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1. I N T R O D U C T I O N  

Let C = (a i , j ) i , )  • l be a Cartan matrix of finite simply laced type, let ~" 
be the quantized enveloping algebra over Q(v) associated with C, and let 
?~/+ be its positive part. Let ~ '  be the canonical basis of ~+, and let ~ *  
be the dual of ~ with respect to the standard inner product of fl "+ (see 
Section 2 for precise definitions). 

In [BZ], Berenstein and Zelevinsky studied multiplicative properties of 
~ *  for type A, centering around the following notions: two elements of 
~ '* are said to quasi-commute if they commute up to a twist (i.e., a power 
of u) and to be multiplicative if their product equals an element of ~ '*  up 
to a twist. Berenstein and Zelevinsky conjectured that two elements of ~3" 
quasi-commute if and only if they are multiplicative. The validity of this 
conjecture implies the existence of a subset 3 of 3 "  such that each 
element of ~ *  equals a quasi-commuting product of elements of ~,~ up to 
a twist. 

This conjecture was verified in [BZ] for types A 2 and M3; furthermore, 
in these cases ~ can be chosen as the set of so-called quantum minors 
(see Section 4). 

The aim of this paper is to develop some further tools for the study of 
2 "  (Section 4) and to prove parts of the conjecture: 

We prove that two quasi-commuting elements of ~ '*  are multiplicative 
provided one of the elements is a "small" quantum minor (Theorem 5.4). 

Concerning the existence of a subset ~ as above, we show that "a lot 
of" elements of 3 "  (i.e., subjected to some linear inequalities if parame- 
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terized by functions on the positive root system) can be written as a 
quasi-commuting product of quantum minors (Theorem 6.1). 

But in contrast to the cases considered in [BZ], one cannot expect to get 
all elements of ~ '* as products of quantum minors for general A,,; we 
give an example for type A 4 (Section 7). 

Our main working tool is Ringel's Hall algebra approach (see Section 3). 
In particular, we use the connection between 52 and degenerations of 
representations of quivers already used in the construction of ~ '  in [L1] 
and the description of the colored graph structure of ~ '  in terms of 
representations of quivers given in JR]. 

These methods provide a partial explanation for why, for some ques- 
tions, ~3'* is more accessible than ~g2 (see the remark following Proposi- 
tion 4.2). 

The results of this work show a main advantage of the Hall algebra 
approach as pointed out by Ringel: the parameterization of elements of 
~;~* by representations of quivers gives them some extra structure, which 
makes it possible to control the combinatorics involved. 

2. RECOLLECTIONS FROM [BZ] 

In this section we first recall some general facts concerning X/+ (see 
[L]), thereby fixing some notations. Then we define the dual canonical 
basis and collect some results from [BZ]. 

We denote by E, for i ~ I the generators of ?/+ subjected to the 
quantized Serre relations. Then ~l + is Nt-graded by setting the degree of 
E, equal to el; for homogeneous elements x of ~'+ we denote the degree 
of x by Ix[. The Cartan matrix C defines an inner product (d, e) ~ d ' e  
on N I. 

Let  A: g/+ ~ f +  ~(~) ?/+ be the Q(a)-algebra map given by 2x(E,) = E, 
® 1 + 1 ® E i for all i, where the algebra structure on f/+ ® ~/+ is defined 
by (x ® x ' ) .  (y ® y')  = vlx'H>l(xy) ® (x 'y ' )  on homogeneous elements. 
Then there exists a unique Q(v)-bilinear form (,) on ?/+ satisfying (Ei, Ej) 
= 6,.j(1 - t, 2)-1 and (x, yy') = (A(x), y a y'), where (,) is extended to 
the tensor product by the rule (x ® x', y ® y')  = (x, y ) -  (x', y'). 

For all i e I, there exists an operator L, on ~'+ adjoint to left multipli- 
cation by E, with respect to (,) (see [L], Sect. 1.2.13); for r > 0 we set 
L~ r) = (Jr]!) ~Lf. The operator L i is locally nilpotent, so for all x e ?/+, 
we can define l,(x) as the maximal 1 such that L{O(x) 4= 0. Since Li fulfills 
a quantized Leibniz rule, L{l~(xy) is a sum of expressions of the form 
t, DL{,')(x)L{I-')(y) for t = 0 . . .  1 and D e Z on homogeneous elements. 
Thus the function l~ is additive on products of homogeneous elements. 
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Let ~ be Lusztig's canonical basis of g/+ and let /~i,/6/: £,,+~ ~,+ be 
Kashiwara's operators  (see [L]). For  b ~ 3 ,  we denote by. pi(b) the 
maximal r such that b ~ E r ~  "+. It is known that F,,(b) (resp. F/(b)) equals 
some b 0 in ~ '  (resp. in ~ u {0}) modulo v - lZ[v-~]~g  ' for all b ~% ' ;  we 
denote this b 0 by g,b (resp. ]~b). This defines operators ei, ~ on 2 U {0}, 
which are mutually inverse provided f b  v~ O. The value p,(b) equals the 

maximal r such t h a t  J~rb 4 = 0; we set fmaxb = fo'(b)b. 
We define the dual ~ *  of Lusztig's canonical basis ~ as the set of 

elements b* for b ~93', given by (b*, b ')  = 6v.v,. (This coincides with the 
definition of [BZ] up to a twist.) 

By dualizing ([L], Sect. 14.3.2 and 22.1.7) it is easy to see that for all 
b ~ 2 a n d  r > 0 w e h a v e  

1. L!~)b * ~ N [ v , v - 1 ] ~  '*. 

2. L!r)b * = 0 for r > p,(b). 

3. L~r)b  * = (~rb)* for r = p,(b). 

As a consequence, l,(b*) equals p,(b) for all b ~ ~J2. 
Combining these statements, we see that if x ~ N [ v , v - l ] ~  '*, x = 

E b b 3  Cbb*, then G v~ 0 implies p,(b) < l,(x) for all b ~ ' .  Dualizing the 
positivity property of ~ '  with respect to comultiplication ([L], Sect. 14.4.13), 

b 1 b 2 E N [ t ' , u - 1 ] 2  *. it follows that for b 1, b 2 ~ ~ we have * * 
Note that in particular we can apply the previous statements to get 

LEMMA 2.1. For bj . . . . .  . b k ~ ~ write b T b~ = Eb ~ ~ Yb°l... b~b*- Then 
,~b =/= 0 implies pz(b) < pi(bl) + -" + p,(bk). b l . . . b  k 

We finish the recollection from [BZ] by defining the notions of multi- 
plicative propert ies of ~3'* we are interested in: 

DEFINITION 2.2. Two elements b~ and b* of ~g'* are called 

1. quasicommuting if , , . D ~ , ~ ,  bzb 1 = v oa o 2 for some D ~ Z 

2. multiplicative if * * = vDb * b* b 1 b 2 for some ~ ~J2* and D ~ Z. 

3. H A L L  A L G E B R A S  

In this section we briefly recall some basic facts on representations of 
quivers (see, e.g., [Ri2]) and the results of Ringel and Green on Hall 
algebras (see, e.g., [Ril], [Ri3]). 

Let Q be a quiver with an underlying unoriented graph of type C, and 
let k be an algebraically closed field; we consider the category mod kQ of 
k-representations of Q. For M, N in mod kQ, we denote by (M,  N )  (resp. 
(M,  N )  1) the k-dimension of Horn(M, N )  (resp. Extl(M, N)). The func- 
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tion R(M, N)  := (M, N )  - (M, N )  I only depends on the dimension types 
dimM, d imN of M and N. 

Since all representations M can already be defined over Z (and thus in 
particular over finite fields Fq), we can define the following functions on 
square roots of prime powers: 

a M = aM(V 2) equals the number of automorphisms of M as a repre- 
sentation over F~2; 

FM X, N = FM X, N (U 2) equals the number of submodules of X isomorphic 
to N with quotient isomorphic to M (as representations over F~2). 

In fact, these define polynomials in Z[v 2] (the latter is called the Hall 
polynomial). 

Ringel's Hall algebra approach (see, e.g., [Ril]) provides if+ with bases 
B o = {EIMI: [M] an isoclass in kQ} such that the structure constants 

X CXM, N of ~+ with respect to BQ defined by E[M]E[N 1 = ~[X] CM. NE[x] are 
given as 

X ( M . M ) + ( N , N ) + R ( M , N ) - ( X . X ) F X  [U2~ 
CM, N = U M . N \  1" 

Green's description of the (twisted) bialgebra structure of ~/+ (see [Ri3]) 
shows that the bases BQ a r e  orthogonal: 

( EIM1, E[N, ) = 6t~,t1,EN1V2<M.M>aM( v2 ) -1 

--: bM 1 

Lusztig's construction of ~ '  in [L1] gives a parameterization of 2 (and 
thus of ~ * )  by kQ-representations; we write ~ '  = {~IMI: [M] an isoclass 
in kQ}. 

In the following, we will frequently use the degeneration order on the 
set of isomorphism classes of representations of a fixed dimension type: 
M < N if and only if the orbit of N in the variety of all representations of 
a fixed dimension is contained in the closure of the orbit of M (see, e.g., 
[B] for a precise definition and a representation-theoretic characterization 
of this order). 

4. G E N E R A L  FACTS ON MULTIPLICATION IN ~'* 

In this section, we use the orthogonality of the bases BQ to dualize some 
well-known facts on ~ '  to statements for ~ '* .  These provide a frame for 
the more detailed examinations of the following sections. 

It is known from [L1] that 

[M']: M<M' 
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for  cer tain coefficients gf f  fulfilling 

~'M M, E u - I Z [ u - 1 ] ,  U <M''M') (M'M)CMM, ~ Z[U2]. 

This fact dualizes to the following s t a t ement  for  ~ * :  

LEMMA 4.1. For any module M, 

g(Ml = bMEtM] + ~ M bM, tXM, E[ M,] 
[M']: M' <M 

for  coefficients IXMM , satisfying 

/L6f, E u - l Z [ u  -1] a n d  u ( M ' M ) - ( M " M ' ) I . L  f ,  ~ Z[U2]. 

Proof. Writ ing ~g~[~vt I = E[M, ]bM, tZ~,E[M, ] and evaluat ing the scalar 
p roduc t  (g'~*M1, ~[NI ) we get 

~[M],[N] E M N = = bivt'I-tM'(/v'(E[M'], E[N']) ~ /*M'M (~,.N 
M' ,N ' :  M': N < M '  
N < N  r 

Since every modu le  degenera tes  to a semis imple  one, we can p rove  the 
c la imed proper t ies  of  the coefficients tXN M by a downward  induct ion on the 
degenera t ion  ordering: in the case where  N is _< -maximal ,  i.e., semisim- 

M N ple, the above calculat ion simplifies to ~[MI,[NI = /XN~N = / xM, SO we are 
done.  

Now suppose  the proper t ies  are p roved  for  all /XN M, such tha t  N < N ' .  
Then  

= /x M, ~ / , .  
M': N <M' M' : 

N < M '  <_M 

All s ta tements  follow immedia te ly  f rom this fo rmula  and the inductive 
assumption:  if N ¢ M, then  N ¢ M '  for  all M '  < M, so £~N, = 0 and thus 
/XN M = 0. For  N = M we find 1 = 6[M1,EN 1 = /XN M. For  N < M, 

M ~ 
e Z[v 21 ~ z[v 21 

I 
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PROPOSmON 4.2. For modules M, N we have 

* * M} { M , N ) i ( ~  ) 
MeN] M,N~fX]  

[X]: X<M@N 

for coefficients ~/X N satisfying 

V MeN'M N>--<X'X> d,N 

Proof First we write both sides of the expression ~[*M]~[*N] = 
~[X] gX~fX] in terms of the basis of PBW type with the aid of the previous 
lemma; then we compare coefficients and get for all X '  

bM,bN, M N X' tZM' IXN'CM'. U' = E bx' I xx'gx" ( * ) 
M' <M X' <X 
N'<N 

Let X 0 be _< -maximal such that gxo 4: O. Then the right-hand side of (*)  
X0 

for X ' =  X 0 reduces to bxogxo, so CM,,N, 4= 0 for some deformations 
M',  N '  of M, N, respectively. This provides us with an exact sequence, 

O - - , N '  + X o + M '  + O .  

But the middle term of an exact sequence always degenerates to the direct 
sum of the end terms, so 

X o < < M ' e N ' < M e N .  

Next we compute the coefficient o f  ~MeU] in the product. Setting 
X'  = M e N  in (*),  a pair ( M ' , N ' )  contributes to the sum on the 
left-hand side if and only if there exists an exact sequence 

0 --*N' ~ M e N ~ M '  --* O. 

Again we use the fact that the middle term degenerates to the direct sum 
of the end terms, so M • N _< M '  • N' .  But on the other hand, M '  • N '  
_< M'  • N _< M • N since M '  (resp. N ' )  is a deformation of M (resp. N).  
Since degeneration is a partial order, we find M '  • N = M • N and thus 
M'  = M. Applying the same argument  again gives N '  = N. 

So we see that the identity (* )  reduces to 

b h _MoN 
M,.,NCM,N = b M e N g M e  N. 
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Using the formula for _MeN of Section 3 we get CM, N 

gMeN uR(M'N)+(M'N)+(N 'M)  -1 r-MeN," )2 , .  
= a M a N a M . N r M ,  N ~,t ) ,  

thus it remains to compute this Hall polynomial. 
So assume that M and N are defined over a finite field of order v 2. 

Note that 

p M c N  = W "  ( a M a N )  -1 *M,N 

where W counts the number of split exact sequences, i.e., it equals the 
cardinality of the set 

Y//'= { ( a : N - - * M ¢ N , / 3 " M O N ~ M ) "  

a injective,/3 surjective,/3~ = 0}. 

Denoting by ~ (resp. p) the natural inclusion (resp. projection), we can 
define a map 

Aut(M@U) ~7f ,  g ~  (g~,pg-1). 

This map is easily seen to be surjective with fibers of cardinality equal to 
the number of homomorphisms from M to N, i.e., v 2<M' X}. 

This yields the formula for the coefficient of * ~[MeN]" 
To prove the formula for the degree of the coefficients " x  ~M,N, w e  

multiply both sides of (* )  by 

u(McN.  MGN)+ ( X ' , X ' ) - ( N , M ) +  (M,N)I. 

after a short calculation this can be written as the following identity for 
all X' :  

E (u<M'M) <M"M')I~')(u<N'N)<N"N'?tzN')(aM')(aN') 
M'NM 
N'<N 

X (L,Z<M'N})(FX, N,(U2)) 

= E (u<x'x}-<x"x')tzxx')(ax') 
X' <X 

x u ( M ~ N , M ~ N )  (X ,X )  U (N,M}+(M,N)lg  X 

- X  
TM,N 

(all embraced terms belong to Z[uZ]). 
Proceeding by a downward induction on X '  with respect to the ordering 

< , we see that the formula is proved. | 
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Remark. A similar statement can be proved for ~ ' :  if ~'EXl appears in 
the product ~EMININI with a nonzero coefficient, then G _< X for G the 
generic extension of M by N, i.e., the uniquely determined extension with 
minimal dimension of its space of endomorphisms. 

This gives a partial explanation for the conjecturally better multiplica- 
tive properties of ~ '*  compared to 2 :  "good" properties of modules (for 
example, vanishing of spaces of homomorphisms or extensions) get lost by 
degenerating. But they are often preserved under deformation, which, for 
example, allows us to estimate the degree of the coefficients ~,x N in some 
"good" situations. The result in the next section is based on these consid- 
erations. 

The Q-automorphism - of ~/+ defined by E~ = E i and ~ = v -1 fixes 
each element of 3 ([L], Sect. 14.2.3). We will now prove a dual result for 
j@~*. 

Besides the Q-involution - of f/+, we also have the Q(v)-anti-involution 
cr of f/+ given by o-(E,) = E i. For d ~ N I, we write t rd  = F, z ~ l d~. 

LEMMA 4.3. For all b* ~ * ,  we have • =  (--v)trlblVlbl'fbl/Zo'(b*). 

Proof  In ([L], Sect. 1.2.10), Lusztig defines a bilinear form {,} on ~+ 
by 

{x,  y} = (7:,S,). 

It satisfies the following formula ([L], Sect. 1.2.11 b)): 

{x,  y} = ( -v)-' lXrv-lX  

(The original formula simplifies slightly for finite simply laced types.) 
Using the fact that all elements of ~ '  are fixed under - we can compute 

(F  e, o'( b') ) = ( --v)trlb*lvlb*l'l~'l/2{~, b'} = ( - v ) m b * l v  Ib*llb'l/2 ( b*, b') 

= (--v)trlb~[vlb*l ' lb' l /2C~b,b, .  

Since (o-(x), or(y)) = (x, y)  we get (cr(b~-),b ') = (--V)"lb*lVlb*llb'l/26b, b, 
and thus o-(b -e) = (--v)trlblv[bl'lbl/2b *. | 

NOW we apply this lemma to products of elements of ~ '*  : 

PROPOSITION 4.4. Writing b~ b* ~" b b* = L ' b ~ % , b ~  , w e h a v e  

~/~2, = vlbl[']b2[~/b 
b I bl,b 2" 

Proof  Application of - yields b=~-i • b~= Eb 3'v~, b~ ~ ,  which by the above 
lemma is equivalent to 

V [bll [b2[o-(b~)o'(b~) = E Ybl,b20-(b b*) ,  
b 
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and thus by applying or, 

b* v-lb'llb21b* b~ ~ b , ~ t ,  Ib'l'lb@~2,bl = - = yb~,b2b. 
b b 

Comparing coefficients, we are done. | 

We derive 

COROLLARY 4.5. I f  b~ and b* in 2 *  are multiplicative, then they 
quasi-commute. 

Proof. If b~ and b*_ are multiplicative, we have ybbl. b2 = u N6b, b for 
some b 0 ~ and some N ~ Z. But then the same holds for yb2,2l by 
Proposition 4.4. | 

Using the results of this section, we obtain some necessary conditions 
for the multiplicative properties of ~ *  we are interested in. 

LEMMA 4.6. 1. I f  ~fM] and ~'fN] are multiplicative, then their product 
equals 

U (N,M) (M,N)I~[*M~N] 

and p,(M G N)  = p,(M) + p,(N) for all i ~ I. 

2. I f  ~ 1 ]  and ~ v l  quasi-commute, then ~/fl, N = 3'X, u fOr all X.  

Proof. The first part of 1 is obvious by Proposition 4.2; the second part 
follows from the additivity of the function l, on products of homogeneous 
elements and the fact that l i ( b * )  = p , (b) .  

For 2, we first compare the coefficients of ~(*MoU] in both products, 
using Proposition 4.2. Noting that 

~E*xl = <N,M> <M,N>~/X 

and I~E~tl] • [~fNll = R(M,  N)  + R(N,  M), the statement follows by a small 
calculation. | 

To apply the facts on the behavior of p, to products of elements of 2 "  
in the Hall algebra setting, we need a description of these functions (and 
of the operators Y,) in terms of representations of quivers. This was done 
in [R]; we only need this description in the case of the quiver Q,,: 
1 ~ 2 ~ -.. -~ n, where it reads as follows: denote by Ejk for 1 < j _< k 
< n the unique indecomposable representation of Qn supported by the 
subquiver j ~ ... --* k. These exhaust all indecomposables, so an arbi- 
trary module M can be written as ~<~E~,~.  We call (mjk)j~ the tuple 
corresponding to M (and vice versa). 
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For all j _< k we set 

fjk = ~ m j l - -  ~ mj+l , l  • 
l=k l=k+ l 

For fixed i, let k o be minimal such that ~k~, = maxk fik and set 

! 

mflc = lTIjk  -~ 

1, j = i ,  k=ko,  
- 1 ,  j = i + l ,  k=ko,  
O, else. 

Then e,~[Ml = ~ [ i ' p  where M' corresponds to the tuple (rn'j~) and 
p,(~W'[M]) = maxk f~k" 

In the following we will have to perform several simple calculations with 
this description; unless otherwise stated, they are left to the reader. 

Next we define special elements of ~ '*  called quantum minors, already 
mentioned in the Introduction (we use the same notation as in [BZ]): for 
sequences I = (il < "'" < Jr), J = (J1 < "'" < j r )  in {1,2 . . . . .  n + 1} such 
that ik < Jk for all k = 1 . . .  r, we define A(I, J))  = g?M(],j)] where 

M( I,J) = ffOrk=l Eik,jk_l . 

Actually this notion of quantum minor coincides with the definition in 
[BZ] up to a twist: just as the operators g,, j~ are defined by means of left 
multiplication with E~ in f/+, we can define g v, )~v by means of right 
multiplication. For type An, these operators can be described on Q,,-mod- 
ules as 

y V(M)  = ztY,+a_,nM 

(same for -v f, ), where ~ sends E,; to En+ 1 j,,,+l_, and is additive with 
respect to direct sums (see [R]). 

In [BZ] it is proved that all A(I, J )  belong to J~2* and that 

A(I, Y U { i } \ { i + l } ) ,  i ~ S , i + l ~ S ,  
)~vdx(I' J )  = O, else. 

A short calculation using the description of ~, above shows that the same 
holds if A(I, J )  is replaced by * g'EM(1,J)I for M(I,J) as defined above. 
Induction on the dimension shows that these elements of ~.~* are in fact 
the same. | 
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5. SMALL Q U A N T U M  MINORS 

In this section we show how the general statements proved so far can be 
combined to prove part of the conjecture of Berenstein and Zelevinsky. 

Using the definitions of the coefficients 5,MXN and /x M, we can write 
down a recursive formula for ~/x N as follows (see Proposition 4.2): 

X ' ~ / X '  
"~ fvI , N _ _  I& M ' I& N ' m M ' . N ' - -  _ _  t~ X M , N 

M ' < M  X < X ' < _ M ~ N  
N '  <_N 

where m x equals M ' , N '  

u ( M , N ) I - ( N , M )  b M ' b l v '  X 

~ b x  C M ' ,  N '  • 

Note that as a consequence of Green's calculation of the comultiplication 
in g/+ (see [Ri3]) we see that m x belongs to Z[v, v- l ] .  M ' , N '  

THEOREM 5.1. Assume  that g'fM] and ~fN] quasi-commute and that 
{ M, N )1 equals O. Then these tWo elements are multiplicative. 

Proof. Since vanishing of Ext 1 is preserved under deformations (see 
[B]), we have (M' ,  N ' ) I  = 0 for all deformations M' < M and N '  < N.  So 
c x 4- 0 implies the existence of an exact sequence 0 ~ N '  ~ X ~ M '  M ' , N '  

0, yielding X ~ M' • N'. Calculating the Hall polynomial as in the 
proof of Proposition 4.2, we get 

deg cX, N' = ( M ' , M ' )  + ( N ' ,  N ' )  + R ( M ' , N ' )  

- ( M ' • N ' , M ' e N ' )  + 2 - ( N ' , M ' )  

= ( N ' , M ' )  - ( M ' , N ' )  1 = ( N ' , M ' )  _< ( N , M )  

= ( N ,  M )  - ( M ,  N) 1. 

But this means deg m x M ' , N '  ~ O. Proceeding by a downward induction, 
using the recursive formula for ")X,N, we get ~,Xx ~ v - l z [ v - 1 ] ,  and thus 
~ X  ~ X  "/~/, N 0 for all X ~ M (9 N, since " x  = "~M, N = " ~ I ,  N in the quasi-commuting 
case. | 

COROLLARY 5.2. I f  tWO elements ~(*M1 and ~ N I  quasi-commute where M 
or N is projective or injective, then they are multiplicative. 

Note that this statement holds independently of the orientation of the 
quiver; so we can consider projective (resp. injective) modules for different 
orientations. This yields the following result. 
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DEFINITION 5.3. A quan tum minor  A(I ,  J )  for  type A n is called small if 
there  exist number s  1 _< i < j < k _< n such that  

I = ( i , j + l , j + 2  . . . .  , k ) ,  J = ( j + l , j + 2  . . . .  , k +  1) or 

I =  ( i , i  + l . . . . .  j ) ,  J =  ( i  + l , i  + 2 . . . . .  j , k  + 1). 

THEOREM 5.4. A s s u m e  we are in type A .  I f  two elements b~ and b~ o f  
~_~* quasi-commute where one o f  them is a small  quantum minor, then they 
are multiplicative. 

Proof. We only t reat  the first case of  a small quan tum minor  f rom the 
definition; the second case is dual. So assume b~ = k ( I ,  J ) ,  where  

I =  ( i , j  + l , j  + 2 . . . . .  k ) ,  J =  ( j  + l , j  + 2 . . . . .  k + l )  

for i _< j < k. Le t  Q be the or ienta t ion  

1 ~  ... *-- i --0 ... - ~ j ~  -.- ~ k ~  ... --on. 

By [Ril],  the p roduc t  

Ej+ E,. E, 

equals g~I%3, where  M is the unique module  of  d imension  vector  e, 
+ -.- + e  k such that  ( M ,  M )  1 = 0; thus M is the indecomposab le  injective 
module  Ij associated with the ver tex  j. By the definit ion of  Kashiwara ' s  
opera tors ,  ~I~J  can be wri t ten as 

e~ • • • e~+ le, • • • e~j~[0]. 

But for  the or ienta t ion  Qn, this equals g~E~'], where  M = E# • E j+ ,  
• -.. • E~. Thus  (g~i~l)* = (~i~,3)* = A(I,  J ) ,  and we can apply the previ- 
ous corollary. | 

6. T H E  " S T A N D A R D  C H A M B E R "  

In  this section we construct  "a  lot of"  e lements  of  ~ ' *  for  type A by 
studying the relat ion be tween  the order  given by the values p/ and the 
degenera t ion  order  on modules  for  the quiver Qn. 

THEOREM 6.1. Let  M be a representation o f  the quiver Qn corresponding 
to a tuple (mij)a <, <_ j< n satisfying 

m, j  >>_ m i _ l . j _  1 f o ra l l  1 < i <_j < n. 
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Denote by B}'/) the module 

Ei_j~n,  n (~ "'" • Ez+ l , j+  1 ~ Eij  

for all 1 <_ i <_ j < n; thus 

N~7'] = A ( ( i , i  + 1 . . . . .  i - j  + n) ,  ( j  + 1 , j  + 2 , . . . , n  + 1)) .  

Then for some D ~ Z, 

• ( ~ . (  .~rn,j-m, 1.j 
gtMl = vv  1-[ t ~t~,;'u 

l<i<~j<n 

(where too. j is defined as 0). 

(We say that elements g[~ll for M satisfying the conditions above belong 
to the 'standard chamber. '  This is reminiscent of the results of Berenstein 
and Zelevinsky for type A 2 and A3, where 2 "  can be partitioned into 
chambers given as quasicommuting products of a fixed subset of the set of 
quantum minors.) 

Proof. We proceed by an induction on the number of points n of the 
quiver Q,; for n = 1 there is nothing to prove. 

First note that indeed, 

M = @,~j (B{m'~ m''-m' ~'J-' 
k --11 } 

We have Pi(Bak) = ~i,j k+n and p,(M) = re,n, since m u >_ m, 1,j-1 for 
all j, so we calculate 

E ( m j k  -- m j - l , k  1 ) ' p i ( B ( j ;  )) 
j<_k 

= E ( m , k  - m j _ L k _ l )  = m,. = P i ( M ) .  
j<_k, 

k - j = n  i 

Now assume some ~[*Ul appears in the above product of quantum minors 
with nonzero coefficient. Then by Lemma 2.1, we have for all i ~ I, 

p , ( N )  < 2 ( m j k - - m j  l , k _ l ) ' p , ( B ~ ° ) = p , ( M )  
j<k  

and by Proposition 4.2, 

N < ¢i~j (B{;)) m" m, ~.,_, = M. 
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To make  this condi t ion m o r e  explicit, we use the fact that  if N < M, then 
<N, U )  < ( M ,  U )  for  all indecomposab les  U (see [B]). By [Rie], this is 
equivalent  to the existence of nonnegat ive  integers x U indexed by the 
nonprojec t ive  indecomposab les  U such that  

N~ ~ (U@ r U )  ~ U = M O  ~ B(U) ~U 
u u 

where  the direct sum runs over  all nonprojec t ive  indecomposables  U, and 

O + rU- - ,  B ( U )  --, U + O 

denotes  the A u s l a n d e r - R e i t e n  sequence  ending in U. Since for  Q~ these 
sequences  are of  the fo rm 

0 --+ E i + I , j +  1 -+ E i , j +  1 G E l + l ,  j --> E 0 --+ 0 

(where E,+~,~ is def ined as 0), we see that  the condit ion N < M  is 
equivalent  to the existence of  nonnegat ive  integers (x,j)~ < ~ < j < n such that  

17"zJ ~ rrltj "}-Xl 1, j  q-Xz,j 1 --Xr.-1,j-I  --Xij~ 

where  N cor responds  to the tuple (nu)  u (we set x,j 
or j > n). 

By the fo rmula  for  p,, we get for  all i = 1 . . .  n 

= 0 f o r i > j o r i < 0  

nZtn-}-Xz, n 1- -Xi_l ,n  l = n i n < P i ( N ) < p , ( M ) = m i n ,  

and thus 

Xn 1 , n - 1  ~ " ' "  ~ Xl.n-1 ~ O, 

yielding x,.n 1 = 0 for  i = 1 . . .  n -- 1. 
It  follows that  p~(N) = p , (M)  for  all i. Now we apply the opera tors  

~max f l  max . . . . .  f,, . By an easy induct ion using the formulas  for  ei and p, we 
see that  the following holds for  all i: 

~ /max  . . , j~max  ( N )  cor responds  to a tuple (t~j~)j~, where  

njk 

I lIjk 

= nln Jr- ... q-ntn, 
~0, 

k < n o r j = n a n d j > i +  1, 

k = n a n d j = i +  l ,  

k = n and j _< i. 

(and analogously for  M) .  So £max. . .  j~max(N ) (resp. appl ied to M )  equals 
the modu le  N '  given by % ~ i < j < n Ei~" (same for  M) .  
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This allows us to descend to the subquiver  Q n - 1  of  Qn: W e  set 
L m a x ( x )  := l ( l , ( : ' ) ) (x )  . .  - i  - and apply the ope ra to r  L~ max) . L(1 m~x) to bo th  sides 
of  the equat ion,  

{ U ~  ~ mtJ mt - l ' l - I  
[ I  t~iB~;,l) = F. 

l<<_i<j<_n N: 
p,(N)<_p,(M), i= 1 ... n 

By the proper t ies  of  the opera to r s  L, 
lef t -hand side 

CN~?N] .  

stated in Sect ion 2, we get on the 

mq--m~ 1,1-1 
gI 

l<t<~l<n 

(Note  that  jr max.. ,  f~maxB}~) = B}~-1).) 

But  now we can apply the inductive assumpt ion,  so this expression 
equals uDg°IMT O n  the r ight-hand side we get 

E CN g[3;max... ;1 m~'N ]' 
N: 

p,(N)<_ &(M), i= 1 ...  n 

By the descript ion of  jrmax.. ,  j~m,x N above we see that  the only modu le  N 
that  can appea r  with nonzero  coefficient  c N is the modu le  M, so we are 
done.  | 

Remark. By applying the involut ion ~, we see that  we also get the 
"oppos i t e  s tandard  chamber" ;  i.e., p roducts  of  q u a n t u m  minors  of  the 
fo rm 

A ( ( 1 , 2 , . . . , i ) , ( j - i + 2 ,  j - i + l , . . . , j + l ) )  f o r l < i < j < ~ n  

belong to 2 "  up to a twist. 

7. A N  E X A M P L E  

Let  M be the modu le  E34 • El3 D E 2 for  Q4. W e  will show that  g~*Ul 
cannot  be  wri t ten as a nontrivial  p roduc t  of  e lements  of  ~ ' * :  By L e m m a  
4.6, modules  N1, N 2 such that  g~*Ml = .Do*  ~ *  have to fulfill N 1 • N 2 U O[Nll~[N21 
= M and pi(N1)+ pi(N2)= p,(M);  the same  holds for  the funct ion 
°-i := Pz~ by duality (see Sect ion 4). So there  are three  cases; we will find 
contradic t ions  to the additivity of  the values Pi (resp. %): 

• I f  N 1 = E34 and N 2 = El3 • E2, then  p2 (N  2) = 1, but  p2(M) = O. 

• I f  N 1 = E13 and N z = E34 (~ E2, then  o-4(N 2) = 1, but  o'4(M) = 0. 

• I f  N 1 = E 2 and N 2 = E34 • El3 , then  p2(N1) = 0, but  p2 (M)  = 0. 
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So we see that there exist elements of ~ *  that are not a product of 
quantum minors. As A. Berenstein and A. Zelevinsky pointed out to me, 
this element also appears in ([BFZ], Sect. 3.3.9). 
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