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Abstract

Unbaited phreatic traps are a promising new method for sampling subterranean limnofauna. The aim of this study is
to evaluate whether such trap systems are suitable to gather representative samples of the physico-chemical parameters
and the invertebrate fauna of the aquifer. Fifteen traps, installed in five groundwater bores, and four traps located in
the hyporheic zone, were sampled twice monthly over a 1 year period (June 2003–June 2004). Water samples were
removed in three separated fractions (hose, trap and aquifer water), analysed for physico-chemical and faunal
characteristics and compared with one another. The study was carried out in the Nakdong River floodplain, Korea.
Physico-chemical characteristics of trap and aquifer were similar, but differed greatly from the hose samples.
Abundances of fauna inside the traps were higher than in the aquifer, whereas there were no differences in taxonomic
composition of the trap and aquifer samples. Biases of abundances suspected due to the use of traps were negligible in
the groundwater, though it is recommended that comparisons between groundwater and hyporheic abundances
ascertained by traps be handled cautiously.
r 2007 Elsevier GmbH. All rights reserved.
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Introduction

One of the major questions arising with groundwater
ecological studies is whether the community composi-
tion of the aquifer can be recorded representatively
(Hahn, 2005; Hahn and Matzke, 2005). Sampling
subterranean fauna in the hyporheic, shallow, and deep
groundwater zones, can be done by a broad variety
of sampling techniques such as freeze-coring, standpipe-
coring, pumping, net sampling, traps or by the filtering
of spring water (Bretschko and Klemens, 1986; Cvetkov,
1968; Dumas and Fontanini, 2001; Fraser and Williams,
1997; Hahn, 2002; Malard et al., 1997; Pospisil, 1992),
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but to date there are no standardised methods for
sampling stygofauna taxonomic richness and abun-
dances for ecological purposes (Hahn, 2002, 2005).
Although Protocols for the Assessment and Conserva-
tion of Aquatic Life in the Subsurface (PASCALIS)
(Malard et al., 2001) proposed a variety of sampling
techniques for subsurface aquatic invertebrates in
several habitats as standard methods, these techniques
are suitable for ecological questions but only to a limited
extent. This is because the focus of PASCALIS (Malard
et al., 2001) was to record and describe biodiversity, but
not community structure. Faunal data gathered with
these methods are thus comparable with each other on
a presence–absence level only.

Variations in methods (e.g. different volumes, pump-
ing frequency) have different efficiencies in sampling
(Boulton et al., 2004; Fraser and Williams, 1997; Hunt
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and Stanley, 2000), so the perception of the aquatic
community may change depending on the method used.
A statistical comparison of invertebrate samples ob-
tained by different methods is thus critical. Therefore,
an agreed and standardised method is needed to obtain
representative and comparable data when sampling
subterranean fauna in the hyporheic zone and in
groundwater.

Such a method should meet the following criteria
(Hahn, 2005):
(1)
Fig.

PD
It should be suitable for spatio-temporal sampling,
both with a small time lag and for monitoring over
longer timescales.
(2)
 Neither the sampling site nor the sediment layers
sampled should be altered by water extraction.
(3)
 Samples should be representative of both the aquifer
water and fauna.
To meet these requirements, Hahn (2005) developed
an unbaited trap system, which seems to be a promising
method for sampling stygofauna. In a preliminary
study, he found no significant differences between trap
and aquifer water. This is in accordance with other
studies (Hahn, 2003; Hahn and Matzke, 2005; Schmidt
et al., 2004), where physical and chemical characteristics
of water samples taken from a trap or inside a bore were
similar to the aquifer water. With respect to fauna,
Hahn (2005) concluded that traps provide representative
results which do indeed reflect the communities around.
However, he argues that abundances within the traps
might be overestimated compared to the aquifer, if
the aquifer is poorly populated by invertebrate fauna
(see also Panek, 1994). Because of the small data set
used by Hahn (2005), a robust evaluation of the trap
1. Map of the Nakdong River watershed and the study area a

1–PD7 represent the bore sites).
technique is still required and the following questions
must be clarified:
(1)
t Da
Do hydro-chemical samples taken from inside the
trap reflect the situation of the aquifer?
(2)
 Are the communities of the aquifer captured
representatively by using unbaited phreatic traps?
(3)
 Is it possible that there is a bias of abundance data,
with an underestimation near the surface, and an
overestimation in sparsely populated aquifers?
In order to respond the questions above and to test the
efficiency of the trap system, we sampled five groundwater
monitoring bores (each with three unbaited traps) and
four hyporheic bores (each with three unbaited traps) in
the Nakdong River watershed (South Korea). Differences
between the physical and chemical characteristics of hose
water, trap content and aquifer water at each trap were
assessed. Differences in the faunal communities of the
trap and aquifer were also compared.

Study area

The Nakdong River floodplain is situated 15 km west
of the city of Daegu, in the southeast of the Korean
peninsula (Fig. 1). The study area at Dasan-Myeon
(1281260E/351500N, 19ma.s.l.) is on the right bank of
the Nakdong River and is 500m long and 500m wide.
The site is divided into two sections by a dam and is
bounded southward by a steep channel slope, with
runoff water of the acreage behind the dam being
drained by a small brook flowing at the southern edge
of the floodplain. The porous alluvial sediments are
composed of silt, mica, sand and gravel layers, and the
mean groundwater table is 5–6m below the surface.
san-Myeon, Korea (H1–H4 represent the hyporheic sites;
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Table 1. Characteristics of the bores investigated

Bore Depth

Bore (m)

Length of

screen (m)

Depth of

screen (m)

Range of

groundwater

table (m)

Depth

trap A (m)

Depth

trap B (m)

Depth

trap C (m)

Latitude

(N)

Longitude

(E)

PD1 12 10 1–11 2.80–4.48 5.00 6.66 10.00 3515004500 12812601600

PD2 12 10 1–11 3.07–5.91 5.00 6.66 10.00 3515004000 12812601200

PD3 12 10 1–11 1.55–6.91 2.00 3.66 10.00 3515002800 12812600500

PD4 12 9 2–11 3.89–4.07 5.00 6.66 10.00 3515004800 12812505700

PD7 9 7 2–9 1.76–2.40 3.66 5.32 8.00 3515002500 12812504800

H1 0.3 0.3 0–0.3 – 0.1 – – 3515004800 12812601500

H2 0.3 0.3 0–0.3 – 0.1 – – 3515005000 12812505800

H3 0.3 0.3 0–0.3 – 0.1 – – 3515002800 12812600600

H4 0.3 0.3 0–0.3 – 0.1 – – 3515002500 12812504800
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Methods

Trap system

At the sampling site, five monitoring wells were
installed in two transects (Fig. 1). The slotted bores
(PVC, +: 100mm, slot width: 1.5mm) were installed,
by surrounding them with gravel (+: 2–3mm). At the
soil surface, they were sealed with concrete. Character-
istics of the sampled bores are given in Table 1.

To sample stygofauna, the unbaited trap system
previously used by Hahn in 2005 was used (Fig. 2). These
trap systems consist of three stratified traps (A–C) and
were installed in five bores (PD 1, 2, 3, 4 and 7) for a total
of 15 traps installed in the aquifer. The traps were
mounted centrally on a threaded rod (Fig. 2), enabling the
sampling of a precise horizontal plane. At each bore the
uppermost trap (A) was installed near the groundwater
table and the second trap (B) 1.5m beneath it. The third
trap (C) was located 1m above the bottom of each bore.

Each trap consists of a plastic cylinder (+: 94mm,
height: 150mm) perforated by rows of entrance holes. In
order to prevent hydro-chemical gradients, which could
lead fauna out of the trap, the bottom row of the holes is
covered by plankton net (74mm). Fauna enter through the
upper holes and are then trapped within the chamber. A
hose leads from each trap to the surface to permit discrete
sampling of fauna and water from each trap in the series.
The system is described in detail by Hahn (2005).

In addition to the 15 traps installed in the aquifer, four
bores were installed in the hyporheic zone each with one
trap of the same type fixed in a depth of 10 cm below the
sediment surface (H1–H4). Details of the hyporheic traps
are given in Table 1, and their location is shown in Fig. 1.
Procedure of sampling

Traps were sampled using a suction pump composed
of a modified desiccator and a manual camping air
pump. Evacuation, ventilation and water flow were
regulated by different valves. The hoses of the traps
were connected to the desiccator. After evacuation, the
valve leading to the trap was opened abruptly, which
enhanced the sampling efficiency (Hahn, 2005). Due to
the pressure gradient, water flows into a measuring jug
(volume ¼ 2L) situated in the desiccator. A detailed
description of the sampling procedure is given by Hahn
(2005). In order to compare the water from the hose,
trap and aquifer, the water samples were removed in
three fractions. Sampling the traps began by removing
the hose water then the trap content. At least 2 L of
aquifer water were removed. From June 2003 to June
2004, bores were sampled twice a month.
Processing of samples

Temperature (1C), dissolved oxygen (DO), pH-value and
specific conductance (EC) were measured immediately using
a WTW Multiline 340i probe and sensor (Wissenschaftlich-
Technische Werkstätten GmbH, Weilheim). For carbonate
hardness (CaCO3) an Aquamerck test kit (Merck KGaA,
Darmstadt) was used. Nitrate (NO3), phosphate (PO4) and
total dissolved iron were measured byMerck-Reflectoquant
RQ flex plus (Merck KGaA, Darmstadt).

Fauna samples were sieved on site (mesh size 74 mm)
and stored in a cold-box. To separate the fauna from
detritus and sand in the laboratory, samples were
decanted and passed once more through a sieve (mesh
size 74 mm). Animals were then sorted alive using a
dissecting microscope (Nikon SMZ 800) at 20�
magnification. Samples containing high numbers of
animals were preserved using 4% formaldehyde, co-
loured by Rose Bengal and sorted within a few days.
Most taxa were identified to order or family, whereas
cyclopoids and bathynellids were identified to species.
Data analysis

All data were checked for normal distribution by a
Kolmogorov–Smirnov test and Shapiro–Wilks test at
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Fig. 2. Sketch of the trap system (S. Bork after Hahn, 2005).
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no50, respectively. Neither physico-chemical nor faunal
data were normally distributed, even after log(x+1)
transformation (po0.05). Accordingly, for statistical
analysis only non-parametric tests were performed.
Differences between the fraction samples (hose, trap
and aquifer) were tested by the Wilcoxon test for paired
data. Comparisons of the physico-chemical character-
istics and the invertebrate composition of fraction
samples were carried out using multidimensional scaling
(MDS). For this purpose physico-chemical character-
istics were processed using log(x+1) transformed
Euclidean distance, and faunal communities by using
the square root transformed Bray–Curtis dissimilarity
to fit the data to normal distribution. Mann–Whitney
U-test was applied to detect differences in abundances
between different layers of the aquifer. Data were
processed using SPSS 14.0 (SPSS Inc.), PRIMER
5.2.9 (Primer-E Ltd.) and Excel 2000 (Microsoft
Corporation).
Results

Water chemistry

In the aquifer, pH values varied between 5.2 and
7.7, while specific conductance ranged from 128 to
589 mS cm�1 (Table 2). Water temperature was high,
ranging from 10.9 to 24.4 1C. DO concentrations ranged
between 0.0 and 11.2mgL�1. Nitrate concentrations
varied between 1.0 and 71.0mgL�1. Concentrations of
phosphate and iron varied between 0.0 and 2.1mgL�1

and between 0.0 and 15.1mgL�1, respectively, but were
mostly lower than measuring range (phosphate:
o0.1mgL�1, iron: o0.5mgL�1). Carbonate hardness
ranged between 5.4 and 317.7mgL�1 (Table 2).

There were significant differences between the hose
and both other fractions for most of the physico-
chemical parameters (Table 3 and Fig. 3). Exceptions
were temperature and phosphate concentrations, which
were not different between hose and trap water
(Wilcoxon-test: n ¼ 67; p ¼ 0.701 and n ¼ 40; p ¼

0.808, respectively). Also, no differences were found for
phosphate between hose and aquifer water (Wilcoxon-
test: n ¼ 40; p ¼ 0.439).

In the hose water, pH (Wilcoxon-test: n ¼ 69;
p ¼ 0.001), iron concentration (Wilcoxon-test: n ¼ 34;
p ¼ 0.002) and carbonate hardness (Wilcoxon-test:
n ¼ 34; po0.001) were significantly higher than in the
trap water. Compared to the aquifer water, temperature
of the hose water was significantly higher (Wilcoxon-
test: n ¼ 67; p ¼ 0.004). EC, DO and nitrate concentra-
tions of the hose water were significantly lower than in
the trap and the aquifer water (all po0.05, Table 3). No
significant differences were found for the physico-
chemical parameters between trap and aquifer water
(Table 3 and Fig. 3).

The MDS (Fig. 4) ordered the fractions of each trap
(hose, trap and aquifer samples) by the physico-chemical
parameters – mostly close together according to their
affiliation to the same trap, indicating their similarity.
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Table 3. Results of the Wilcoxon rank-tests: comparison of the fractions ‘‘hose’’ (H), ‘‘trap’’ (T) and ‘‘aquifer water’’ (A)

Parameter Comparison of fractions

H–T H–A T–A

p n p n p n

pH value 0.001*** 69 0.000*** 69 0.606 148

EC (ms/cm) 0.000*** 69 0.000*** 69 0.051 148

Temperature (1C) 0.701 67 0.004** 67 0.499 148

DO (mg/L) 0.000*** 67 0.002** 67 0.114 148

Nitrate (mg/L) 0.002** 54 0.002** 54 0.055 131

Phosphate (mg/L) 0.808 40 0.439 40 0.238 117

Total dissolved iron (mg/L) 0.002** 34 0.000*** 34 0.073 111

Carbonate hardness CaCO3
� (mg/L) 0.000*** 34 0.000*** 34 0.060 111

Number of taxa 0.000*** 232

Abundance p. liter 0.000*** 232

Abundance p. sample 0.000*** 232

Cyclopidae p. liter 0.000*** 232

Harpacticoida p. liter 0.000*** 232

Nematoda p. liter 0.000*** 232

Oligochaeta p. liter 0.000*** 232

Insecta p. liter 0.000*** 232

Acari p. liter 0.000*** 232

Rotatoria p. liter 0.000*** 232

Nauplii p. liter 0.000*** 232

Cyclopidae (%) 0.088 172

Harpacticoida (%) 0.585 172

Nematoda (%) 0.037* 172

Oligochaeta (%) 0.386 172

Insecta (%) 0.090 172

Acari (%) 0.523 172

Rotatoria (%) 0.671 172

Nauplii (%) 0.673 172

Eucyclops serrulatus p. liter 0.000*** 232

Mesocyclops pehpeiensis p. liter 0.000*** 232

Mikrocyclops varicans rubellus p. liter 0.000*** 232

Eucyclops serrulatus (%) 0.450 172

Mesocyclops pehpeiensis (%) 0.043* 172

Microcyclops varicans rubellus (%) 0.053 172

Significance: *po0.05, **po0.01, ***po0.001.

Table 2. Physical and chemical characteristics of the different water fractions

Parameters Fraction

Hose Trap Aquifer

Median Min.–Max. n Median Min.–Max. n Median Min.–Max n

pH 6.1 5.6–7.1 70 6.2 5.2–7.1 148 6.2 5.2–7.7 258

EC (ms/cm) 244 155–539 70 270 128–589 148 278 128–589 258

Temperature (1C) 19.4 11.6–26.3 68 17.7 8.8–25.0 148 18.1 10.9–24.4 254

DO (mg/L) 1.4 0.0–4.0 68 1.7 0.0–9.3 148 1.9 0.0–11.2 254

Nitrate (mg/L) 3.0 1.5–119.0 55 13.0 1.5–66.0 131 16.0 1.0–71.0 233

Phosphate (mg/L) 0.0 0.0–0.1 41 0.0 0.0–0.3 117 0.0 0.0–2.1 218

Total dissolved iron (mg/L) 0.25 0.25–1.8 35 0.25 0.25–11.0 111 0.25 0.0–15.1 210

Carbonate hardness CaCO3
� (mg/L) 92.8 50.0–192.8 35 67.8 32.1–321.3 111 60.7 5.4–317.7 186

J. Bork et al. / Limnologica 38 (2008) 105–115 109
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Fig. 3. Boxplots of selected physico-chemical parameters. Comparison of the water fractions ‘‘hose’’, ‘‘trap’’ and ‘‘aquifer’’.

Phosphate and iron were not considered since they were mostly lower than the measuring range.
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The largest differences between the water fractions
of one trap were found in the hyporheic zone near the
mountains.
Fauna

Only fauna from the trap and aquifer samples are
considered. In total, 232 samples were removed from the
traps and the aquifer. From the trap and the aquifer
samples, 203 (87.6%) and 182 (78.6%), respectively,
were populated by metazoans. A total of 17,849 animals
were collected. The most abundant taxa were the
cyclopoid copepods (relative abundance: 31.6%) com-
prising 18 species, the nematods (relative abundance:
22.1%) and the harpacticoids (relative abundance:
12.1%). The Bathynellacea (relative abundance: 0.5%)
occurred with one species (Nakdongbathynella dasani).

There were significant differences in abundance and
taxa richness between the trap and the aquifer samples for
the most frequent and abundant taxa and species (Table 3
and Fig. 5). Abundance per sample, abundance per litre,
total numbers of taxa, and abundance of single species per
litre (Eucyclops serrulatus, Mesocyclops pehpeiensis and
Microcyclops varicans rubellus) were all significantly
higher in the traps than in the aquifer (Wilcoxon-test:
n ¼ 232; all po0.001). The proportions of taxa per
sample were similar in the trap water and the aquifer,
with the exception of nematodes, whose proportions were
significantly higher in the traps than in the aquifer
(Wilcoxon-test: n ¼ 172; p ¼ 0.037) (Table 3).

No differences between trap content and aquifer
were found for the proportions of E. serrulatus and
M. varicans rubellus (Wilcoxon-test: n ¼ 172; p ¼ 0.450,
0.053, respectively), but proportions of M. pehpeiensis

were significantly higher in the trap water than in the
aquifer (Wilcoxon-test: n ¼ 172; p ¼ 0.043).

The MDS ordered the fractions of each trap (trap and
aquifer samples) mostly close together (Fig. 6).

Abundances and taxonomic richness were highest in
the hyporheic zone and in the uppermost groundwater
traps, and decreased with increasing depth (Table 4 and
Fig. 7).

In the groundwater, total abundances per litre of all
layers (A–C) were five times higher in the traps
compared to the aquifer. In contrast, in the hyporheic
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Fig. 4. MDS ordination of the fractions ‘‘trap’’ and ‘‘aquifer’’ by the physico-chemical data. Data were aggregated by medians.

Naming of the aggregated samples. the first cipher indicates the number of the bore according to Table 1. A prefixed ‘‘H’’ denotes a

hyporheic trap. The cipher behind the slash indicates the layer (1 ¼ A, 2 ¼ B, 3 ¼ C) and the last letter the water fraction (T ¼ trap,

A ¼ aquifer).

Fig. 5. Boxplots of abundances and proportions of the most frequent and abundant taxa. trap content and aquifer samples.

J. Bork et al. / Limnologica 38 (2008) 105–115 111
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Fig. 6. MDS ordination of the invertebrate communities of the fractions ‘‘trap’’ and ‘‘aquifer’’. Data were processed on species level

and aggregated by means. Traps were excluded from the analysis when crustaceans were absent. Naming of the aggregated samples.

the first cipher indicates the number of the bore according to Table 1. A prefixed ‘‘H’’ denotes a hyporheic trap. The cipher behind

the slash indicates the layer (1 ¼ A, 2 ¼ B, 3 ¼ C) and the last letter the water fraction (T ¼ trap, A ¼ aquifer).

Table 4. Inside–outside ratios of total abundances per litre for different strata (ratios were aggregated by median over each strata)

Layer Fraction Ratio trap–aquifer

Trap Aquifer

Animals/L n Median Animals/L n Median

Hyporheic 4532 23 166.0 1520 23 54.0 3.4:1

A 5294 53 59.8 899 53 9.0 5.4:1

B 2289 71 11.8 340 71 2.5 5.1:1

C 782 85 3.1 139 85 0.5 4.8:1

J. Bork et al. / Limnologica 38 (2008) 105–115112
zone traps, abundances were only three times higher
(Table 4 and Fig. 7). There were no significant
differences between the groundwater layers A–C (Mann–
Whitney U-Test: p40.332), whereas differences between
all groundwater strata and the hyporheic zone were
significant (Mann–Whitney U-Test: po0.01).
Discussion

Water chemistry

Water of groundwater bores may be altered by
atmospheric contact or reduction processes within the
bore. Consequently, for measuring physico-chemical
parameters of the aquifer water, the complete contents
of a bore have to be purged twice (DVWK (Deutscher
Verband für Wasserwirtschaft und Kulturbau), 1990;
Knehr et al., 1996). Hahn (2005) argues that this
requirement also applies to the water of the trap hoses,
and that hose water must therefore be discarded from
analysis. This suggestion is confirmed by the data
presented here. The statistical analysis detected highly
significant differences for most of the physico-chemical
parameters between hose water and both the trap
content and the aquifer water. According to Knehr
et al. (1996) and DVWK (Deutscher Verband für
Wasserwirtschaft und Kulturbau) (1990), the question
arises as to whether hydro-chemical samples taken from
the trap content accurately reflect the true situation of
the aquifer.

Hahn (2003) found differences in pH and DO between
trap water and aquifer, which seems to be attributed to
air bubbles in the upper part of a trap originating from
the installation of the trap system. Furthermore oxygen
consumption by decomposition of detritus at the trap
bottom should be taken into consideration. In the study
presented here, no significant divergences between trap
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Fig. 7. Boxplots of abundance, taxonomic richness and abundance-based inside–outside ratio. Comparison of the different strata

inclusive hyporheic zone (HZ).
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and aquifer water were found, although they did occur
in some individual cases (e.g. hyporheic traps H3
and H4, see Fig. 4, MDS). This is consistent with
the findings of previous studies (Hahn, 2005; Hahn
and Matzke, 2005; Schmidt et al., 2004). However,
the differences between trap and aquifer water found in
the hyporheic zone, might be a result of low hydraulic
conductance of the surrounding sediment, which leads
to shortcuts with surface water, while pumping. It seems
that aquifer conditions are satisfactorily reflected by
water samples from unbaited phreatic traps, and that
water sampled from traps is representative of the
surrounding aquifer.
Fauna

The use of unbaited phreatic traps raises the question
of whether invertebrate communities from the aquifer
are captured representatively (in terms of abundances
and taxonomic composition). The data presented here
show significant differences between abundances in
the trap and aquifer samples. Densities of invertebrate
fauna per litre were considerably higher in the trap
water than in the aquifer water. Also, more taxa were
sampled from the traps, but percentages of these taxa
were comparable between traps and the aquifer. Thus,
taxonomic composition of the trap and aquifer samples
is similar.

These findings are in accordance with the results of
Hahn (2005) and Hahn and Matzke (2005). Unfortu-
nately, the data used by Hahn (2005) was too small for a
resilient analysis, and therewith indicated just a trend,
while Hahn and Matzke (2005) compared the content
of monitoring bores with the surrounding aquifer.
However, since bores act like traps (Culver and Sket,
2000; Mathieu et al., 1991; Matzke, 2006; Steenken,
1998), their results should also be valid for traps, and
our findings support this, since taxonomic compositions
are similar.

On the other hand, it seems that groundwater animals
are attracted by traps, which would explain their
significantly higher abundances within the traps. The
preference to colonise traps or bores probably results
from a better food supply due to the enrichment of
detritus within the bores and a more spacious habitat
in contrast to the surrounding aquifer (Hahn and
Matzke, 2005; Steenken, 1998). Many studies indicate
the significance of organic matter for hyporheic and
groundwater invertebrates (Brunke and Gonser, 1999;
Datry et al., 2005; Gibert and Deharveng, 2002), and
numbers of taxa and abundances are often found to
correlate positively with organic matter (Hahn, 2006;
Strayer et al., 1997). Food and oxygen supply decrease
with increasing depth as a result of decreasing exchange
with surface water, but the strength of decline depends
on hydrological characteristics of the aquifer (Brunke
and Gonser, 1997). As a result, invertebrate densities
and species richness also decrease with increasing depth
(Strayer, 1994).

Hahn (2005) assumed an underestimation of abun-
dances of the well-populated near-surface groundwater
and an overestimation of the abundances of ground-
waters with a poor fauna. This apprehension was
derived from an observation made by Panek (1994),
who found that the activity rate of hyporheic inverte-
brate fauna increases with sediment depth. Active trap
performance is positively correlated with invertebrate
fauna activity rate. Activity rate was found to be much
higher when environmental conditions were harsh for
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fauna and lower when living conditions were better
(Panek, 1994). Mösslacher and Creuzé des Châtteliers
(1996) found epigean Asellus aquaticus characterised by
a low activity rate and a high feeding rate. Whereas
hypogean A. aquaticus showed a high movement activity
due to marginal food resources in groundwater habitats
and a low feeding rate as a result of a reduced
metabolism.

In other words, abundances of traps samples might be
overestimated under harsh, and underestimated under
good, conditions. With increasing depth, environmental
conditions for groundwater fauna degrade as a result of
decreasing food and oxygen supply (Brunke and
Gonser, 1999; Datry et al., 2005), and invertebrate
densities and species richness also decrease with
increasing depth (Dôle-Olivier, 1998; Dumas et al.,
2001; Hahn, 2005; Strayer, 1994). Hahn (2005) thus
suspected an overestimation of abundances particularly
in deeper groundwater when compared to near-surface
groundwater.

However, the data presented here show that in-
side–outside ratio of abundances was roughly 5:1 in all
layers of the groundwater, and in the hyporheic zone
it was significantly lower (3:1). This implies that
in groundwater, differences of living conditions and
activity rate of the fauna were negligible for all depths
investigated – probably the result of the generally bad
living conditions in the groundwater (Gibert and
Deharveng, 2002). In contrast, in the hyporheic zone,
living conditions in terms of food and oxygen supply
seem to be significantly better than in the groundwater,
which leads to lower activity rates of the fauna and thus
to a smaller inside–outside ratio of abundances in the
hyporheic traps. Hence, biases of abundances suspected
due to the use of traps are considered to be negligible in
the groundwater, though comparisons between ground-
water and hyporheic abundances ascertained by traps
should be regarded carefully.
Conclusion

The scope of this study was to evaluate the sampling
efficiency of unbaited phreatic traps. The data presented
here imply that samples taken from unbaited traps seem
to reflect the physico-chemical conditions of the aquifer
satisfactorily, but hose water has to be discarded. The
faunal composition of the aquifer is obviously reflected
representatively by the traps, in terms of abundance and
taxonomic composition. A bias of the abundance data
by overestimating groundwater fauna of poorly popu-
lated aquifers (compared to abundantly populated ones)
was not verified for the groundwater, but might be a
problem to some degree when comparing groundwater
to hyporheic trap samples. Thus, it is concluded that
unbaited phreatic traps are suitable for a wide range of
groundwater ecological purposes, but caution should be
taken when comparing faunal communities collected
from different groundwater habitats with groundwater
related ecotones (e.g. hyporheic zone).
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