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Abstract 

We present a way of calculating the number of models of propositional formulas represented 
by sets of clauses. The complexity of such a procedure is O(~k~,), where k is the length of clauses 
and n is the number of variables in the clauses. The value of ~2 is approximately 1.619, value 
of ~k~ is approximately 1.840 and the value of ~k approaches 2 when k is large. Further we 
apply the theory on satisfiability problems, especially on the 3-SAT problems. The complexity 
of the 3-SAT problems is O(~0n), where n is the number of variables in the clauses. The value 
of ~0 is approximately 1.571 which is better than the results in Schiermeyer (1993) and Monien 
and Schiermeyer (1985). 

1. Introduction 

We consider propositional formulas represented by sets o f  clauses. A clause is a set 
o f  literals. A literal is either an atomic formula er the negation o f  an atomic formula. 
An atomic formula and the negation o f  it forms a complementary pair. We consider 
an atomic formula as a variable which can be interpreted as either true or false. The 
number o f  variables in a set is the number o f  distinct atomic formulas in the set. 
A complementary literal o f  an atomic formula is interpreted as the opposite o f  the 
atomic formula. A clause is interpreted as the disjunction o f  the literals in the clause 
(it is sometimes represented explicitly as a disjunction o f  the literals and sometimes 
represented as a set o f  literals). An empty clause is interpreted as false. We assume 
that a clause does not contain a complementary pair. A set o f  clauses is interpreted as 
a conjunction o f  the clauses o f  the set. An empty set o f  clauses is interpreted as true. 
Following are some conventions o f  writing formulas and sets o f  formulas: 
• A, B, ~A, -~B are literals. 

• F, G are clauses. 
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• F, F0, FI are sets of clauses. 

• We write Fo, Ft instead of Fo U FI, and 1",F or {F,F} instead of F U {F}. 

Definition 1.1. Let F be a set of clauses and A be a literal. F[A is the set of clauses 

with the property: F E 1"1.4 iff 
• -~A,`4 ~ F and 

• F E F  o r F U { ~ A } E F .  

The order of the `4i's in 1"1A11`42] " '  [`4, does not matter, since F]AIB and FIBI`4 
are equivalent. Both of  them are equivalent to the set of formulas of which F is an 

element if and only if: 

-~.4,.4 CF, 

-~B,B ¢F, 

F ~ r , F  u (-~`4} E r , F  U (~B} ~ r or FU{-.A,-~B} E F. 

We write F[AI 1.42[ "'" [An as F].41AA2 A.--A.4,.  I f F  is the clause Al V.42 V. . .  VA,, 

we use FI-~F to represent FI-~A1 A 7.4 2 A . . .  A 4 .4n  and we use F,-~F to represent 

F, "-'.41,-~A2 . . . . .  --,.4, (where ~.4i's are unit clauses). 

Theorem 1.1. 4̀1 A,42 A. . . A`4. implies that 1" and F]A1 A`42  A ' "  • AA, are equivalent. 

Corollary 1.1. {I"1.41 A.42 A . . .  A`4,,`41,`42 . . . . .  `4,} and {F, A1,A2 . . . . .  `4,} are equiv- 
alent. 

2. Number of models of formulas 

A variable can be interpreted as either true or false. A truth-table of  n variables 

contains 2 n interpretations and the number of  models of a formula is the number of 

interpretations in which the formula has value true. 

Definition 2.1. Let F be the set of clauses { F I , F  2 . . . . .  Fn}.  F forms a base if F is 

inconsistent and Fi U Fj contains a complementary pair for 1 ~< i < j ~< k. 

Note that a clause does not contain a complementary pair. 

Lemma 2.1. I f  F forms a base with k variables, there is exactly one of  the clauses 
of  F which is false for any interpretation which contains the k variables. 

Proof. There must be one false clause for any interpretation, since F is inconsistent. 

There cannot be two false clauses simultaneously, since they contain a complementary 

pair. [] 
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Definition 2.2. Let m(S) be the number of  members of  the set S. Let 2" be the number 
of combinations of all possible interpretations of  atomic formulas. 
• Pn({ } ) = 2  n. 
• p . ({{  } } ) =  0. 
• p.(F) = y']~/k=l p.(F[ ~Fi)/2 m(F )̀ where {F1,F2 . . . . .  Fk} is any chosen set of clauses 

which forms a base. 

Theorem 2.1. p,(F) is equal to the number of interpretations in which F is evaluated 
to true. 

Proof. The first item means that every interpretation satisfies the empty set. The second 
item means that no interpretation satisfies a set consisting of the empty clause. In the 
following, we show that the third item holds. Let F0 = {FI,F2 . . . . .  Fk) be a set which 
forms a base, and J i  be the set of  interpretations which satisfy -~Fj. Let J be the set 

of interpretations which satisfy F. J A J ~  is the set of  interpretations which satisfy both 
~Fi and F. We obtain U ~=1(JNJi)  = j and ( J fqJ i )N(JNJ j )  = 0 if i ~ j according 

k k 
to lemma 2.1. Hence p,(F) = m ( J )  = Z i = I  m(,ff I"'1 J f i )  = E i = I  p,( F, -~Fi ). Further, 
we have p,(FI~F)  = p,(F I ~F, ~F).  2 mtF) = p,(F, ~F).  2 re(F). Hence pn(F,-~F) = 
p.(YI-~F)/Z'(F) and p.(r) = ~=~ pn(Fl-~Fi)/2 m(F~). [] 

Note that F[-~Fi is not necessary simpler than F. If  F does not contain any variable 

which appears in Fi, we obtain F[ ~Fi = F and p,(F) = ~--]~=l Pn(F)/2"(Fi). If  F is 
valid, we obtain p,(F) = p~(F[Fi) = 2 n and 2" = Eik=l 2"/2 "(F'). Both lead to the 
following equation. 

Corollary 2.1. I f  {Fl . . . . .  Fk} forms a base, then ~/k=l 1/2 m(Fi) = 1. 

Definition 2.3. To avoid the number n in the calculation, we define p0 as follows: 

• PO({ } ) =  1. 
• po({{  } } )  = o. 
• po(F)= ~-~fi=l Po(F]-~Fi)/2m(Fi) where {FI,F2 . . . . .  Fk} is any chosen set of  clauses 

which forms a base. 

Theorem 2.2. I f  2 n is the number of combinations of  all possible interpretations of 
atomic formulas, then po(F)= pn(F)/2 n. 

Proof. This theorem follows from Definitions 2.2, 2.3 and Theorem 2.1. We may say 

that po(F) (or po(F). 100) is the percentage of the interpretations in which F is true. 

The advantage with this definition is that we can calculate po(F) without mentioning 
the total number of  interpretations. [] 

Corollary 2.2. po has the following properties: 
• p o ( r  u {{ }}) = 0. 
• po(A) --- 1/2, i fA is a literal. 
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• po(F,A) = po(F)" p0(A), i f  F and A have no variables in common. 
• po(F) = ~ik=l po(F, "-,Fi), i f  {F1,F2 . . . . .  Fk} forms a base. 
• poW, F v G) = po(F,Y) + po(r, ~F, G). 

Theorem 2,3. po(r ,A VA2 V.--YAk) = ½po(r[~)+ ~po(rlA2 A ~A, )+  ~po(rlA3 
A-~A2 A -~AI ) + " - +  ~po(F [Ak A ~Ak- 1 A - - .  A ~A1). 

Proof.  Let Fi = A1 VAz V . . -  YAk-1 V ~Ak for i =- 1 . . . . .  k and let Fk+l ~- 41 VA2 
V . . -  VA~-l  VAk. Since {F1 . . . . .  Fk+l} forms a base, we obtain 

po(F, A1 V A 2 V " ' V A k )  

k+l  
= Z] po({r, Al vA2 v . . .  VAk}I-~Fi)/2 m(F') 

i=1 

k 
= ]E po({r,A, vA2 v - . .  VAk}I ~fi)/2 m(F') 

i=1 

k 
= ~ po(F[-~Fi)/2 m(Fi) 

i=1 

= lpo(I"IAI) + ~-~po(F[A2 A ~A1) + ~-~po(F]A3 

+ . . .  + ~--kpo(F[Ak A -,A~-i A .. .  A ~AI). [] 

A ~A2 A -~A 1 ) 

2.1. Complexity 

In the discussion of  complexity, the time used in one step in the calculation is a 

polynomial function o f  the size o f  the set o f  clauses. We first look at the cases where 

clauses are restricted to be either unit clauses, 2-literal clauses or 3-1iteral clauses. We 

obtain: 

p0(r,A) = po(r I A)/2. 

po(r,A v a) = po(r fA)/2 + po(rJ-~A A B)/4. 

po(r,A v B V C) = po(r J~)/2 + po(F[-~A A B)/4 + po(rl  ~A A -~B A C)/8. 

The complexity o f  calculating the number o f  models of  a set of  clauses with length 

greater than 1 is exponential. I f  we use the recurrence function f ( n )  = f ( n -  1 ) +  

f ( n - 2 ) + f ( n - 3 )  as a starting point, we obtain f ( n )  = O(~k~), where n is the number 

o f  variables in the set o f  clauses and ~k3 is the largest root of  1 - 2 • z 3 + z 4 = 0 and 

it is approximately 1.839287. 

Many problems can be solved by only using po(F,A) = po(F[A)/2 and po(F, 
A V B) = po(FIA)/2 + po(F[-~A,B)/4. In these cases, the complexity function f ( n )  
will be O(ff~) where if2 is the largest root o f  1 - 2 • z 2 + z 3 = 0 and it is equal to 

(1 + v/-5)/2 which is approximately 1.618034. The pigeon-hole principle [2] is among 

these problems. 



W. Zhangl Theoretical Computer Science 155 (1996) 277-288 281 

Generally, if  the upper bound of  the number of  literals in a clause of  a set is k, we 

only need using the equations po(F, Al VA2 V - "  V A i ) - ~  ½po(rlAl)+ ~po(rlA2 A 

~ A I ) + ~ p o ( F I A 3 A ~ A 2 A ~ A 1 ) + ' "  " + ~ p o ( F I A i A ~ A i - I  A.. "A~AI)  for i = 1,2 . . . . .  k. 
By solving the recurrence f ( n )  = f ( n  - 1 ) + . . .  + f ( n  - k), we obtain an upper bound 
for the number of  steps needed to calculate the number of  models of  sets of  clauses 
where the length of  any clause is bounded by k. Since f ( n )  = O(~b~,), where ~bk is 
the largest root o f  1 - 2 • z k + z k+l = 0, we obtain the following theorem. 

Theorem 2.4. The number o f  models o f  a set o f  clauses can be calculated within 
O(~k~) steps, where n is the number o f  variables and k is the upper bound o f  the 

number o f  literals in a clause. 

Some approximate values for ~kk are as follows: qJ2 ----- 1.618034, 1~3 = 1.839287, 

1~4 ~--- 1.927562, if5 = 1.965948 and ffk approaches 2 as k approaches infinity. 

3. Satisfiability 

Satisfiability is easier to calculate than the number of  models. The former is NP- 

complete and the latter is #P-complete [3]. For satisfiability, we can c u t a w a y  many 
branches of  the calculation by using appropriate theorems. For instance, if  we know 

po(F)  = po(Fo)/a+po(F1 )/b and po(Fo) >>- p0(F1 ), we can conclude that po(F)  = 0 iff 
po(Fo) = 0 and hence there is no need to calculate p0(F1 ). We have some inequalities: 

po(F)  >~ po(F,F) .  

po (F ,F  V G)>~ po(F,F) .  

1~> p0(F)~>0. 

po(F)  > 0 iff F is satisfiable. 

We use the pigeon-hole principle as an example of  reasoning about unsatisfiability. 
The pigeon-hole principle can be understood as that there is no injective mapping from 

a set with n + 1 elements to a set with n elements [2]. We use Pij to represent that 
the ith element in the first set maps to the j th  element in the second set. Let F, be 

the set o f  formulas { Pn V Pi2 V . . .  v Pin I i = 1 . . . . .  n + 1} and An be the set o f  
formulas {Pik A Pjk I k = 1 . . . . .  n and 1 ~< i < j <~ n + 1 }. The pigeon-hole principle can 
then be represented by: F, --~ A, .  Proving this formula is the same as proving the 

inconsistency of  Fn, At,, where A', is the set o f  formulas {-~Pik V -'Pjk [ k = 1 . . . . .  n 

and 1 ~< i < j ~< n + 1 }. Let us denote Fn, A'n by H~. 
We obtain po(H, )  = po(l ln,Pl l  ) + po(II~, ~P11,P12) + " "  + po(II , ,  -~P11, ~P12 . . . . .  

Pl,n). From the symmetry of  the variables Pij in Hn, we conclude that p o ( H ~ , P l l ) =  

po(II , ,P12) . . . . .  po(IIn,Pl,n). Since po(Hn,PmlI)<~po(Fln,Pl i )  for any set H, 
we obtain p o ( l l , ) < , n ,  po(Fl~,Pll).  Since we also have po(H, ,P t l )<~po( l l , ) ,  we 

obtainpo(/-/n) = 0 if and only if po(H~, Pi t )  = 0. Further we have po(Hn, P l l )  = 0 ¢~. 
po(II ,  IP11) = 0 and po(II ,  IPll ) = 0 ~ po(Fl, IPll,-~P21 . . . . .  ~P,+l , l )  = 0, since, 
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--nPll V -1/°21 . . . . .  -~P11 V ~Pn+l,1 6~ /'/n. The last equation is equivalent to po( I ln_ l )  

= 0. Hence after n - 1 steps, we obtain po(IIn) -- 0 if  and only if po(lll ) = O. The 
validity of  po(ll l)  = 0 is easy to prove. It is a simple way to reason the validity of  
the pigeon-hole formulas. For automatic reasoning, the main problem here is to detect 
the structural similarity of  po(lln,Pli) for i = 1 . . . . .  n. I f  there is no such mechanism 

in an automatical proof procedure, it will carry out n such proofs and the number of  
steps will be an exponential of  n. 

In the rest of  this section we present theorems about the relations between unsatis- 
fiable formulas. We need the following notations for the theorems and the following 
analysis. 

• Inc(F) means po(F) = 0 (i.e. F is unsatisfiable). 

• F1 O F2 means the set of  clauses which is in F1 and not in F2. 

• FI C/ '2  means any clause in F1 is also in / '2  (and it implies that F1 O F2 is empty). 
• F[F/A] means the result of  substituting A by F in F (-,A is not substituted by -~F 

in this substitution). 

Theorem 3.1. Inc(F,d) ¢¢, Inc(F]A). 

Proof. Since po(F,A) = po(F[A)/2 by Theorem 2.2, we obtain po(F,A) = 0 if and 
only if po(F[A) = 0. This theorem corresponds to the unit clause rule of  the Davis-  
Putnam procedure [1]. [] 

Theorem 3.2. Inc(F,F v G) <=> Inc(F,F) A Inc(F, -~F, G). 

Proof. Since po(F,F V G) = po(F,F) + p0(F, -~F, G) and po(F,F), p0(F,-~F, G)i> 0, 
we obtain po(F,F V G) = 0 if and only if po(F,F) = 0 and po(F,-~F,G) = 0. Note 
that F may be a clause of  more than one literal. In the special case where F is a literal, 
we obtain F , F  V G is unsatisfiable if and only if F , F  and F, -~F, G are unsatisfiable 

and they are unsatisfiable if  and only if F[F and {F,G}[~F are unsatisfiable. This 
special case corresponds to the split rule of  the Davis-Putnam procedure. [] 

Corollary 3.1. Inc(F,A V B,-,A V C) .~ Inc(FlA A C) A Inc(F I ~A AB). 

Note that B and C could be the same literal or a complementary pair and both of  
them should be different from A and -~A. 

Corollary 3.2. Inc(F,A V B,A V C) ~ Inc(F ]A) A Inc(F] -~A A B A C). 

Corollary 3.3. Inc(F,A V B,A V C,A V D) <=~ Inc(F [A) A Inc(F[ ~A A B A C A D). 

Theorem 3.3. I f  F I Al A A2 A ...  A An C F, then Inc( F) <=* Inc( F,A~,A2 . . . . .  An). 

Proof. Since F[Aa A A2 A --.  A An C F, we obtain po(F)>~po(F, A1,A2,...,An) = 
po(FIAl AA2 A . . .  AAn)/2 n >>- po(F)/2 n. Hence po(F)  = 0 if and only if po(F, AI,A2, 
. . . .  A,) ---- 0. A special case of  this theorem is that if  the negation of a literal A does not 
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appear in F, then F is unsatisfiable if  and only if  the set obtained by removing clauses 

containing A from F is unsatisfiable. This special case corresponds to the pure literal 
rule of  the Davis-Putnam procedure. [] 

Theorem 3.4. I f  A and B do not appear in F (--,A and -~B may appear in F), then 
Inc(F,A VBV C) ¢=~ Inc(F I CA -~A A -~B) Alnc(FI-~C AA A -~B) Alnc( FI-~C A-~A AB). 

Proof .  Since po(F,A V B V C) = po(F I C)/2 + po(F[--,C A A)/4 + po(F  I --,C A --,A A 

B)/8, po(F,A V B V  C) = 0 if  and only if po(FIC) = O, po(F[-~CAA) = 0 and 

po(F  I --,C A -~A A B) = 0. Since F I C I --,A A --,B C F I C, we obtain po(F  I C)  = 0 if 
and only if po(FI  C m --,A A -~B) = 0. Since F I --,C m A I -,B C F I - ,C m A, we obtain 
po(F[-~C A A )  = 0 if and only if po(Fl-~C AA A -~B) = 0. Hence we obtain the 
theorem. [] 

Theorem 3.5. I f  A does not appear in F, then Inc(F,A V F)  ~ Inc(F[F/-~A]). 

Proof .  Let F be F',-~A V GI . . . . .  --,A V Gk where A and ~A do not appear in F ' .  We 
obtain 

po(F,A V F )  = po(F ' ,  -~A V GI . . . . .  --1/1 V Gk,A V F)  

= p0(F  I, -~A V Gl . . . . .  ~A V Gk,F) + po(F  1, ~A V G t , . . . ,  ~A V Gk,--,F,A) 

= po(F ~, -~A V GI . . . . .  --,A V Gk-l,F, --,A) 

+ po( F',-',A V GI . . . . .  --,A V G~-I,F,A, Gk ) + po( F', G1 . . . . .  Gk, ~F,A) 

= po(F',F, -',A) + po(F', G1 . . . . .  Gk-i,F,A, Gk) + po(F', G1 . . . . .  Gk, --,F,A) 

: po(F',F)/2 + po(F', Gl . . . . .  Gk-I,F, Gk)/2 + po(F', GI . . . . .  Gk, ~F)/2. 

po(F[F/'~A]) = po(F',F V Gl . . . . .  F V Gk) 

= po(Ft,F V G1 . . . . .  F V Gk-I ,F)  + po(F',F V G1 . . . . .  F V Gk-l, -~F, Gk) 

= po(F' ,F) + po(F', G1 . . . . .  Gk-1,-~F, Gk). 

Since p o ( F ' , F ) =  0 implies po(F',G1 . . . . .  Gk-I,F, Gk) = 0, we obtain po(F,A V F )  
= 0 if and only if  po(F[F/-~A]) = O. [] 

Corollary 3.4. I f  A appears only in A V B V F o f F ,  then Inc(F) ¢:~ Inc(FIB A--,A) A 
Inc( r[F/-~A] I -~B A .4). 

I f  F is the empty clause, we obtain F[F/-~A] I -~B A A = F I ~B A A. 
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4. 3-SAT problems 

We divide a set F (which may contain unit clauses, 2-literal clauses and 3-literal 

clauses) into 3 parts Fo, FI,F2 and F3. Fo is a set of  one-literal clauses, Fl is a set 
of two-literal clauses and every variable appears only once in Fl U F0, F2 is the set 
of  formulas containing the one-literal and two-literal clauses not in F1 U F0 and F3 
is the set of  three-literal clauses. Let n be the number of variables in F, a be the 
number of clauses in F0, b be the number of clauses in FI, c be 0 if  F2 is empty, 

c be 1 if F2 contains one clause and c be 2 if  F2 contains more than one clause. 
We assume a + b + c > 0. We denote the complexity of  the set F by f ( n ,a ,b , c )  
where a, b, c, n ~> 0. We use the number of  branches of  subproofs as the measure of 
the complexity. In the following, we try to find the properties of this function. Some 

desired properties of f (n ,  a, b, c) are: 

a <a'  ~ f (n ,a ,b , c )  > f (n ,a ' ,b ,c) .  

b < b' --+ f (n ,a ,b , c )  > f (n ,a ,b ' ,c ) .  

c < c ' ~  f ( n ,a ,b , c )  > f (n ,a ,b ,c ' ) .  

n > n' ~ f (n ,a ,b , c )  > f (n ' ,a ,b ,c) .  

In addition to these inequalities, we need the following inequalities in the following 

discussions. 

1. f(n,a,b,c)>~ f ( n -  1 , a -  1,b,0). (case 1). 
2. f ( n , l , O , c ) > ~ f ( n -  1 ,0 ,0 ,1 )+  f ( n - 4 , 0 , 0 , 1 ) .  (case 1). 

3. f (n ,  1,O,c)>>.f(n - 3, 1,0,0). (case 1). 

4. f(n,O,b,c)>_-f(n, 1 , b , c -  1). (case 2, 3). 
5. f(n,O,b,c)>~f(n,  1 , b -  1,c). (case 2, 3). 
6. f (n ,O,b ,c)>>. f (n-  1 , m -  1 , b - m , O )  for m > 1. (case 3). 

7. f ( n , O , b , c ) > > . 2 . f ( n - 2 , 0 , b - 2 , 1 ) .  (case 4, 5). 
8. f(n,O,b,c)>>.3 • f ( n  - 3,0,b - 2, 1). (case 4). 
9. f(n,O,b,c)>>.2, f ( n  - 3,0,b - 3, 1) + f ( n  - 4,0,b - 3, 1). (case 4). 

10. f(n,O,b,c)>>.f(n - 1,0,b - 1,2) + f ( n  - 3,0,b - 2, 1). (case 5). 

11. f(n,O,b,c)>_.f(n,O,b+ 1 , c -  1). (case 5). 
12. f (n,O,b,O)>>.f(n-  1 , 0 , b -  1 , 2 ) + f ( n - 2 , 0 , b -  1,1). (case 6). 

4.1. Case analysis 

In the following discussion, we first remove all subsumed 3-literal clauses in F 
for simplifying the analysis. Subsumed 2-literal clauses are not removed for technical 

reasons, because removing them will affect the value of b and c. 
Case 1: a > 0. We use Theorem 3.1 to reduce the number of the variables in F. 

In case the result of  the reduction does not contain unit clauses or 2-literal clauses, 

Theorem 3.2 is used to split the set to two sets. Two subcases: 
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(i) a > 1 or a ---- 1 A b > 0. We obtain Inc(FoU{A}, Fx, F2, F3) ¢=~ Inc(Fo, FllA, F2IA 
F3 [A) by Theorem 3.1. We restructure {Fo, F1 [A, F2 [A, F3 IA} to {F'o,F~,F~,F'3}. The 
number of variables in {Fto, F~,F~,F~} is n' with n ' ~ n -  1, the number of  clauses in 

F ~  i s  a '  w i t h  a '  > ~ a  - 1, the number of clauses in F~ is b I with bt~ b, the number 

of clauses inF~ is e ~ wi thc  ~ > 1 0 . W i t h a > l  o r a =  1 A b > 0 ,  we o b a t i n a ' + b  ~+ 

c'>~ a -  1+ b > 0. Hence by the induction hypothesis, we can prove Inc(F~o, F~, F~, F'3) 
within f (n ' ,a ' ,b ' , c ' )  branches and f ( n ' , a ' , b ' , e ' ) < ~ f ( n -  l , a -  1,b,0). Hence we can 

prove Inc(F) within f ( n -  1 , a -  1,b,0) branches. In the following, we omit this kind 
of details in the proofs. 

(ii) a = 1 and b = 0. Assume A E F0 and B V C V D E F3. We obtain Inc(F) ¢=~ 
Inc( F [ A, B V C) A Inc( F I A A -~B A -~C A D) by Theorems 3.1 and 3.2. If  F IA A -,B A 
-~C A D C F, we obtain Inc(F) ¢=~ Inc(F,A, -~B,-,C,D) ¢=~ Inc(F[A A -~B A -~C,D) by 

Theorem 3.3. Hence we can prove Inc(F) within f ( n -  3, 1,0,0) branches. Otherwise 

we can prove Inc(F) within f ( n -  1,0,0, 1 ) +  f ( n -  4,0,0, 1) branches. 

Case 2: a = 0 and there is a unit clause in F2. We move one of the unit clauses 

from F2 to F0 and make sure that the variables of FI and that of F0 are different by 

possibly move a 2-literal clause from Fl to Fz. Hence we can prove Inc(F) within 

either f (n ,  1 , b , e -  1) branches or within f (n ,  1 , b -  1,c) branches. 

Case 3: a = 0, F [Bt AB2 A. • • ABm C F and either Bi, -~Bi or both of  them appear 
in F for i = 1 . . . . .  m (m~>l). We obtain Inc(F) ¢=~ Inc(F, B l , . . . ,Bm)  by Theorem 

3.3. If  m = 1, we can prove Inc(F) within either f (n ,  1,b,c - 1) branches or within 

f (n ,  1, b -  1, c) branches. If  m > 1, we can prove Inc(F) within f ( n  - 1, rn - 1, b -  m, O) 
branches. 

Case 4: F[A O F = {F} and there is no unit clause in F. F is either a unit 
clause or a 2-literal clause. (i) I f  F is a unit clause, let F be B. -,A appears only 

in -~A VB. We obtain Ine(F) ~ Inc(F[B AA) A Inc(F[-,B A -,.4) by Corollary 3.4. 

Either we can reduce it to case 3 (when Theorem 3.3 is applicable) or we can prove 

it within f ( n  - 2,0,b - 2,1) + f ( n  - 2,0,b - 2,1) branches. (ii) If  F is a 2-literal 

clause, let F be B V C. -~A appears only in -~A V B V C of F. We obtain Inc(F) ¢e~ 
Inc( F [ B A A ) A  Inc( F[ C/A] [ -,B A-~A) by Corollary 3.4. 

(a) If F[B A A c F,  this case is reduced to case 3. 

(b) If  F[C/A][-,B A --,A C F, B appears only in -~A V B V C. We obtain Inc(F) 
Inc(FlC A A A -~B) A Inc(F[~C A -,A A -~g) A Inc(F[-,C A A A B) by Theorem 3.4. 
Either we can reduce this case to case 3 or we have the following cases: 

- None of B and -~B appears in Fl. 

We can prove Inc(F) within f ( n - 3 , 0 , b - 2 ,  1 ) + f ( n - 3 , 0 , b - 2 ,  l ) + f ( n - 3 , 0 , b - 2 ,  1) 
branches. 

- --B V D is in Fl and D is one of A, -~A, C, -~C. 

We can prove Inc(F) within f ( n - 3 ,  O, b -2 ,  1 )+ f ( n - 3 ,  0, b -2 ,  1 ) + f ( n - 3 ,  0, b-2 ,  1 ) 
branches. 

- -~B V D is in FI and D is different from any of A,-~A, C,-~C. 

We can prove lnc(F) within f ( n - 3 , 0 , b - 3 ,  1 ) + f ( n - 3 , 0 , b - 3 ,  1 ) + f ( n - 4 , 0 , b - 3 ,  1) 
branches. 
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(c) None of  F I B A A C F  and F[C/A]I--,BA--,ACF. 
There must be at least one new clause in each of  FIB A,4 and F[C/,4]I--,BA-~A 

and we can prove Inc(F) within f ( n  - 2,0,b  - 2, 1) + f ( n  - 2,0 ,b  - 2, 1) branches. 

Case 5: c >/1 and there is no unit clause in F. 
(a) AVB in F2 and -~AVC in Fl.  We obtain Inc(F) ¢:~ Inc(FIAAC)Alnc(F[-~AAB) 

by Corollary 3.1. 
We can either reduce this case to case 3 or we can prove Inc(F) within f ( n  - 2,0, 

b - 2, 1 ) + f ( n  - 2, 0, b - 2, 1 ) branches. 

(b) A V B  in F2 and A V C  in F1. We obtain Inc(F) ¢~, Inc(FlA)Alnc(FI  ~ A A B A C )  
by Corollary 3.2. 

We can either reduce this case to case 3, case 4 or we can prove Inc(F) within 

f ( n  - 1,0,b - 1,2) + f ( n  - 3,0,b - 2, 1) branches. 
(c) .4 V B i n / ' 2  and none of  the literals A, -,A, B, -~B appears in F1. We move A V B 

from F2 to F1 and obtain that we can prove Inc(F) within f(n,O, b +  1 , c - 1  ) branches. 

Case 6: a = c = 0. Fl must be nonempty. Assume that A V B is in Fl .  We obtain 

Inc(F) ~ Inc(F 1.4) A Inc(Fl-~.4/x B) by Theorem 3.2. We can either reduce this case 

to case 3, case 4 or we can prove Inc(F) within f ( n -  1 , 0 , b -  1 , 2 ) + f ( n - 2 , 0 , b -  1, 1) 
branches. 

4.2. Complexity 

To begin with, we write f (n ,  a, b, c) as an exponential function ~O n-x'a-y'b-z'c, where 

x ,y , z  are numbers between 0 and 1 (which are meant to be the weights of  a,b,c) and 

x>/y>/z. For simplicity we set x = y = z. We shall find a tp that satisfies the set 

o f  inequalities listed at the beginning of  this section. By replacing f ( n ,a ,b , c )  with 
~o n-x'a-y'b-z'c, we obtain the following inequalities: 

1. ~o n-x(a+b+c) ~ (pn-l-x(a-l+b).  

2. ~pn-X(l+c) >/tpn-l-x + (pn--4--x. 
3. ~0 n-x( l +c) >/ ~0 n-3-x .  
4. (pn-x(b+c) >/tpn-x(l+b+c-1). 

5. (pn-x(b+c) >/ (pn-x( l +b- l +c). 

6. (pn-x(b+c)>/tpn-l-x(rn-l+b-rn) for m > 1. 
7. tp n-x(b+c) >/2 • tp n-2-x(b-2+l). 

8. <pn-x(b+c) >/ 3 • (pn-3-x(b-2+l). 
9. q~n-x(b+c) >/ 2 • (pn-3-x(b-3+ l ) "4- (pn-4-x(b-3+ l ). 

10. q)n-x(b+c) >/(pn-l-x(b-l+2) .4_ q)n-3-x(b-2+l). 

11. ~pn-x(b+c) >I ~n-x(b-l+c+l). 
12. q~n-x.b >1 q)n--l--x(b--l+2) + (pn-2--x(b-l+l). 

First, we remove inequalities 4, 5 and 11, since the left-hand side and the right- 
hand side are equal. Second, since c~<2 and ~On--x't~fp n-x's if  s>/t, ~p satisfies the 

inequalities, if ¢p satisfies the inequalites with c replaced by 2 in the left-hand side 
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terms. It results in the following 9 inequalities: 

1. (pn-x(a+b+2) ~ (pn-l-x(a-l+b). 
2. (p~,-ax ~ (pn--l--x .+ (pn--a--x. 

3. (pn-3x >~ (pn--3-x. 
4. (pn-x(b+2) >/(pn--l-x(b--1). 

5. (pn-x(b+2) >. 2 • ¢pn-Z-x(b-1). 
6. (p,-x(b+2) >/3 • (pn-3-x(b-1). 
7. (pn-x(b+2) >>. 2 • (pn-3-x(b-2) + (pn-4-x(b-2). 
8. (pn-x(b+2) ~ (pn-l-x(b+l) .q_ (pn-3-x(b-l) .  
9. (p . . . .  b ~ (pn- l-x(b+ l ) .~_ (pn- Z-x.b. 

First, we remove item 3 by assuming x < 1 and (p > 1. Second, we remove item 4, 
since it is the same as item 1. Third, we assume that (p is between 1.5 and 2. By this 
assumption, we remove item 1 and item 6, since both are consequences of  item 5. By 
simplifying the remaining inequalities, we obtain: 

1. 1 >/(p2x-1 + (pz~-4. 

2. 1 ~>2 • (p3x-2. 
3. 1 >_-2 - (p4x-3 + (p4x-4. 
4. 1 ~>(px-I + ( p 3 x - 3 .  

5. 1 . /> (p - t -x+(p  -2. 

Since the smaller the value of  x is the smaller can (p be for the first 4 inequalities 
and the larger the value of  x is the smaller can (p be for the 5th inequality, the last item 
is critical for determining an optimal x. Hence we set (px = ( ( p _  (p-1)-1 according 
to the 5th inequality and use this value to find the minimum value for (p according to 
the other inequalities. (p must satisfy: 

1. 1 />( (p  - ( p - l ) - 2 .  ( (p - l  + (p-4) .  

2. l / - > 2 . ( ( p - ( p - t ) - 3 . ( p  -2. 
3. 1 .--> ((p -- (p - I ) -4  - (2 - (p-3 + (p-4). 
4. l ~ ( ( p - ( p - l )  -1 .(p-1 q_ ( ( p _  ( p - l ) - 3 ,  (p-3. 

Let (P~,(P2,(P3, (p4 be the largest root of, respectively, the following equations. 

1 = ((p - ( p - 1 ) - 2 .  ((p-L + (p-4) .  

1 = 2 - ( ( p  - ~o-1)  -3  • (p-2.  

1 = ((p - ( p - l ) - 4  . (2  • (p-3 + (p-a) .  

1 = ((p - ( p - l ) - I  . (p-I  + ( ( p _  ( p - l ) - 3 .  (p-3.  

The minimum value of  ~o satisfying the 4 inequalities is the maximum of  the val- 
ues of  (pl, (P2, (P3 and (P4 (which are approximately 1.549907, 1.569804, 1.556978 and 
1.570214). Since ¢P4 is the largest of  them and 1 = ((p_(p-1)-1 .(p-I +( (p_(p- I  )-3.(p-3 
is equivalent to ((p2 _ 1 )2. ((p2 _ 2) = 1, we obtain the following lemma. 
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Lennna 4.1. I f  a set of unit clauses, 2-literal clauses and 3-literal clauses with n 
variables contains at least one unit clause or one 2-literal clause, satisfiability of this 
set of clauses can be determined within O(cpg) branches of subproofs where q~o is the 
largest root of the equation (~p2 _ 1)2. (tp2_ 2 ) =  1. 

Since 1.5 < tp0 < 2 and x = log(tp0 - ~po1)-l/Iog(tp0) < 1, this lemma follows 
from the above case analysis. The above analysis incorporates many proof strategies. 
By using these strategies, we can cut away many branches of  the proofs. 

Theorem 4.1. Satisfiability of any set of unit clauses, 2-literal clauses and 3-literal 
clauses with n variables can be determined within O((pg) branches of subproofs. 

Note that the time used in the process of dividing a proof to several subproofs is 
a polynomial function of the size of the set of  clauses. A little increase of q~0 (which 
is approximately 1.570214) is enough to get rid of the polynomial factor. Hence we 
obtain the following corollary. 

Corollary 4.1. Satisfiability of any set of unit clauses, 2-literal clauses and 3-literal 
clauses with n variables can be determined within O(1.571 n) time units, if the size of 
the set of clauses is bounded by a polynomial function of n. 
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