to each sample (see Fig. 5b)
and can start the analysis method (in this case Mining Association
Rules). The DMET input table is then filtered and transposed (see
Fig. 5c). Finally, DMET-Miner extracts association rules from the
data and shows the results in a new window (see Fig. 5d).
Further information about interesting SNPs (i.e. those contained
in the extracted association rules) are visualized to the user by pro-
viding SNP annotations provided by the Affymetrix libraries
embedded in DMET-Miner, and by providing links to dbSNP and
PharmaGKB databases.
2.5. Related work

Search for frequent and significant patterns in data has been a
central area in data mining and knowledge discovery field. More
recently this methodology is largely applied in bioinformatics with
different aiming. For lack of space we do not recall here the main
association rules algorithm that we discuss more deeply on the
DMET-Miner web site: https://sites.google.com/site/dmetminer/
related-work. The interested reader may find a complete survey
on Naulaerts et al. [13].

http://https://sites.google.com/site/dmetminer/related-work
http://https://sites.google.com/site/dmetminer/related-work


to be loaded

 (b) User selects the classes 

for each sample by clicking

on data table. (c) Input table is automatically 

ered and transposed by DMET-Miner

Rules are calculated
and visualized

(d) Results are shown to the user that may 

visualize annotation and links to external databases.

(

Fig. 5. The main steps necessary to analyze the input DMET dataset are the following: data selection and loading (a); user chooses the sample belonging to classA (b); the
input dataset is filtered and automatically converted in transactions data (c); finally the tool displays the mined rules to the user offering the possibility to get information
from local Affymetrix data or from remote repository such as dbSNP and PharmaGKB(d).

Table 3
Number of meaningful probes (rows) after using the Fisher Test Filtering. #S indicates
the total number of subjects belonging to the database under analysis.

#S #Probes #Probes using filtering

25 1936 45
50 1936 48

100 1936 57
200 1936 76
400 1936 78
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3. Results

In this section we present the performance evaluation of
DMET-Miner and compare it with respect to other well known data
mining tools such as Weka and RapidMiner. We have compared the
FP-Growth algorithm implemented in DMET-Miner with the
FP-Growth algorithm implemented in Weka (version 3.6.10) and
the FP-Growth algorithm available in RapidMiner (version
5.3.013). Output from the DMET platform was preprocessed prior
to running on Weka and RapidMiner. No pre-processing was
required when using DMET-Miner because DMET-Miner is natively
compatible with the DMET platform. All experiments were per-
formed on a MacBookPro with a Pentium i7 2.3 GHz CPU, 16 GB
RAM and a 512 GB SSD disk. The Frequent pattern mining algo-
rithm of DMET-Miner was coded using Java 6 technology. As
proof-of-principle we report the performance evaluation results
of DMET-Miner compared to Weka and RapidMiner using several
synthetic DMET datasets. The comparison of the FP-Growth algo-
rithm implemented in the three software tools was tested using
five synthetic DMET datasets. We built the synthetic datasets con-
taining the same number of probes as a real DMET dataset (1936
probes) and doubling the number of samples (in the experiments
we analyzed five datasets with respectively 25;50;100;200 and
400 samples for each dataset) grouped into two classes. We gener-
ated random datasets that contained significantly different distri-
butions of SNPs.

The datasets contain data related to samples from subjects
belonging to two classes: subjects which respond to drugs (class
RESP) and subjects which do not respond to drugs (class
NONRESP), simulating a classical case-control study. The dimensions
of the datasets analyzed range from 300 KB for the dataset with 25
samples to about 3:1 MB for the one with 400 samples. The
reported execution times and memory consumption refer to aver-
age times and the average memory usage, each value being
computed repeating 10 times the measure with the same settings.
Tables 5 and 6 show the computation times and the number of
mined association rules using as input the dataset with 100 sam-
ples for all tools, varying minimum support and confidence. The
computational time consumption during each run has been
recorded with a Java and bash-shell script. In order to compare
DMET-Miner FP-Growth with Weka FP-Growth and RapidMiner
FP-Growth on the same conditions, we have given as input to
Weka and RapidMiner the filtered dataset produced by our soft-
ware. In this way we ensure that the inputs given to
DMET-Miner, RapidMiner and Weka have the same dimensions.
We point out that the filtering of probes using the Fisher test avail-
able in DMET-Miner allows a great reduction in the size of the ana-
lyzed dataset (see Table 3). To show the impact of this feature of
DMET-Miner, we increased the number of analyzed probes and
our results show increases in both execution time and memory
usage that result in memory overflow problems shown in
Table 4. Therefore using Weka and RapidMiner without filtering
becomes impracticable on dataset’s similar in size to real datasets
(that have at least 1936 probes).

Briefly we used the cleaned dataset produced by DMET-Miner,
transforming it into a Comma Separated Value file (CSV) ready to
be analyzed with Weka and RapidMiner. We should point out that



Table 4
Variation of the computational time and memory consumption related with the increase of the number of meaningful probes to analyze. In the table, #S indicates the total
number of subjects belonging to the database under analysis and DTms indicates the run time expressed in milliseconds (ms) to generate association rule.

#S #Probes DMET-Miner RapidMiner Weka

DTms Memory consumption DTms Memory consumption DTms Memory consumption

25 45 0.251 24.87 MB 4070.00 944.0 MB 1645:00 304.4 MB
25 100 0.294 26.84 MB 4530.00 1.2 GB 1831.00 672.8 MB
25 200 0.614 28.60 MB 23,000 1.7 GB 3985.00 708.5 MB
25 300 0.604 39.79 MB 1 Heap 4471.00 746.2 MB

Overflow
25 350 1 Heap 1 Heap 1 Heap

Overflow Overflow Overflow
25 400 1 Heap 1 Heap 1 Heap

Overflow Overflow Overflow

Table 7
RapidMiner, Weka and DMET-Miner: first top 10 extracted rules from the dataset
composed by 100 samples (Confidence = 60% and Support = 30%). Common rules
mined by the different tools, are represented using the same background color.
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the average time needed for this preprocessing step is around
8422:6 ms, that should to be added to the times in Tables 5 and
6. The time cost of the mined rules is approximately proportionate
to dataset size, although it is also affected by the complexity of
dataset (e.g. the filtering can greatly simplify the dataset). The
number of extracted rules in addition to dataset size is also
affected by the values used for the Minimum Support and
Confidence. In Weka and DMET-Miner the number of mined rules
depends by the values of Minimum Support and Confidence,
instead in RapidMiner it is possible to set only the Minimum
Support. Support and Confidence work as a double filter in Weka
and DMET-Miner reducing in a remarkable way the number of
rules which will be reported to the users. For this reason,
RapidMiner extracts more rules than DMET-Miner and Weka. In
particular, the quality of rules produced by the tools, should be
taken into account. Even though in some cases Rapid-Miner pro-
duces a huge number of rules with respect to Weka and
DMET-Miner, their quality is usually poor. In fact, the top rules
extracted by Rapid-Miner are trivial rules since they are composed
only by one term and thus they are very poor rules from an infor-
mative point of view (see Table 7). This feature could be misleading
for the user that has to move manually through the rules looking
for significant ones. On the other side, Weka and DMET-Miner pro-
vide, as top rules, the rules composed by more than one element,
thus avoiding the user to manually look for meaningful rules. In
Table 7 the first 10 rules extracted by the three tools are conveyed.

Considering the DMET-Miner results (see Tables 5 and 6) it is
possible to note that execution times are directly proportional to
Table 5
DMET-Miner versus Weka execution time and number of mined rules when varying the c
number of subjects belonging to the database under analysis, mS% indicates the minimum
indicates the number of mined association rules, DT indicates the run time expressed in
association rule.

#S DMET-Miner

mS% C% #R DT dTU

100 50 30 100 251.33 2.51
100 50 50 100 255.00 2.55
100 50 70 100 259.00 2.59
100 50 90 1 255.33 255.33

Table 6
DMET-Miner versus RapidMiner execution time and number of mined rules when varying t
of number of samples that form the dataset, mS% indicates the minimum Support value in
of mined association rules, DT indicates the run time expressed in milliseconds and dTU i

#S DMET-Miner

mS% C% #R DT dTU

100 30 60 589 300.13 0.51
100 50 60 100 188.00 1.88
100 70 60 1 178.71 178.71
100 90 60 1 176.52 176.52
the number of mined rules and strictly related with the values of
confidence and support. On the other hand, considering Weka
results (see Table 5), execution time increases when increasing
the confidence, independently from the number of mined rules.
onfidence (DMET-Miner and Weka Support = 50%). In the table, #S indicates the total
Support value in percentage, C% indicates the Confidence value in percentage, #R

milliseconds (ms) and dTU indicates the time in (ms) necessary to generate a single

Weka

mS% C% #R DT dTU

50 30 28 1645:00 58.75
50 50 28 1693:00 60.46
50 70 23 1748:00 76.00
50 90 0 1774:50 –

he support (DMET-Miner Confidence = 60%). In the table, #S indicates the abbreviation
percentage, C% indicates the Confidence value in percentage, #R indicates the number
ndicates the time in (ms) necessary to generate a single association rule.

RapidMiner

mS% C% #R DT dTU

30 – 12,604 4070:00 0.32
50 – 215 3943:00 18.34
70 – 10 2701:00 270.1
90 – 0 2629:00 –
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Finally, examining RapidMiner results (see Table 6), it is possible to
note that the computational time decreases when the minimum
support increases, since the search space contracts for high values
of minimum support. Regarding the number of learned rules, while
DMET-Miner is able to learn some rules also when confidence is
very high (e.g. confidence ¼ 90% see Tables 5 and 6), Weka stops
learning rules when confidence > 70% (see Table 5), whereas
RapidMiner stops when support > 70% (see Table 6). To better pin-
point out the capability of the three different implementation of
FP-Growth algorithms, we measured the execution time (seconds)
and the number of association rules at different levels of minimum
support (20%;40%;60%;80%, and 100%) and using the 100 sam-
ples dataset. The minimum confidence was always set to zero.
That is, we required no confidence since in RapidMiner
FP-Growth algorithm it is not possible to set the confidence value.
Results are summarized in Table 8.

Analyzing the results in Table 8, it seems that RapidMiner
outperforms in terms of learned rules DMET-Miner. RapidMiner
FP-Growth algorithm iteratively reduces the minimum support
until it finds the required number of rules (how delineated in
the manual), instead in DMET-Miner FP-Growth algorithm, the
minimum support is never decreased. Thus for minimum
support equal to 60%, both DMET-Miner and RapidMiner
learn only one meaningful rule composed by two terms:
AM 10976 A=A;AM 13941 C=T , while the remaining additional
77 rules mined by RapidMiner are trivial ones, because they are
composed by only one term. Moreover, when the minimum
support is low, due to the huge number of mined rules, the com-
putational time is high. Whereas, when the minimum support is
equals to 60% for Weka or 80% for RapidMiner and DMET-Miner,
all the algorithms finish within a second, or even less than a
second, as DMET-Miner (see Fig. 6).
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Fig. 7. Memory consumption of RapidMiner, Weka and DMET-Miner when
doubling the size of the input dataset. The dotted line (top part of figure) represents
the memory consumption of RapidMiner, the dashed line (middle part of figure)
represents the memory consumption time of Weka, the continuous line (bottom
part of figure) represents the memory consumption of DMET-Miner.
4. Discussion

DMET-Miner is the first software platform mainly devoted to
help researchers to easily extract relevant knowledge related with
complex diseases from DMET genotyping data. DMET-Miner has
been designed to work well with DMET microarray data and it is
based on a customized version of the FP-Growth algorithm able
to extract association rules from DMET genotyping data.
Customization allows DMET-Miner to achieve better results than
Weka and RapidMiner both in terms of memory consumption, exe-
cution times and mined association rules. The information about
maximum memory occupancy for the three tools applied to differ-
ent datasets is illustrated in Fig. 7 and summarized in Table 9. The
maximum memory occupancy during each run has been recorded
with a Java and a bash-shell script. Compared with RapidMiner and
Weka tools, DMET-Miner is less expensive in terms of RAM mem-
ory usage. Out of these tools, DMET-Miner runs in rather less time
than others and the RAM usage increases slowly when increasing
the dataset size. On the other side, Weka runs in rather less time
than RapidMiner, but the RAM usage for both tools increases when
Table 8
DMET-Miner, RapidMiner and Weka execution time and number of mined rules, varying th
the table, mS% indicates the minimum Support value in percentage, #R indicates the numb
dTU indicates the time necessary to generate a single association rule.

mS% RapidMiner Weka

#R DT dTU #R

20 255,910 3500 0.01 28
40 1498 2000 1.34 28
60 78 1500 19.23 0
80 0 1000 – 0

100 0 1000 – 0
increasing dataset size more than in DMET-Miner, as shown in
Fig. 7. In conclusion, the DMET-Miner FP-Growth algorithm is more
efficient and requires less memory than the other two tools (see
Fig. 7).
e support (DMET-Miner and Weka Confidence = 0), using the 100 samples dataset. In
er of mined association rules, DT indicates the run time expressed in milliseconds and

DMET-Miner

DT dTU #R DT dTU

1648 58.86 229,481 3198 0.01
1506 53.79 1347 764 0.57
1467 – 1 428 428
1452 – 0 319 –
1478 – 0 320 –



Table 10
Rule_1 translation.

ProbeId DMET
detected
allele

Gene
name

Chromosome Functional
consequence

AM_10659 A/A SLC15A1 13:98723927 missense
AM_14535 C/A ABCB4 7:87417435 synonymous codon
AM_10976 A/A ABCC6 16:16182880 missense
AM_10589 A/G ATP7B 13:51939130 missense, nc

transcript variant
AM_13941 C/T SLC22A5 5:132388947 synonymous codon,

nc transcript variant
AM_12159 A/T SLCO4A1 20:62657071 missense, nc

transcript variant

Table 11
Rule_2 translation.

ProbeId DMET detected
allele

Gene
name

Chromosome Functional
consequence

AM_14673 T/C PPP1R9A 7:95295992 utr variant 3
prime

AM_13871 C/A HMGCR 5:75360350 utr variant 3
prime

AM_14368 C/T SLC22A1 6:160139851 cds indel
AM_14108 C/G PPARD 6:35356964 intron variant
AM_10072 C/C CYP2C19 10:94781999 splice donor

variant
AM_15439 T/T ATP7A X:77988686 intron variant,

missense
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4.1. A possible way to read and interpret the mined rules from
biomedical researchers

The one-error, one-disease approach has not held up for complex
diseases such as cancer or Alzheimer for example. The causes of
complex disorders such as diabetes, heart disease, glaucoma and
cancer, however, are much more complex, since they do not have
a single genetic cause, but they are likely associated with the
effects of multiple factors. Complex disorders are difficult to study
and treat because many of the specific factors that cause them are
yet unknown. Although some experimental platforms for investi-
gating the genotype of organisms are appearing, the management
and analysis of the produced data is not easy. DMET-Miner has
been designed to work well with DMET microarray data and uses
a customized version of the FP-Growth algorithm able to extract
association rules from DMET genotyping data in an efficient way.
Identifying those combinations of frequent items (SNPs) and con-
veying them to researcher in the form of association rules, could
aim the researcher to clarify the mechanisms of the diseases,
improving the efficiency and quality of health care. Each extracted
association rule is a container of multiple mutations (SNPs) that
occur within a gene or in a regulatory region near a gene, which
play a more direct role by affecting the gene’s function, for exam-
ple. Due to space limitation we only show and discuss two associ-
ation rules extracted by DMET-Miner. The discusses association
rules are the following:

� Rule_1:

AM_10659_A/A:36, AM_14535_C/A:37, AM_10976_A/A:37,
AM_10589_A/G:37, AM_13941_C/T:40, AM_12159_A/T:40;

� Rule_2:

AM_14673_T/C:34, AM_13871_C/A:34, AM_14368_C/T:35,
AM_14108_C/G:35, AM_10072_C/C:36, AM_15439_T/T:38;

An item in the rules is composed from three parts: the probe
identifier (probeid), the allele, and the support (frequency), that
are respectively AM_10659, A/A, and 36, for the first item of
Rule_1. The probeid is an identifier of a specific region of the DNA
called Chromosome, the allele is the value detected by the DMET
platform and provided by the DMET-Console tool, and the last
value is the support (frequency) of the term within the population.
A more easy way to understand the meaning of the rules is to
translate each probeid with its own gene name. Translating each
probe identifier with the associated gene name, allows a researcher
to get a more complete insight in the biological functions of the
gene that probably is not working properly due to the mutation.
The translated versions of the association rules mentioned before,
are reported in Tables 10 and 11.

After the translation process, it is more easy to analyze the
mined rules (see Tables 10 and 11). A possible way to interpret
the rules extracted from the synthetic dataset is given in the fol-
lowing. Considering Rule_1, it should be noted that all mutations
refer to chromosomes spatially close together and, in particular,
Table 9
RapidMiner, Weka and DMET-Miner memory consumption when varying the dataset
size. In the table, #S indicates the total number of subjects belonging to the database
under analysis.

#S RapidMiner Weka DMET-Miner
MemoryUsedðMBÞ MemoryUsedðMBÞ MemoryUsedðMBÞ

25 48.9 42.1 30.7
50 50.3 43.9 33.3

100 49.8 48.9 39.6
200 117.6 106.7 39.7
400 120.4 114.6 73.1
two mutations occur in the same chromosome (see Table 10,
Chromosome column). Moreover, mutations have a negative effect
on the following biological activities: synonymous codon, nc tran-
script variant and missense sub-processess of Translational Process.
The Translational Process is the process that makes possible to con-
vert a chain of three nucleotides in an aminoacid. These mutations
affect the genes that control the Translational Process. A mutation in
one of the three genes affects all the others. A mutation into the
synonymous codon means a production of a different start or stop
signal for the Translational Process, augmenting the number of mis-
sense and deregulating the transcript variant of a non-coding RNA
gene. The rules extracted by DMET-Miner joined with the annota-
tion freely available on the dbSNP or PharmGKB knowledge bases,
should easily allow to know hidden interactions among different
genes. Moreover, this new information should help researchers to
better understand the dynamics that govern the interaction among
genes and consequently, to bring to light the unknown functional-
ity among genes, involved for example in drug metabolization.

5. Conclusion

Personalized medicine is an ongoing effort in the medical com-
munity which aims to realize therapies and drugs tailored to the
single patient. The rationale of this interest is based on the consid-
eration that the response to the drugs is strictly related to the
genotype of each patient. Such discipline is based on the use of
technologies able to investigate the genotype of patients such as
the Affymetrix DMET platform. Besides the importance of using
the DMET technology into genotype-based personalized medicine,
there is a lack of comprehensive tools able to mine efficiently
DMET data.

In this paper we presented DMET-Miner, a software platform
for the analysis of Affymetrix DMET genotyping data, able to
extract relevant knowledge from DMET data in an efficient man-
ner, by computing frequent itemsets and by extracting association
rules that link different alleles to clinical conditions.
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Preliminary performance evaluation shows how the novel
DMET-Miner association rule extraction algorithm outperforms
off-the-shelf well known algorithms, as those provided in the
Weka and RapidMiner platforms. Moreover, preliminary results
on a real DMET dataset, currently under medical investigation,
seems to demonstrate the biological relevance of the extracted
association rules and the effectiveness of the proposed approach.
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Common License: BY-NC-ND. This version of the software is for
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