g-Functions and some related spaces

Er-Guang Yang

School of Mathematics & Physics, Anhui University of Technology, Maanshan 243002, PR China

ARTICLE INFO

Article history:
Received 1 May 2012
Received in revised form 28 August 2012
Accepted 28 August 2012

MSC:
54E35
54E99

Keywords:
g-Functions
Metrizability conditions
γ-Spaces
Nagata spaces

ABSTRACT

We present some conditions which guarantee that a topological space is metrizable in terms of g-functions and we characterize some generalized metric spaces in various ways which are different from those appeared in the literature.

1. Introduction

The notion of g-functions was introduced by Heath [1] to characterize developable spaces. It turned out later that g-functions are useful tools in characterizing generalized metric spaces. Moreover, we can see more clearly the interrelations between some topological spaces when they are characterized with g-function.

g-Functions are also useful tools in defining new classes of topological spaces. In [5], Hodel introduced several classes of generalized metric spaces, such as γ-spaces, wN-spaces and wγ-spaces with g-functions. These spaces were shown to play important roles in the metrizability of topological spaces. However, the metrization theorems appeared in the literature which are formulated with g-functions all take the form that a space X is metrizable if and only if there is a g-function for X satisfying condition (A) and there is another g-function for X satisfying condition (B). For example, Martin [7] proved that a Hausdorff space X is metrizable if and only if it is a quasi-Nagata, γ-space. In this paper, we shall characterize metric spaces with g-functions in a direct way.

Consider the following conditions imposed on a g-function:

(1) if \(g(n, x) \cap g(n, x_n) \neq \emptyset \) for all \(n \in \mathbb{N} \), then \(x \) is a cluster point of \(\langle x_n \rangle \);
(2) if \(\{ x, x_n \} \subset g(n, y_n) \) for all \(n \in \mathbb{N} \), then \(x \) is a cluster point of \(\langle x_n \rangle \);
(3) if \(y_n \in g(n, x) \) and \(x_n \in g(n, y_n) \) for all \(n \in \mathbb{N} \), then \(x \) is a cluster point of \(\langle x_n \rangle \).

© 2012 Elsevier B.V. All rights reserved.

E-mail address: egyang@126.com.

0166-8641/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.topol.2012.08.031
It is known that Nagata spaces (resp. developable spaces) can be characterized with a g-function satisfying condition (1) (resp. condition (2)) and a space X has a g-function satisfying condition (3) is precisely a γ-space.

Now consider the following conditions:

(a) if $g^2(n,x) \cap g(n,x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(b) if $g(n,x) \cap g^2(n,x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(c) if $g(n,x) \cap g(n,x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(d) if $[x, z_n] \subseteq g(n, y_n)$ and $x_n \in g(n, z_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(e) if $y_n \in g(n,x)$ and $x_n \in g(n,y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n).

In this paper we consider the following natural question: If a space X has a g-function satisfying one of the above conditions, what space will X be?

Throughout, a space means a topological space and the set of all positive integers is denoted by \mathbb{N} while (x_n) denotes a sequence. τ and $C(X)$ denote the topology of X and the family of all compact subsets of X, respectively.

Definition 1.1. ([9]) A sequence of open covers $\{G_n\}_{n \in \mathbb{N}}$ of a space X is called a strong development for the space X if for every point $x \in X$ and any neighborhood U of x there exists a neighborhood V of x and $n \in \mathbb{N}$ such that $st(V, G_n) \subseteq U$.

It is easy to verify that a sequence of open covers $\{G_n\}_{n \in \mathbb{N}}$ of X is a strong development for X if and only if for each $x \in X$, $(st^2(x, G_n), n \in \mathbb{N})$ constitutes a base for X at the point x. Let $k \geq 2$; then by induction on k, one readily shows that a sequence of open covers $\{G_n\}_{n \in \mathbb{N}}$ of X is a strong development for X if and only if when $x_n \in st^k(x, G_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n).

Lemma 1.2. ([9]) A T_0 space X is metrizable if and only if it has a strong development.

A g-function for a space X is a map $g : \mathbb{N} \times X \to \tau$ such that for every $x \in X$ and $n \in \mathbb{N}$, $x \in g(n,x)$ and $g(n+1,x) \subseteq g(n,x)$.

Let g be a g-function for X and $A \subseteq X$. Define $g(n,A) = \bigcup\{g(n,y) : y \in A\}$ and $g^2(n,x) = g(n,g(n,x))$.

Consider the following conditions imposed on a g-function g:

(γ) if $y_n \in g(n,x)$ and $x_n \in g(n,y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(wN) if $g(n,x) \cap g(n,x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then (x_n) has a cluster point;

(Developable) if $[x, x_n] \subseteq g(n, y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(Nagata) if $g(n,x) \cap g(n,x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(σ) if $x \in g(n,y_n)$ and $y_n \in g(n,x_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(ss) if $x \in g(n, x_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n);

(ks) if $y_n \in g(n,x_n)$ for all $n \in \mathbb{N}$ and $y_n \to x$, then x is a cluster point of (x_n).

A space that has a g-function satisfying condition (γ) (resp. (wN)) is called a γ-space [5] (resp. wN-space [5]). It was proved respectively in [1–4,10] that developable (resp. Nagata, σ- assume regularity), semi-stratifiable, k-semi-stratifiable spaces can be characterized by a function g satisfying condition (developable) (resp. (Nagata), (σ), (ss), (ks)).

A function g that satisfies condition (γ) is called a γ-function. The others are defined analogously.

Remark 1.3. In conditions (γ), (developable), (Nagata), (σ), (ss) and (ks), it is equivalent to say that $x_n \to x$ (see [4]).

2. Metrizability conditions

In this section, we shall present some criteria for the metrizability of a topological space in terms of g-functions. To begin, we need the following lemma.

Lemma 2.1. ([5]) Every Hausdorff developable wN-space is metrizable.

Let X be a metric space, by letting $g(n,x) = B(x, \frac{1}{n})$ for each $x \in X$ and $n \in \mathbb{N}$, we get a g-function g for X which satisfies the conditions of the following Theorem 2.2 and Theorem 2.3. So the necessity of Theorem 2.2 and Theorem 2.3 is clear.

Theorem 2.2. A T_0 space X is metrizable if and only if there is a g-function g for X such that if $[x, z_n] \subseteq g(n, y_n)$ and $z_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of (x_n).
Proof. Let g be the function in the theorem. We show that if $x \neq y$ then $g(m(x)) \cap g(m(y)) = \emptyset$ for some $m \in \mathbb{N}$ which will then imply that X is Hausdorff. Assume that $g(n(x)) \cap g(n(y)) \neq \emptyset$ for all $n \in \mathbb{N}$; then x is a cluster point of $\langle x_n \rangle$ which follows that $x \in [y]$ and $y \in [x]$. This contradicts the fact that X is a T_0 space. It is clear that X is developable. Now suppose that $z_n \in g(n(x)) \cap g(n(x_n))$ for all $n \in \mathbb{N}$. It follows from $x \in g(n(x))$ that x is a cluster point of $\langle x_n \rangle$. Thus X is a wN-space. By Lemma 2.1, X is metrizable. \hfill \Box

Theorem 2.3. A Hausdorff space X is metrizable if and only if there is a g-function g for X such that for each $K \in C(X)$, if $K \cap g(n, y_n) \neq \emptyset$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then $\langle x_n \rangle$ has a cluster point in K.\hfill \Box

Proof. Let g be the function in the theorem. Suppose that $\langle x, x_n \rangle \in g(n, y_n)$ for all $n \in \mathbb{N}$. By letting $K = \{x\}$, we see that $\langle x_n \rangle$ has a cluster point in K. That is, x is a cluster point of $\langle x_n \rangle$. Thus X is developable. Now suppose that $y_n \in g(n, x) \cap g(n, x_n)$ for all $n \in \mathbb{N}$. Since $y_n \in g(n, x)$ and g is a developable function, by Remark 1.3, $y_n \rightarrow x$. Let $K = \{y_n: n \in \mathbb{N}\} \cup \{x\}$; then $K \in C(X)$ and $K \cap g(n, x_n) \neq \emptyset$ for all $n \in \mathbb{N}$. Thus $\langle x_n \rangle$ has a cluster point in K which implies that X is a wN-space. By Lemma 2.1, X is metrizable. \hfill \Box

Corollary 2.4. A Hausdorff space X is metrizable if and only if there is a sequence $\{U_n\}_{n \in \mathbb{N}}$ of open covers of X such that for each $K \in C(X)$, if $x_n \in st(K, U_n)$ for all $n \in \mathbb{N}$, then $\langle x_n \rangle$ has a cluster point in K.\hfill \Box

Proof. Necessity. Let g be a function satisfying the condition of Theorem 2.3. For each $n \in \mathbb{N}$, put $U_n = g(n(x)) \subseteq X$. Suppose that $K \in C(X)$ and $x_n \in st(K, U_n)$ for all $n \in \mathbb{N}$; then there exists $y_n \in X$ such that $K \cap g(n, y_n) \neq \emptyset$ and $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$. By Theorem 2.3, $\langle x_n \rangle$ has a cluster point in K.\hfill \Box

Proposition 2.5. A space X has a strong development if and only if there is a g-function g for X such that if $g^2(n, x) \cap g(n, x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$.\hfill \Box

Proof. Let $\{G_n\}_{n \in \mathbb{N}}$ be a strong development for X with $G_{n+1} \subseteq G_n$ for all $n \in \mathbb{N}$. For each $x \in X$ and $n \in \mathbb{N}$, put $g(n, x) = st(x, G_n)$; then g is a g-function for X. If $g^2(n, x) \cap g(n, x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then $x_n \in st^2(x, G_n)$. Thus x is a cluster point of $\langle x_n \rangle$.\hfill \Box

Theorem 2.6. A T_0 space X is metrizable if and only if there is a g-function g for X such that if $g^2(n, x) \cap g(n, x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$.\hfill \Box

Proof. Follows directly from Lemma 1.2 and Proposition 2.5. \hfill \Box

The referee reminded the author that there is a direct proof of the sufficiency of Theorem 2.6. We sketch it as follows.\hfill \Box

Proof. Suppose that there is a g-function g for X satisfying: if $g^2(n, x) \cap g(n, x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$. Clearly X is a Nagata space. We now show that X is also a γ-space and therefore X is metrizable (see [5]). Suppose that $x_n \in g(n, y_n)$ and $y_n \in g(n, x)$ for all $n \in \mathbb{N}$. Then $x_0 \in g^2(n, x) \cap g(n, x_n)$ for all $n \in \mathbb{N}$ and therefore x is a cluster point of $\langle x_n \rangle$. \hfill \Box

Lemma 2.7. ([8]) A T_0 space X is metrizable if and only if there is a sequence $\{F_n\}_{n \in \mathbb{N}}$ of locally finite closed covers of X such that for each $x \in X$ and any open neighborhood U of x, there is $n \in \mathbb{N}$ such that $st(x, F_n) \subseteq U$.\hfill \Box

Theorem 2.8. A T_0 space X is metrizable if and only if there is a g-function g for X satisfying the following conditions:

1. If $y \in g(n, x)$, then $g(n, y) \subseteq g(n, x)$;
2. If $g(n, x) \cap g(n, x_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$.\hfill \Box
3. Some related spaces

In this section, we shall give characterizations of some generalized metric spaces which are different from those in the literature.

Proposition 3.1. X is a γ-space if and only if there is a g-function g for X such that for each K ∈ C(X), if y_n ∈ g(n, K) and x_n ∈ g(n,y_n) for all n ∈ N, then <x_n> has a cluster point in K.

Proof. Sufficiency is clear.

Let g be a γ-function for X and K ∈ C(X). Suppose that y_n ∈ g(n, K) and x_n ∈ g(n, y_n) for all n ∈ N; then there is z_n ∈ K such that y_n ∈ g(n, z_n). From K ∈ C(X) it follows that {z_n} has a cluster point x ∈ K. Since y_n ∈ g(n, z_n), x_n ∈ g(n, y_n) and g is a γ-function, x is a cluster point of <x_n>. □

Proposition 3.2. A Hausdorff space X is a k-semi-stratifiable if and only if there is a g-function g for X such that for each K ∈ C(X), if K ∩ g(n, y_n) ≠ ∅ and y_n ∈ g(n, x_n) for all n ∈ N, then <x_n> has a cluster point in K.

Proof. Let g be a k-semi-stratifiable function for X and K ∈ C(X). Suppose that K ∩ g(n, y_n) ≠ ∅ and y_n ∈ g(n, x_n) for all n ∈ N. Choose z_n ∈ K ∩ g(n, y_n). Since K ∈ C(X) and each point of X is a G_{δ}, there is a subsequence {z_{n_k}} of {z_n} converging to some point x ∈ K. Since z_{n_k} ∈ g(k, y_{n_k}), y_{n_k} ∈ g(k, x_{n_k}) and g is a k-semi-stratifiable function, we have that x is a cluster point of <x_n>.

Now let g be the function in the theorem and suppose that y_n ∈ g(n, x_n) for all n ∈ N and y_n → x. If x is not a cluster point of <x_n>, then there is m ∈ N such that x ∈ X \ {x_n: n ≥ m} = U. Since y_n → x, there is k ≥ m such that {y_n: n ≥ k} ⊂ U. Let K = {y_n: n ≥ k} ∪ {x}; then K ∈ C(X) and K ∩ g(n, y_n) ≠ ∅ for all n ≥ k. Since y_n ∈ g(n, x_n), it follows that <x_{n_k}> has a cluster point in K ⊂ U, a contradiction. Therefore x is a cluster point of <x_n>. □

Proposition 3.3. A T_{0} space X is a Nagata space if and only if there is a g-function g for X such that if g(n, x) ∩ g^{2}(n, x_n) ≠ ∅ for all n ∈ N, then x is a cluster point of <x_n>.

Proof. Sufficiency is clear.

To prove the necessity, let g be a Nagata function for X and suppose that g(n, x) ∩ g^{2}(n, x_n) ≠ ∅ for all n ∈ N. Choose y_n ∈ g(n, x) ∩ g^{2}(n, x_n); then y_n ∈ g(n, x) and there is z_n ∈ X such that y_n ∈ g(n, z_n) and z_n ∈ g(n, x_n). Thus g(n, x) ∩ g(n, z_n) ≠ ∅ which follows that x is a cluster point of <x_n>. There exists a subsequence {z_{n_k}} of {z_n} such that z_{n_k} ∈ g(k, x) for all k ∈ N. Since z_{n_k} ∈ g(n_k, x_{n_k}) ⊂ g(k, x_{n_k}), we have g(k, x) ∩ g(k, x_{n_k}) ≠ ∅. Hence x is a cluster point of <x_{n_k}> and so of <x_n>. □

Let X be a set, a function d : X × X → R^{+} (where R^{+} denotes the set of all nonnegative real numbers) is called a quasi-metric on X if:

(i) d(x, y) = 0 if and only if x = y;
(ii) for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

If d is a quasi-metric on X, let d^{-1}(x, y) = d(y, x) for all x, y ∈ X. Then d^{-1} is also a quasi-metric on X. Denote by τ_d and τ_{d^{-1}} the topologies on X generated by d and d^{-1}, respectively. If τ_d ⊂ τ_{d^{-1}}, then d is called a strong quasi-metric.

A space (X, τ) is called strongly quasi-metrizable [6] if there exists a strong quasi-metric d on X such that τ = τ_d.

Lemma 3.4. ([6]) A T_{1} space X is strongly quasi-metrizable if and only if it is a semi-stratifiable γ-space.

Theorem 3.5. A T_{1} space X is strongly quasi-metrizable if and only if there is a g-function g for X such that if {x, z_n} ⊂ g(n, y_n) and x_n ∈ g(n, z_n) for all n ∈ N, then x is a cluster point of <x_n>.
Proof. Suppose that X is strongly quasi-metrizable and let h be a γ-function and l a semi-stratifiable function for X respectively. For each $x \in X$ and $n \in \mathbb{N}$, put $g(n, x) = h(n, x) \cap l(n, x)$. Suppose that $\{x, z_n\} \subset g(n, y_n)$ and $x_n \in g(n, z_n)$ for all $n \in \mathbb{N}$. Since $x \in g(n, y_n) \subset h(n, y_n)$ and l is a semi-stratifiable function, x is a cluster point of $\langle y_n \rangle$. There is a subsequence $\langle y_{n_k} \rangle$ of $\langle y_n \rangle$ such that $y_{n_k} \in h(k, x)$ for all $k \in \mathbb{N}$. Since $z_{n_k} \in g(n_k, y_{n_k}) \subset h(k, y_{n_k})$ and h is a γ-function, x is a cluster point of $\langle z_{n_k} \rangle$. There is a subsequence $\langle z_{n_{k_j}} \rangle$ of $\langle z_{n_k} \rangle$ such that $z_{n_{k_j}} \in h(j, x)$ for all $j \in \mathbb{N}$. With a similar argument, we see that x is a cluster point of $\langle x_{n_{k_j}} \rangle$ and thus of $\langle x_n \rangle$.

Now, if X has a g-function g satisfies the condition of the theorem, then it is clear that g is both a semi-stratifiable function and a γ-function. Therefore X is strongly quasi-metrizable by Lemma 3.4. □

It is easy to verify that if a g-function g for X satisfies conditions $\langle \gamma \rangle$ and $\langle \sigma \rangle$, then it also satisfies the following condition: if $\{x, x_n\} \subset g^2(n, y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$, and vice versa. It is known that a developable space has a σ-locally finite closed network and thus has a g-function satisfying condition $\langle \sigma \rangle$. Since a strongly quasi-metrizable space is developable, we have the following:

Theorem 3.6. A T_1 space X is strongly quasi-metrizable if and only if there is a g-function g for X such that if $\{x, x_n\} \subset g^2(n, y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$.

Lemma 3.7. Let X be a regular space and h a g-function for X; then there is a g-function g for X such that $\overline{g(n, x)} \subset h(n, x)$ for each $x \in X$ and $n \in \mathbb{N}$.

Proof. Since X is regular, there is an open neighborhood $U_n(x)$ of x such that $\overline{U_n(x)} \subset h(n, x)$ for each $x \in X$ and $n \in \mathbb{N}$. Let $g(n, x) = \bigcap_{1 \leq n} U_l(x)$; then g is a g-function for X with $g(n, x) \subset \overline{U_n(x)} \subset h(n, x)$ for each $x \in X$ and $n \in \mathbb{N}$. □

Proposition 3.8. A T_0 space X is a Nagata space if and only if there is a g-function g for X such that if $\overline{g(n, x)} \cap \overline{g(n, x_n)} \neq \emptyset$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$.

Proof. Sufficiency is obvious.

Let h be a Nagata function for X. Since X is regular, by Lemma 3.7, there is a g-function g for X such that $\overline{g(n, x)} \subset h(n, x)$ for each $x \in X$ and $n \in \mathbb{N}$. Suppose that $\overline{g(n, x)} \cap \overline{g(n, x_n)} \neq \emptyset$ for all $n \in \mathbb{N}$; then $h(n, x) \cap h(n, x_n) \neq \emptyset$. Since h is a Nagata function, x is a cluster point of $\langle x_n \rangle$. □

Proposition 3.9. For a space X, the following are equivalent:

(a) X is a regular γ-space;
(b) there is a g-function g for X such that if $y_n \in g(n, x)$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$;
(c) there is a g-function g for X such that if x is a cluster point of $\langle y_n \rangle$ (or $y_n \rightarrow x$) and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\langle x_n \rangle$.

Proof. (a) \Rightarrow (b) Similar to the proof of the necessity of Proposition 3.8.

(b) \Rightarrow (c) Let g be the function in (b) and suppose that x is a cluster point of $\langle y_n \rangle$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$. Then there is a subsequence $\langle y_{n_k} \rangle$ of $\langle y_n \rangle$ such that $y_{n_k} \in g(k, x) \subset \overline{g(k, x)}$ for all $k \in \mathbb{N}$. Since $x_{n_k} \in g(n_k, y_{n_k}) \subset \overline{g(k, y_{n_k})}$, x is a cluster point of $\langle x_{n_k} \rangle$ and thus of $\langle x_n \rangle$.

(c) \Rightarrow (a) Let g be the function in (c); then it is clear that X is a γ-space. Next, we show that for each $x \in X$ and any open neighborhood U of x there is a σ-locally finite closed network such that $\overline{g(m, x)} \subset U$ which will then imply that X is regular. Assume that there exist $x \in X$ and an open neighborhood U of x such that $\overline{g(m, x)} \setminus U \neq \emptyset$ for all $n \in \mathbb{N}$. Choose $x_n \in \overline{g(n, x)} \setminus U$ for each $n \in \mathbb{N}$. Since x is a cluster point of $\langle x \rangle$, by (c), x is a cluster point of $\langle x_n \rangle$, a contradiction. □

Theorem 3.10. For a space X, the following are equivalent:

(1) X is a regular γ-space;
(2) there is a g-function g for X such that for each $K \in \mathcal{C}(X)$ and $U \in \tau$ with $K \subset U$, there is $m \in \mathbb{N}$ such that $\overline{g(m, K)} \subset U$;
(3) there is a g-function g for X such that for each $K \in \mathcal{C}(X)$, if $x_n \in \overline{g(m, K)}$ for all $n \in \mathbb{N}$, then $\langle x_n \rangle$ has a cluster point in K;
(4) there is a g-function g for X such that if $x_n \rightarrow x$, then for any open neighborhood U of x and each $n \in \mathbb{N}$, there is $m \geq n$ such that $g(m, x_n) \subset U$.

Proof. (1) \Rightarrow (2) Let g be a γ-function for X. Let $K \in \mathcal{C}(X)$ and $U \in \tau$ with $K \subset U$. Since X is regular, there exists an open subset V of X such that $K \subset V \subset \overline{V} \subset U$. We shall show that there is $m \in \mathbb{N}$ such that $g(m, K) \subset V$. Assume that $g(m, K) \setminus V \neq \emptyset$ for all $n \in \mathbb{N}$ and choose $x_n \in g(n, K) \setminus V$; then there is $y_n \in K$ such that $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$. Then
\(\langle y_n \rangle \) has a cluster point \(p \in K \subset V \). Since \(g \) is a \(\gamma \)-function, \(p \) is a cluster point of \(\langle x_n \rangle \), a contradiction. Now \(g(m, K) \subset V \subset U \) as required.

(2) \(\Rightarrow \) (3) Let \(g \) be the function in (2) and suppose that \(K \in C(X) \) and \(x_n \in g(n, K) \) for all \(n \in \mathbb{N} \). Assume that \(\langle x_n \rangle \) has no cluster point in \(K \); then there is \(m \in \mathbb{N} \) such that \(K \subset X \setminus \{ x_n : n \geq m \} = U \). From (2) it follows that there is \(j \geq m \) such that \(g(j, K) \subset U \). Hence \(x_j \in g(j, K) \subset U \), a contradiction. Therefore, \(\langle x_n \rangle \) has a cluster point in \(K \).

(3) \(\Rightarrow \) (4) Let \(g \) be the function in (3) and suppose that \(x_n \rightarrow x \). Assume that there exist an open neighborhood \(U \) of \(x \) and \(m \in \mathbb{N} \) such that \(g(n, x_n) \setminus U \neq \emptyset \) for all \(n \geq m \). Since \(x_n \rightarrow x \), there is \(j \geq m \) such that \(\{ x_j : n \geq j \} \subset U \). Let \(K = \{ x_i : n \geq j \} \cup \{ x \} \); then \(K \in C(X) \) and \(K \subset U \). For each \(n \geq j \), choose \(y_n \in g(n, x_n) \setminus U \); then \(y_n \in g(n, K) \) for all \(n \geq j \).

By (3), \(\langle x_n \rangle \) has a cluster point in \(K \subset U \), a contradiction.

(4) \(\Rightarrow \) (1) Let \(g \) be the function in (4) and suppose that \(y_n \rightarrow x \) and \(x_n \in g(n, y_n) \) for all \(n \in \mathbb{N} \). Assume that \(x \) is not a cluster point of \(\langle x_n \rangle \); then there is \(m \in \mathbb{N} \) such that \(x \in X \setminus \{ x_n : n \geq m \} = U \). Since \(y_n \rightarrow x \), by (4), there is \(k \geq m \) such that \(g(k, y_k) \subset U \). From \(x_k \in g(k, y_k) \) it follows that \(x_k \in U \), a contradiction. By Proposition 3.9, \(X \) is a regular \(\gamma \)-space.

Corollary 3.11. For a space \(X \), the following are equivalent:

1. \(X \) is a regular \(\gamma \)-space;
2. there is a \(g \)-function \(g \) for \(X \) such that if \(x \notin F \) with \(F \) closed and \(x_n \rightarrow x \), then for each \(n \in \mathbb{N} \) there is \(m \geq n \) such that \(F \cap g(n, x_m) = \emptyset \);
3. there is a \(g \)-function \(g \) for \(X \) such that for each closed subset \(F \subset X \) and \(K \in C(X) \) with \(F \cap K = \emptyset \), there exists \(m \in \mathbb{N} \) such that \(F \cap g(m, K) = \emptyset \).

Proof. Follows directly from Theorem 3.10.

Proposition 3.12. \(X \) is a Moore space (i.e. regular developable space) if and only if there is a \(g \)-function \(g \) for \(X \) such that if \(\{ x, x_n \} \subset g(n, y_n) \) for all \(n \in \mathbb{N} \), then \(x \) is a cluster point of \(\langle x_n \rangle \).

Proof. Similar to the proof of Proposition 3.9.

Acknowledgement

The author would like to thank the referee for his (her) valuable comments.

References