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An important, but not well understood, function of epithelial

cells is their ability to sense changes in their extracellular

environment and then communicate these changes to the

underlying nervous, connective, and muscular tissues. This

communication is likely to be important for tube- and

sac-shaped organs such as blood vessels, the lungs, the gut,

and the bladder, whose normal function can be modulated

by stimuli initiated within the epithelium. We propose that

the uroepithelium, which lines the renal pelvis, ureters, and

inner surface of the bladder, functions as an integral part of

a ‘sensory web.’ Through uroepithelial-associated channels

and receptors, the uroepithelium receives sensory ‘inputs’ such

as changes in hydrostatic pressure and binding of mediators

including adenosine triphosphate (ATP). These input signals

stimulate membrane turnover in the outermost umbrella cell

layer and release of sensory ‘outputs’ from the uroepithelium

in the form of neurotransmitters and other mediators that

communicate changes in the uroepithelial milieu to the

underlying tissues, altering their function. The global

consequence of this sensory web is the coordinated function

of the bladder during the cycles of filling and voiding, and

disruption of this web is likely to lead to bladder dysfunction.
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THE UROEPITHELIUM AND ITS INNERVATION

The uroepithelium is stratified and is comprised of three cell
types, including basal cells, intermediate cells, and umbrella
cells and like other epithelia it is in communication with the
underlying tissue.1–4 The outer umbrella cell layer interfaces
with urine and forms the primary barrier that includes a
mucin/glycosaminoglycan layer, which may prevent bacterial
attachment and diffusion of urine components across the
epithelium,5 and an apical plasma membrane with low
permeability to urea and water.6 In addition, umbrella cell
tight junctions form a tight seal between adjacent cells, and
are comprised of multiple claudin species including claudin-
1, -3, -4, -5, -7, -8, -12, and possibly claudin-13,7,8 which
regulate paracellular transport. The uroepithelium maintains
the barrier even as the bladder undergoes cycles of filling and
voiding. This accommodation likely reflects the ability of the
highly wrinkled mucosal surface of the bladder to unfold, and
the increases in mucosal surface area that result from fusion
of a population of subapical discoidal/fusiform vesicles with
the apical plasma membrane of the umbrella cell layer. Upon
voiding, the mucosa refolds, and the membrane added to the
apical surface of the umbrella cells is thought to be recovered
by endocytosis.4

Recent studies indicate that the uroepithelium is inti-
mately associated with the nervous system. Capsaicin-
sensitive transient receptor potential channel, vanilloid
subfamily member 1 (TRPV1)-positive primary afferent
neurons are localized near to and within the uroepithelium,
and are also in close proximity to blood vessels and
smooth muscle cells. They exhibit a sensory and also an
‘efferent’ function that is mediated by release of peptides
such as substance P and calcitonin gene-related peptide,
which can affect bladder function and participate in
sensory transmission within the spinal cord.9,10 As described
below, these inputs may also regulate the function of
the uroepithelium. In addition, cholingeric (choline acetyl-
transferase positive) and adrenergic (tyrosine hydroxylase
positive) nerve fibers are detected just below the uroepithe-
lium, which may indicate the presence of efferent innervation
as well. However, in guinea pig bladder some choline
acetyltransferase-positive immunoreactivity near the uro-
epithelium may be present in sensory rather than efferent
nerves.11

In addition to the nervous system, myofibroblasts are
found in the suburothelial space of the bladder in both
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humans and animals.12 These cells, which arise from
fibroblasts that undergo differentiation into smooth muscle
-like cells, are extensively linked by gap junctions and have
close contact with nerves. They can respond to neurotrans-
mitters, such as ATP released from nerves or uroepithelial
cells, indicating that they could act as intermediaries in
urothelial–nerve interactions.12

THE UROEPITHELIAL-ASSOCIATED SENSORY WEB

In addition to acting as the primary barrier in the bladder,
new data indicate that the uroepithelium may function as an

integral part of a ‘sensory web.’ This web includes the
uroepithelium, closely apposed nerve fibers, interstitial cells,
including myofibroblasts and mast cells, and the detrusor/
sphincter muscles (Figure 1). The overall purpose of the
sensory web is to coordinate the function of the bladder and
its associated tissues. In the following sections, we describe
how the uroepithelium receives extracellular signals, the
impact these signals have on uroepithelial function, and how
release of mediators by the uroepithelium can communicate
changes in its environment to the underlying tissues and thus
regulate bladder function.

Sensory input

?

Distention

GF

GF

GFR

GFR

NcR NcR

NkR

MsR

P2X P2X

Uroepithelium

TRP

TRP

1

5

63

2

2

2

2

2

3

ACh

3

3

3 4

AdR

P2X P2Y

ENaC

2

2

ATP

ATP

ATP

NE

SP
Efferent nerve processes

Afferent nerve processes
Smooth muscle

ACh

ACh

Ad

P2Y

MsR

AdR

PaR

BkR

αβAR

Ad

Figure 1 | The uroepithelial-associated sensory web. (a) Bladder distention during filling, or soluble mediators found in urine (1) or released
from the uroepithelium (2), adjacent afferent/efferent nerve processes (3), or smooth muscle cells act as sensory inputs to stimulate cell surface
receptors/channels present on the apical surface of the umbrella cells (5), the basolateral surfaces of the umbrella cells (6), and the plasma
membranes of the underlying intermediate and basal cells. For clarity the intermediate/basal cell layers and interstitial cells are not shown, but
are likely to play a significant role in the signaling web. (b) Receptor binding or channel activation results in changes in the uroepithelium
including membrane turnover (i.e. exocytosis/endocytosis) at the apical plasma membrane of the umbrella cell (and possibly at the other
plasma membrane domains of the uroepithelium) (7), and release of sensory outputs such as acetylcholine, adenosine, ATP, NO, and
prostaglandins (8). (c) These sensory outputs can act in an autocrine manner to further alter uroepithelial function (2), or can bind to receptors
on sensory afferent nerve processes (9) and/or bladder-associated smooth muscle (10) to regulate nervous and muscular function. Outputs may
also affect efferent nerve processes (11). Hashed lines indicate presumptive pathways. Legend: a,b-AR, a,b -adrenergic receptor; Ach,
acetylcholine; Ad, adenosine; AdR, adenosine receptor; ATP, adenosine triphosphate; BkR, brandykinin receptor; ENaC, epithelial sodium
channel; GF, growth factor; GFR, growth factor receptor; MsR, muscarinic receptor; NcR, nicotinic receptor; NE, norepinephrine; NkR, neurokinin
receptor; NO, nitric oxide; PaR, proteinase-activated receptor; PGs, prostaglandins; SP, substance P; Trp, trp channel family member.
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SENSORY INPUT PATHWAYS

The uroepithelium receives ‘sensory inputs’ in a number of
different forms and from a variety of sources (Figure 1a).
These inputs include mechanical stimuli such as the
increased stretch associated with bladder filling, soluble
mediators such as growth factors found in the urine (e.g.
epidermal growth factor (EGF)), or neurotransmitters such
as ATP, adenosine, substance P, acetylcholine, or norepi-
nephrine released from nerve processes or other cell/tissue
types including the uroepithelium itself (Figure 1a).13–16 The
uroepithelium is primed to receive these input signals by
expressing a growing list of receptors and ion channels,
including the following: EGF family ErbB1–3 receptors,17 A1,
A2a, A2b, and A3 adenosine receptors,18 a- and b-adrenergic
receptors,19,20 bradykinin receptors,21 neurokinin receptor,22

nicotinic and muscarinic receptors (M1–M5),3,23,24 puriner-
gic P2X1–7 and P2Y1,2,4 receptors,14,25–30 protease-activated
receptors,31 the epithelial sodium channel,32–34 and the TRP

family channels TRPV1, TRPV2, TRPV4, and TRPM8.3,35–37

Further work is sure to identify other mediators, signaling
receptors, and channels that will further act as signal inputs
for the uroepithelium.

IMPACT OF SENSORY INPUT PATHWAYS ON UROEPITHELIAL
FUNCTION

Stimulation of uroepithelial-associated input pathways can
lead to changes in the function of the uroepithelium,
including increased membrane traffic and ion transport
and alterations of barrier function (Figure 1b).38–41 As
described above, membrane trafficking pathways such as
exocytosis/endocytosis in the umbrella cell layer plays an
important role in maintaining the barrier function of the
uroepithelium. However, exocytosis/endocytosis are also
likely to play crucial roles in the sensory web, because these
pathways regulate the composition of receptors and channels
at the surface of the umbrella and other uroepithelial cells.
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Figure 1 | Continued.
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Furthermore, exocytosis is likely to play an important role in
the release of mediators from the uroepithelium that allow
communication with other cell types in the sensory web (see
discussion below).

It is unknown whether all input pathways stimulate
increased membrane turnover, however, we have observed
that extracellular ATP (released from the uroepithelium) is an
important autocrine mediator that acts as a proximal signal
for both stretch-induced exocytosis and endocytosis.14 In
addition, we observe that adenosine, most likely acting
through A1 and A2a receptors, stimulates membrane turnover
in the umbrella cell layer and enhances stretch-induced
changes in membrane traffic.18 The signaling pathways that
act downstream of ATP/adenosine to stimulate membrane
traffic are not well understood, but are likely to involve
changes in [Ca2þ ]I.

14,18 Other studies show that stretch-
induced exocytosis is regulated by cAMP and its downstream
effector PKA.38

Most recently, we reported that long-term changes in
stretch-regulated exocytosis are dependent on EGF receptor
autoactivation at the apical surface of the umbrella cell layer,
downstream of heparin-binding EGF-like growth factor
cleavage by a putative metalloproteinase.42 Changes in apical
exocytosis depend on protein synthesis, which occurs upon
EGF receptor-dependent activation of downstream mitogen-
activated protein kinase signaling pathways. In other cell
types elevated [Ca2þ ]I and activation of G-protein coupled
receptors promote proteolytic processing and release of ErbB
family ligands such as heparin-binding EGF-like growth
factor, which rapidly bind to and activate the EGF receptor in
a process known as transactivation.43 While experimental
evidence is forthcoming, transactivation of EGF receptors
may be a common pathway for various input pathways to
stimulate membrane turnover in the uroepithelium. Future
studies are sure to significantly increase our understanding of
the signaling pathways involved in transactivation and
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whether there is specificity in terms of which input pathway
is stimulated. By blocking transactivation pathways it may be
possible to slow or prevent the release of mediators from the
uroepithelium, which as described below may have ther-
apeutic benefit.

Bladder filling not only stimulates exocytosis, but
endocytosis as well, although the net effect of stretch is of
an increase in surface area.38 Beyond stretch and ATP, the
stimuli and signaling cascades that regulate endocytosis are
unknown. The endocytosed membrane components may be
delivered to lysosomes where they are degraded.38 It may
seem counterintuitive that hydrostatic pressure would
simultaneously induce exocytosis and endocytosis; however,
hydrostatic pressure-induced endocytosis would modulate
the increase in apical surface area brought about by
exocytosis, ensure turnover of membrane components, and
importantly for the uroepithelial-associated sensory web it
would regulate the number and function of receptors and
channels at the cell surface.

SENSORY OUTPUT FROM THE UROEPITHELIUM

In addition to stimulating membrane traffic in the uro-
epithelium, sensory inputs can stimulate the release of
‘sensory outputs’ from the uroepithelium including growth
factors, neurotransmitters, and other mediators (Figure 1b).3

The nature of the signaling pathways that act downstream of
the input pathways to stimulate the production of these
mediators and the mechanism(s) of their release are currently
unknown. However, once released, the sensory outputs are
likely to act in an autocrine manner to further modify
uroepithelial function (Figure 1c). In addition, they can act in
a paracrine manner to modulate other cells and tissues
associated with the broader sensory web (Figure 1c).3

Potentially important sensory outputs produced by the
uroepithelium include acetylcholine, adenosine, ATP, nitric
oxide (NO), and prostaglandins.3,13–15,18,19,44,45 Other studies
have demonstrated that the uroepithelium can modulate the
spontaneous activity of the smooth muscle46 or muscle
contraction, possibly via release of a soluble factor.47,48

NO is released from the uroepithelium in response to
norepinephrine (an a/b-adrenergic receptor agonist), capsai-
cin (a neurotoxin that activates TRPV1 channels), and
isoproterenol (a b-adrenoceptor agonist), and may have
several functions including relaxation of smooth muscle,
modulation of afferent and efferent nerve functions, and
regulation of uroepithelial barrier function.3,20 Prostaglan-
dins are also released from the uroepithelium in response to
stretch and may play roles in modulation of nerve and
detrusor functions.3 ATP is released from both surfaces of the
uroepithelium in response to stretch13–15 and can act via
P2X2- and P2X3-containing receptors present on the
uroepithelium to stimulate stretch-induced exocytosis in
the uroepithelium.14 The expression of P2X and P2Y
purinergic receptor subtypes in nerve fibers and myofibro-
blasts located at or near the luminal surface of the
bladder10,12,49 and the sensitivity of these cells to ATP

(indicated by an ATP-induced increase in [Ca2þ ]i)
2 suggests

that basolateral ATP release from the uroepithelium may also
influence the function of myofibroblasts and nerves. In
addition, intercellular communication mediated by gap
junctions in myofibroblasts could provide a mechanism for
long-distance spread of signals from the uroepithelium to the
detrusor muscle.12 Adenosine is also produced by the
uroepithelium and is released from both cell surfaces,
particularly from the serosal surface of stretched epithe-
lium.18 It may play important roles in modulating sensory
afferent function and the contraction of smooth muscle.

Recent studies have shown that urothelial cells express the
plasma membrane choline transporter, the acetylcholine-
synthesizing enzymes choline acetyltransferase and carnitine
acetyltransferase, and the enzyme responsible for metabolism
of acetylcholine (acetylcholinesterase).50,51 Furthermore, the
uroepithelium releases acetylcholine following both mechan-
ical and chemical stimulation. Once released, there are a
number of sites where urothelial-derived acetylcholine could
exert its effects including smooth muscles, nerves, and
uroepithelial associated-muscarinic and/or nicotinic recep-
tors, thereby participating in feedback mechanisms to modify
urothelial function (Figure 1c). Because stimulation of
cholinergic receptors in urothelial cells elicits the release of
NO and ATP, cholinergic mechanisms in the uroepithelium
could alter bladder sensation indirectly by triggering
purinergic stimulation of nearby afferent nerves.

TRANSMURAL SIGNALING PATHWAYS

Sensory input at the apical surface of the umbrella cell layer
can regulate bladder function via a ‘transmural signaling’
pathway (Figure 2). This is a subset of the signaling pathways
shown in Figure 1a and allows input signals to be transmitted
from the urinary space to the underlying tissues via the
mucosal surface of the umbrella cell layer. The secondary
messenger cascades that occur downstream of apical input,
and the mediators released from the umbrella cells remain to
be fully characterized. Although our understanding of these
pathways is in its infancy, they may hold significant promise
in increasing our comprehension of the sensory web and for
the design of therapies that can modulate bladder function by
targeting specific tissues and pathways in the sensory web.

The presence of transmural signaling pathways are
suggested by studies in which agonists are instilled intrave-
sically (into the bladder lumen), which results in changes in
bladder capacity and activity. For example, short-term
addition of ATP or ATP analogs such as a,b-methylene ATP
into the bladder lumen stimulates detrusor overactivity,52–55

and work in ex vivo bladder preparations or isolated ureters
indicates that mucosal application of ATP or a,b-methylene
ATP stimulates afferent nerve discharge.52,54,55 The afferent
stimulation observed in isolated bladder preparations is
inhibited by extended treatment with a,b-methylene ATP
(which downregulates homomeric P2X3 and heteromeric
P2X2/P2X3 receptors), pyridoxal-phosphate-6-azophenyl-20,
40-disulfonate (a broad-spectrum P2 receptor antagonist), or
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capsaicin, thus implicating purinergic and TRPV1 receptors
in this signaling cascade.52,54,55 Additional studies show that
intravesical administration of carbachol, nicotine, vanilloid
compounds, and oxyhemoglobin (a scavenger of NO) also
affect bladder function.56–63 Thus, several mediators and their
associated input pathways may be able to stimulate
transmural signaling in the uroepithelium.

FUNCTION OF TRANSMURAL SIGNALING PATHWAYS

One proposed example of transmural signaling occurs as the
bladder fills with urine.2,14 Filling stretches the uroepithe-
lium, activating mechanotransduction pathways (likely
situated at the apical surface of umbrella cells) that result
in the uroepithelial release of ATP from both surfaces of the
epithelium. The function of the mucosally released ATP is
unclear, but addition of exogenous ATP or its analogs to the
mucosal surface of the epithelium can stimulate exocytosis in
the umbrella cell layer,14 and as described above may play a
role in regulating bladder function via transmural signaling
processes. The serosally released ATP has at least two
functions. First, it can act via P2X2 and P2X3-containing

receptors present on the uroepithelium to stimulate stretch-
induced exocytosis in the uroepithelium,14 and second, it is
proposed to bind to receptors containing P2X3 subunits
present on the sensory afferent nerve processes, thus signaling
bladder filling to the central nervous system.2,55 Consistent
with this hypothesis, knockout mice lacking P2X2, P2X3, or
P2X2/P2X3 receptor subunits can still release ATP from their
uroepithelium, but activation of bladder afferents is sig-
nificantly decreased and knockout mice show reduced
micturition frequencies and increased bladder capacities.45,64

CLINICAL SIGNIFICANCE OF THE SENSORY WEB

Defects in the uroepithelial-associated sensory web are likely
to contribute to the pathogenesis of bladder diseases. For
example, the uroepithelium of patients with the painful
bladder disorder interstitial cystitis releases increased
amounts of ATP and expresses higher levels of P2X2 and
P2X3 receptor subunits,27,29,30,65 both the likely consequence
of increased exocytosis. A similar enhancement of ATP
release has been detected in urothelial cells isolated from cats
with a feline version of interstitial cystitis,66 and increased
ATP release is also observed in rats with chronic spinal cord
injury or chemically irritated bladders.67 ATP can also act in
an autocrine manner to enhance its own release from
uroepithelial cells,68 which may potentiate ATP release from
the uroepithelium of patients with chronic bladder disease.
Once released, ATP can directly depolarize and initiate firing
in sensory nerves by activating P2X channels,64 or by
activating P2Y receptors on afferent nerves to stimulate
intracellular second messenger pathways that in turn
modulate other ion channels. For example, ATP can enhance
TRPV1 currents by lowering the threshold for protons,
capsaicin, and heat in sensory neurons.69 This action, which
likely reflects activation of intracellular protein kinases and
phosphorylation of the TRPV1 channel, represents a novel
mechanism, by which large amounts of ATP released from
damaged or sensitized cells in response to injury or
inflammation may trigger the sensation of pain.

The transmural signaling pathways described above may
offer important targets to treat various bladder disorders. In
patients with neurogenic detrusor overactivity, there is an
increased density of suburothelial P2X3-immunoreactive
sensory afferent nerves.70 Intriguingly, a decrease in P2X3

staining in these nerves is observed in patients who are
responsive to intravesical administration of resiniferatoxin
(which targets afferent nerves) or botulinum toxin A (which
inhibits secretion).70,71 While these treatments alter P2X3

receptor expression in afferent nerves, it is equally possible
that a mechanism of these treatments is to decrease release of
ATP from the uroepithelium. Other data point to a possible
role for intravesical infusion of antimuscarinics to treat
bladder overactivity.56–58 Furthermore, intravesical applica-
tion of nicotine in the rat elicits two effects: a decrease in the
frequency of reflex micturition in low concentrations and
an increase in frequency in high concentrations.56 The
inhibitory effect at low concentrations is blocked by
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methyllcaconitine, an antagonist of a7 nicotinic receptors,
whereas the facilitatory effect at high concentrations is
blocked by hexamethonium, an antagonist of a3-type
nicotinic receptors. Methyllcaconitine alone does not alter
reflex bladder activity; whereas hexamethonium alone
decreases reflex bladder activity, indicating the existence of
a tonically active nicotinic facilitatory mechanism. Other
studies have shown that intravesical administration of
vanilloid compounds produces beneficial effects in patients
with bladder disorders such as neurogenic detrusor over-
activity or interstitial cystitis,60–63 and intravesical adminis-
tration of oxyhemoglobin results in a bladder hyperactivity
demonstrating an inhibitory role for NO in the control of
bladder reflexes.59

SUMMARY

For decades the uroepithelium was viewed as a passive barrier
that served to maintain the composition of urine before
voiding. In contrast, more recent studies indicate that the
uroepithelium is an active participant in the normal function
of the bladder and exists as an integral part of a sensory web,
in which it communicates the degree of bladder filling to the
underlying nervous and muscular tissues and affects their
functions. This communication is made possible by the input
and output pathways of the uroepithelium, which allow it to
respond to its chemical and physical environment and to
engage in bidirectional communication with neighboring
cells in the subjacent tissues. Defects in the uroepithelial
expression of receptors or aberrant release of mediators such
as ATP and acetylcholine may contribute to bladder diseases
such as interstitial cystitis and detrusor overactivity. As such,
uroepithelial-associated receptor and mediator release path-
ways may serve as important targets for the pharmacologic
management of bladder disorders. Finally, study of the
uroepithelial sensory web will further our comprehension of
other organ systems where epithelial cells may modulate the
function of the end organ.1,2
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