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1. INTRODUCTION

Let C = (a; ), -, be a Cartan matrix of finite simply laced type, let %
be the quantized enveloping algebra over Q(v) associated with C, and let
%" Dbe its positive part. Let & be the canonical basis of #*, and let &*
be the dual of & with respect to the standard inner product of " (see
Section 2 for precise definitions).

In [BZ], Berenstein and Zelevinsky studied multiplicative properties of
B* for type A, centering around the following notions: two elements of
¥ are said to quasi-commute if they commute up to a twist (i.e., a power
of v) and to be multiplicative if their product equals an element of &™* up
to a twist. Berenstein and Zelevinsky conjectured that two elements of &*
quasi-commute if and only if they are multiplicative. The validity of this
conjecture implies the existence of a subset & of £* such that each
element of #* equals a quasi-commuting product of elements of % up to
a twist.

This conjecture was verified in [BZ] for types 4, and A,; furthermore,
in these cases & can be chosen as the set of so-called quantum minors
(see Section 4).

The aim of this paper is to develop some further tools for the study of
%* (Section 4) and to prove parts of the conjecture:

We prove that two quasi-commuting elements of %™ are multiplicative
provided one of the elements is a “small” quantum minor (Theorem 5.4).

Concerning the existence of a subset % as above, we show that “a lot
of” elements of #* (i.e., subjected to some linear inequalities if parame-
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DUAL CANONICAL BASES OF QUANTUM GROUPS 135

terized by functions on the positive root system) can be written as a
quasi-commuting product of quantum minors (Theorem 6.1).

But in contrast to the cases considered in [BZ], one cannot expect to get
all elements of #* as products of quantum minors for general 4, ; we
give an example for type A4, (Section 7).

Our main working tool is Ringel’s Hall algebra approach (see Section 3).
In particular, we use the connection between % and degenerations of
representations of quivers already used in the construction of % in [L1]
and the description of the colored graph structure of &% in terms of
representations of quivers given in [R].

These methods provide a partial explanation for why, for some ques-
tions, %™ is more accessible than % (see the remark following Proposi-
tion 4.2).

The results of this work show a main advantage of the Hall algebra
approach as pointed out by Ringel: the parameterization of elements of
#* by representations of quivers gives them some extra structure, which
makes it possible to control the combinatorics involved.

2. RECOLLECTIONS FROM [BZ]

In this section we first recall some general facts concerning %" (see
[L]), thereby fixing some notations. Then we define the dual canonical
basis and collect some results from [BZ].

We denote by E, for i €1 the generators of #* subjected to the
quantized Serre relations. Then #* is N’-graded by setting the degree of
E, equal to e;; for homogeneous elements x of " we denote the degree
of x by |x|. The Cartan matrix C defines an inner product (d,e) — d-e
on N’

Let A: %" — %" ®y,, #* be the Q(v)-algebra map given by A(E,) = E,
® 1+ 1 ® E, for all i, where the algebra structure on #*® %" is defined
by (x®x')-(y ®y) =vF"¥(xy) ® (x'y') on homogeneous elements.
Then there exists a unique Q(v)-bilinear form (,) on Z* satisfying (E,, E,)
=6, ,(1 — 077" and (x,yy") = (A(x),y ® y'), where (,) is extended to
the tensor product by the rule (x @ ',y ® y') = (x,y) - (X', y').

For all i € I, there exists an operator L, on #* adjoint to left multipli-
cation by E, with respect to () (see [L], Sect. 1.2.13); for r > 0 we set
LY = ([rI1)'L;. The operator L, is locally nilpotent, so for all x € %™,
we can define /,(x) as the maximal / such that L{(x) # 0. Since L, fulfills
a quantized Leibniz rule, L{(xy) is a sum of expressions of the form
PLO(x)LY(y) for t=0...] and D € Z on homogeneous elements.
Thus the function /; is additive on products of homogeneous elements.
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Let # be Lusztig’s canonical basis of #* and let E, F: %" — %" be
Kashiwara’s operators (see [L]). For b €%, we denote by p(b) the
maximal r such that b € E/%". It is known that E (b) (resp. F(b)) equals
some b, in F (resp. in & U {0} modulo v™'Z[v~'1% for all b € B; we
denote thlS b, by é,b (resp. f,b). This defines operators €, f; on & U {0},

I

which are mutually inverse provided f b #+ 0. The value p(b) equals the

maximal r such that f’b # 0; we set f™b = fP®)p,

We define the dual %* of Lusztig’s canonical basis <% as the set of
elements b* for b € %, given by (b*,b') = §, ,,. (This coincides with the
definition of [BZ] up to a twist.)

By dualizing ([L], Sect. 14.3.2 and 22.1.7) it is easy to see that for all
b €% and r = 0 we have

1. LYb* € N[v, v~ ']5*.
2. LYb* =0 for r > p(b).
3. LOb* = (f7b)Y* for r = p(b).
As a consequence, [,(b*) equals p,(b) for all b €.5.

Combining these statements, we see that if x € N[v,v ']%*, x =
Y, e g ¢pb*, then ¢, # 0 implies p,(b) < [ (x) for all b € %. Dualizing the
positivity property of & with respect to comultiplication ([L], Sect. 14.4.13),
it follows that for b, b, €% we have b¥b} € N[v,v 1 1%*.

Note that in particular we can apply the previous statements to get

LemMa 2.1. For b, ...b, €% write b¥ ... b} = Zbeﬂyfl___bkb*. Then
Y. b, * 0 implies p(b) < p(b)) + -+ +p(b,).

We finish the recollection from [BZ] by defining the notions of multi-
plicative properties of &* we are interested in:

DEFINITION 2.2. Two elements b¥ and b% of %™ are called
1. quasicommuting if b%b* = v?b¥b? for some D € Z
2. multiplicative if b} b3 = v”b* for some b* € F* and D € Z.

3. HALL ALGEBRAS

In this section we briefly recall some basic facts on representations of
quivers (see, e.g., [Ri2]) and the results of Ringel and Green on Hall
algebras (see, e.g., [Rill, [Ri3]).

Let Q be a quiver with an underlying unoriented graph of type C, and
let k be an algebraically closed field; we consider the category mod kQ of
k-representations of Q. For M, N in mod kQ, we denote by (M, N ) (resp.
(M, N)") the k-dimension of Hom(M, N) (resp. Ext'(M, N)). The func-
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tion R(M, N) = (M, N> — (M, N only depends on the dimension types
dimM,dimN of M and N.

" Since all representations M can already be defined over Z (and thus in
particular over finite fields F,), we can define the following functions on
square roots of prime powers:

a, = a,;(v*) equals the number of automorphisms of M as a repre-
sentation over F:;

Fii v = Fif y(v?) equals the number of submodules of X isomorphic
to N with quotient isomorphic to M (as representations over F,.).

In fact, these define polynomials in Z[v?] (the latter is called the Hall
polynomial).
Ringel’s Hall algebra approach (see, e.g., [Ril]) provides " with bases

B, = {E[M]: [M] an isoclass in kQ} such that the structure constants

¢y of #* with respect to B, defined by E 1 E v, = Lix,Cir v Ex; are

given as

X = p MM+ (N NS RO N)= (X IO X (1,2
Green’s description of the (twisted) bialgebra structure of %" (see [Ri3)])
shows that the bases B, are orthogonal:

-1
(E[M]aE[N]) = 8[M],{N]UZ<M'M>‘1M(U2) .

= bz\jll
Lusztig’s construction of 4 in [L1] gives a parameterization of & (and
thus of #*) by kQ-representations; we write & = {&],,: [M] an isoclass
in kQ}.

In the following, we will frequently use the degeneration order on the
set of isomorphism classes of representations of a fixed dimension type:
M < N if and only if the orbit of N in the variety of all representations of
a fixed dimension is contained in the closure of the orbit of M (see, e.g.,
[B] for a precise definition and a representation-theoretic characterization
of this order).

4. GENERAL FACTS ON MULTIPLICATION IN &*

In this section, we use the orthogonality of the bases B, to dualize some
well-known facts on & to statements for %*. These provide a frame for
the more detailed examinations of the following sections.

It is known from [L1] that

— M
oy = Epny + Y OB
(Ml M<M'
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for certain coefficients ¢} fulfilling
LM e v 1Z[p 1], pOr MMM gl 2],

This fact dualizes to the following statement for %™*:

LemMa 4.1, For any module M,

= M
gﬁ\/l] = by Eppy + )y by by
IM'): M'<M

for coefficients 3, satisfying

ploe v 1Z[o7] and oM MOM e 2]

Proof. Writing &%, = Ls) by trse By and evaluating the scalar
product (&7, & yy) We get

- M N _ M #N
S[ML[N] = Z bAI'MM'fN/(E[M']’ E[N’]) = Z Mz Cg
M'.N': M :N<M’
N<N’

Since every module degenerates to a semisimple one, we can prove the
claimed properties of the coefficients u¥ by a downward induction on the
degeneration ordering: in the case where N is < -maximal, i.e., semisim-
ple, the above calculation simplifies to 8,/ v, = uN{n = py, SO We are
done.

Now suppose the properties are proved for all wl, such that N < N’
Then

_ M M N _ M M +N
Sppny = BN T X mdp = un X mr
M:N<M M’
N<M' <M

All statements follow immediately from this formula and the inductive
assumption: if N ¢ M, then N ¢« M’ for all M’ < M, so ¢y, = 0 and thus
pn = 0.For N =M we find 1 = 8, y; = uy. For N < M,

M, —(N,NY M _ M, MY—(M' M M (M ,MY—(N,N)N 2
pOLM) = NN M 3 M, M) W, p¢ =NNEN e 7],
Y2

e Z[v?] e Z[v?]
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PROPOSITION 4.2.  For modules M, N we have
¢ _ (N, MY—(M,N) =X
g[ﬁ/l]gﬁv] = ¢ < ’ gﬁW@N] + X 'YM,Ng[ﬂjY])
[X]: X<MoeN
or coefficients X \ satisfyin
M. N g
pMeN.MoN)—(X, X3 X < 711)2],
Proof. First we write both sides of the expression &&=

Y1 x18x &y, in terms of the basis of PBW type with the aid of the previous
lemma; then we compare coefficients and get for all X’

M o X

Z bM’bN’V‘M’H’%’Cﬁ’,N'— Z by ny8x- (*)
M <M X'<X

N'<N

Let X, be <-maximal such that g, + 9 Then the right-hand side of (%)
for X' =X, reduces to by gx, SO ¢3r y #* 0 for some deformations
M'; N' of M, N, respectively. This provides us with an exact sequence,

0->N =X, - M - 0.

But the middle term of an exact sequence always degenerates to the direct
sum of the end terms, so

X, <M &N <M@&N.

Next we compute the coefficient of &y, in the product. Setting
X' =M@®&N in (%), a pair (M',N') contributes to the sum on the
left-hand side if and only if there exists an exact sequence

0 >N ->MoN->M —0.

Again we use the fact that the middle term degenerates to the direct sum
of the end terms, so M @ N < M’ & N'. But on the other hand, M’ & N’
<M &N <M ® N since M’ (resp. N') is a deformation of M (resp. N).
Since degeneration is a partial order, we find M’ ® N = M & N and thus
M' = M. Applying the same argument again gives N’ = N.

So we see that the identity (*) reduces to

MoN _
bybycy v = byeon8mon-
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Using the formula for ¢y %Y of Section 3 we get

. R(M,NY+{(M.NY+ (N, M) MoN
Emen = U aMaNaMeBNF (U

thus it remains to compute this Hall polynomial.
So assume that M and N are defined over a finite field of order vZ.
Note that

FleN — 1. (aMaN)
where W counts the number of split exact sequences, i.c., it equals the
cardinality of the set
Z={(a: N>M&N,B:MaN—>M):
« injective, B surjective, Ba = 0}.

Denoting by ¢« (resp. p) the natural inclusion (resp. projection), we can
define a map

Aut(M e N) -7, g~ (g, pg™").

This map is easily seen to be surjective with fibers of cardinality equal to
the number of homomorphisms from M to N, i.e., v,

This yields the formula for the coefficient of &yq v

To prove the formula for the degree of the coefficients ;5 y, we
multiply both sides of () by

U(MSBN.M@N)Jr(X’.X’>*(N.M>+<M,N)1.
b

after a short calculation this can be written as the following identity for
all X”:

Z (U<M,M)7<M’,M’)M11\‘:II,)(U<N S NY—(N',N"), N)(aM,)(aNr

M <M
N'=<N

X (02N (FE o (07))
— Z (U()x LX) — <X’X) )(aX)

X' <X

xU(Me;N,MeaN)—<X,X>U—<N,M>+<M,N>1gx

(all embraced terms belong to Z[v?]).
Proceeding by a downward induction on X’ with respect to the ordering
<, we see that the formula is proved. |
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Remark. A similar statement can be proved for & if &y, appears in
the product &,,,&y; with a nonzero coefficient, then G < X for G the
generic extension of M by N, i.e., the uniquely determined extension with
minimal dimension of its space of endomorphisms.

This gives a partial explanation for the conjecturally better multiplica-
tive properties of %#* compared to &: “good” properties of modules (for
example, vanishing of spaces of homomorphisms or extensions) get lost by
degenerating. But they are often preserved under deformation, which, for
example, allows us to estimate the degree of the coefficients ¥, y in some
“good” situations. The result in the next section is based on these consid-
erations.

The Q-automorphism - of %" defined by E, = E; and & = v~ ! fixes
each element of & ([L], Sect. 14.2.3). We will now prove a dual result for
B,

Besides the Q-involution - of #*, we also have the Q(v)-anti-involution
o of #* given by o(E,) = E,. For d € N', we write rd = ¥, _, d,.

LEmMA 4.3.  For all b* € F*, we have b* = (—p)"1elpbliel/ 25 (p*),

Proof. In (L], Sect. 1.2.10), Lusztig defines a bilinear form {} on #*
by
{x.9} = (7).
It satisfies the following formula ([L], Sect. 1.2.11 b)):

(x.3) = (=0) T2 (1 o (1)),

(The original formula simplifies slightly for finite simply laced types.)
Using the fact that all elements of & are fixed under - we can compute

(%, o (b)) = (—v) P Ipl HIFI2(5% b} = (—p) 7 Tt 12 (pF Y
= (—v) P2y,

Since (o (x), o(y)) = (x,y) we get (@), b) = (—v)" P I35,
and thus o (B%) = (—p)ltlpliti/2px

Now we apply this lemma to products of elements of Z*:

PROPOSITION 4.4. Writing b b} = L, ;5 v , b*, we have

b byl
Yook = VN TE Y

1-02"

Proof.  Application of * yields b} - b3 = ¥, ;. , b*, which by the above
lemma is equivalent to

v PIPela (b) o (b3) = L v5, 5,0 (b*),
b
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and thus by applying o,

\— 1Bl b2l b x g —lbil bl gt — N B
Y ibal Zi’ybz.blb = p~IbllelpEpt = Zybl,bzb .
b b

Comparing coefficients, we are done. |
We derive

COROLLARY 4.5. If b¥ and b% in B* are multiplicative, then th
1 2 D €y
quasi-commute.

Proof. 1f b¥ and b%¥ are multiplicative, we have 711;,. b, = o5, b, for
some b, € and some N € Z. But then the same holds for y,fz_bl by
Proposition 4.4. 1

Using the results of this section, we obtain some necessary conditions
for the multiplicative properties of %* we are interested in.

Lemma 4.6. 1. If &y, and &y, are multiplicative, then their product
equals

N,M>Y— (M.N)
S > >g[7mm

and p(M @& N) = p(M) + p(N) foralli € I
2. If &}y and &%, quasi-commute, then ¥y y = ¥if y for all X.

Proof. The first part of 1 is obvious by Proposition 4.2; the second part
follows from the additivity of the function /, on products of homogeneous
elements and the fact that [,(b*) = p,(b).

For 2, we first compare the coefficients of &y, in both products,
using Proposition 4.2. Noting that

& 1
r¥i _ (N, MY—(M,NYz X
R T VM. N

and |&75, - & = R(CM, N) + R(N, M), the statement follows by a small
calculation. §

To apply the facts on the behavior of p, to products of elements of .Z*
in the Hall algebra setting, we need a description of these functions (and
of the operators ¢,) in terms of representations of quivers. This was done
in [Rl, we only need this description in the case of the quiver Q,:
1 -2 — - —n, where it reads as follows: denote by £ for 1 <j <k
< n the unique indecomposable representation of Q, supported by the
subquiver j — -+ — k. These exhaust all indecomposables, so an arbi-
trary module M can be written as @ _, Ep*. We call (m);, the tuple
corresponding to M (and vice versa).
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For all j <k we set

n n
fjk = ijl - Z miiq,1
I=k

I=k+1

For fixed i, let k, be minimal such that f;, = max, f; and set

1, j=1i, k=kg,
my=my+ (-1, j=i+1, k=k,,
0, else.

Then €&, = &y, Where M’ corresponds to the tuple (m/;) and
p(&py) = max, f.

In the following we will have to perform several simple calculations with
this description; unless otherwise stated, they are left to the reader.

Next we define special elements of %#* called quantum minors, already
mentioned in the Introduction (we use the same notation as in [BZ]): for
sequences [ = (i; < -+ <i ), J=(j; < .- <j)in{l,2,...,n + 1} such
that i <j, forall k =1...r, we define A(J,J)) = &, ,; Where

M(1,7) = D=1 Eij-1-

Actually this notion of quantum minor coincides with the definition in
[BZ] up to a twist: just as the operators ¢, f, are defined by means of left
multiplication with E, in ", we can define €, f,Y by means of right
multiplication. For type A4, these operators can be described on Q,-mod-
ules as

ézv(M) = nénJrl—an

(same for f"), where n sends E, t0 E, | ., and is additive with
respect to direct sums (see [R].
In [BZ] it is proved that all A(Z,J) belong to %* and that

FYA(LJT) = {OA(I,JU I\ (i +1}), ili{,m 1€/,

A short calculation using the description of é, above shows that the same
holds if A(Z,J) is replaced by &, ;y for M(I,J) as defined above.
Induction on the dimension shows that these elements of %™* are in fact
the same. |}
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5. SMALL QUANTUM MINORS

In this section we show how the general statements proved so far can be
combined to prove part of the conjecture of Berenstein and Zelevinsky.

Using the definitions of the coefficients ¥;r , and ul, we can write
down a recursive formula for ¥, y as follows (see Proposition 4.2):

~X M, N, X _ X'
YM.N = Z Mg My By N Z P«XYM N>
M <M X<X'=sM&N

N'<N

where myy. . equals

U<M,N>L(N,M>bM'bN'CX
—5 G,
X

Note that as a consequence of Green’s calculation of the comultiplication
in " (see [Ri3]) we see that my, . belongs to Z[v,v '],

THEOREM 5.1.  Assume that &y, and &y, quasi-commute and that
{(M,N ) equals 0. Then these two elements are multiplicative.

Proof. Since vanishing of Ext' is preserved under deformations (see
[B]), we have (M’, N')' = 0 for all deformations M’ < M and N’ < N. So
¢y # 0 implies the existence of an exact sequence 0 > N' — X — M’
— 0, yielding X = M' @ N'. Calculating the Hall polynomial as in the
proof of Proposition 4.2, we get

deg ¢, v = (M',M') + (N',N') + R(M',N")
(M &N, M &Ny +2-(N',M"
= (N',M') —(M',NY =(N',M') <{(N,M)
= (N,M) — {M,N)".

But this means deg mjy, v < 0. Proceeding by a downward induction,
using the recursive formula for ¥;f 5, we we get S/M v € v 'Z[v™t], and thus
¥y v=0forall X =M @ N, since ¥;; y= ¥4 y in the quasi-commuting
case. |

COROLLARY 5.2.  If two elements &7y, and &y, quasi-commute where M
or N is projective or injective, then they are multiplicative.

Note that this statement holds independently of the orientation of the
quiver; so we can consider projective (resp. injective) modules for different
orientations. This yields the following result.
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DEFINITION 5.3. A quantum minor A(Z, J) for type A, is called small if
there exist numbers 1 <i <j < k < »n such that

I'=(i,j+1,j+2,....k), J=(j+1j+2,....,0k+1or
I=(,i+1,....j), J=0(+1,i+2,...,j,k+1).

THEOREM 5.4.  Assume we are in type A. If two elements b¥ and b3 of
B* quasi-commute where one of them is a small quantum minor, then they
are multiplicative.

Proof. We only treat the first case of a small quantum minor from the
definition; the second case is dual. So assume b} = A(J, J), where

I=(i,j+1,j+2,..0k), J=(+1,j+2,...,k+1)
for i <j < k. Let Q be the orientation
le v e f> e e s ko e o op.
By [Ril], the product

Ei...Ej | E ... E
equals é’[ i» where M is the unique module of dimension vector e,
+ -+ +e, such that (M, M)" = 0; thus M is the indecomposable m]ectlve
module /; associated with the vertex j. By the definition of Kashiwara’s
operators &8 77 can be written as

€r---€,18,...6&.

But for the orientation Q,, this equals %’[M] where M=FE, & F |

- @ L. Thus (&7 )" = (E”[%" Y* = A(1, J), and we can apply the previ-
ous corollary ]

6. THE “STANDARD CHAMBER”

In this section we construct “a lot of” elements of &* for type A by
studying the relation between the order given by the values p, and the
degeneration order on modules for the quiver Q,.

THEOREM 6.1.  Let M be a representation of the quiver Q, corresponding
to a tuple (m,}), ., ., satisfying

m, =m;_ forall1<i<j<n.



146 MARKUS REINEKE

Denote by B} the module

E

i—jtn,n

& OL ., ®E;
forall 1 <i <j < n; thus
%’[157>]=A((i,i+ L,..,i—j+n),(j+1,j+2,...,n+1)).

Then for some D € Z,

& =0 11 (gﬁ?,‘]”‘])m”ﬂnkl’k1

I<i<j<n

(where my ; is defined as 0).

(We say that elements &, for M satisfying the conditions above belong
to the ‘standard chamber.” This is reminiscent of the results of Berenstein
and Zelevinsky for type 4, and A;, where %* can be partitioned into
chambers given as quasicommuting products of a fixed subset of the set of
quantum minors.)

Proof. We proceed by an induction on the number of points n of the
quiver Q,; for n = 1 there is nothing to prove.
First note that indeed,

M= ®1Sj (Bl(]n))mz;—m,fz,rl‘

We have p(B,;) =28, ;,, and p(M)=m

since m, =m,_; _, for
all j, so we calculate

mn’
X (mye = m; g ) - o BY)
jsk

= ) (my—m;_q ;1) =m,, = p(M).
jsk,
k—j=n—i

Now assume some &, appears in the above product of quantum minors
with nonzero coefficient. Then by Lemma 2.1, we have for all i € I,

pz(N) = Z (m]k - mjfl,kgl) ’ pz(B](I?)) = pl(M)
J<k

and by Proposition 4.2,

my,—nm,_ 1 ,-1
N<a_;(B}) =M.
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To make this condition more explicit, we use the fact that if N < M, then
(N,U) < {(M,U) for all indecomposables U (see [B]). By [Rie], this is
equivalent to the existence of nonnegative integers x, indexed by the
nonprojective indecomposables U such that

No @ (UeU)"=Mo @ BU)",
U U

where the direct sum runs over all nonprojective indecomposables U, and
0-7U->B(U)->U->0

denotes the Auslander—Reiten sequence ending in U. Since for Q, these
sequences are of the form

0-E., 4, E 9k, —~E; =0

(where E,,; is defined as 0), we see that the condition N <M is

equivalent to the existence of nonnegative integers (x,,); . ;. ;. , such that

nz] = mz; +xl*1,j +xz,]71 —xz—l,]~1 ‘xi]’

where N corresponds to the tuple (n,,),, (we set x,, = 0fori>jori<0
or j = n.
By the formula for p,, we getforalli=1...n

My + X, 1 =Xy oy =1y, < p(N) < p(M) =m,,,

and thus

xnfl,nvl < le.n*l < 0’
yielding x, ,_, =0fori=1...n— 1.
_ It follows that p,(N) = p(M) for all i. Now we apply the operators
L 0. By an easy induction using the formulas for é; and p, we
see that the following holds for all i:

n

fmax . fmax(N') corresponds to a tuple (7 jk)/'k’ where
My k<norj=mnandj>i+1,
A=< n,+ - +n,, k=nandj=i+1,
0, k=nandj<i.

(and analogously for M). So ™ ... fm2X(N) (resp. applied to M) equals

n

the module N’ given by &, _,_, ., E]}v (same for M).
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This allows us to descend to the subquiver Q,_, of Q,: We set
LP(x) = LN(x) and apply the operator LW . L1 (o both sides
of the equation,

I1 (g[#;-'?f,")])ml]imh1.]—1 = Z cNé‘T;v]-

lgi<j<n N:
p(N)<p(M) i=1...n

By the properties of the operators L, stated in Section 2, we get on the
left-hand side

my_1,-1

m,,—
IT (&) "
l<i<j<n
(Note that £~ . ﬂmaXBl(]”) = B}f‘”.)
But now we can apply the inductive assumption, so this expression
equals 0”&, On the right-hand side we get

*, .
Y Cn & fmax  fmoy-
N:
p(NY<p(M),i=1...n
By the description of £ ... f™X*N above we see that the only module N

that can appear with nonzero coefficient ¢, is the module M, so we are
done. §

Remark. By applying the involution 7, we see that we also get the
“opposite standard chamber”; i.e., products of quantum minors of the
form

A(L,2,.,0),(j—i+2,j—i+1,..,j+1)) forl<i<j<n

belong to Z™* up to a twist,

7. AN EXAMPLE

Let M be the module £, ® E3 ® E, for Q,. We will show that &,
cannot be written as a nontrivial product of elements of %*: By Lemma
4.6, modules N;, N, such that &%, = v° &% &, have to fulfill N; ® N,
=M and p(N)) + p(N,) = p,(M); the same holds for the function
g; = pm by duality (see Section 4). So there are three cases; we will find
contradictions to the additivity of the values p; (resp. o))

o If Ny=E;, and N, = E|; ® E,, then p,(N,) = 1, but p,(M) = 0.
o If Ny=E; and N, = E;;, @ E,, then o(N,) = 1, but g(M) = 0.
o If Ny =FE, and N, = E;, @ E,;, then p,(N;) =0, but p,(M) = 0.
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So we see that there exist elements of &™* that are not a product of
quantum minors. As A. Berenstein and A. Zelevinsky pointed out to me,
this element also appears in ((BFZ], Sect. 3.3.9).
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