
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 155 (1996) 277-288

N o t e

Number of models and satisfiability of sets of clauses

W e n h u i Zhang *

Telemark College, N-3800 Bo i Telemark, Norway

Received February 1995
Communicated by M. Nivat

Abstract

We present a way of calculating the number of models of propositional formulas represented
by sets of clauses. The complexity of such a procedure is O(~k~,), where k is the length of clauses
and n is the number of variables in the clauses. The value of ~2 is approximately 1.619, value
of ~k~ is approximately 1.840 and the value of ~k approaches 2 when k is large. Further we
apply the theory on satisfiability problems, especially on the 3-SAT problems. The complexity
of the 3-SAT problems is O(~0n), where n is the number of variables in the clauses. The value
of ~0 is approximately 1.571 which is better than the results in Schiermeyer (1993) and Monien
and Schiermeyer (1985).

1. Introduction

We consider propositional formulas represented by sets o f clauses. A clause is a set
o f literals. A literal is either an atomic formula er the negation o f an atomic formula.
An atomic formula and the negation o f it forms a complementary pair. We consider
an atomic formula as a variable which can be interpreted as either true or false. The
number o f variables in a set is the number o f distinct atomic formulas in the set.
A complementary literal o f an atomic formula is interpreted as the opposite o f the
atomic formula. A clause is interpreted as the disjunction o f the literals in the clause
(it is sometimes represented explicitly as a disjunction o f the literals and sometimes
represented as a set o f literals). An empty clause is interpreted as false. We assume
that a clause does not contain a complementary pair. A set o f clauses is interpreted as
a conjunction o f the clauses o f the set. An empty set o f clauses is interpreted as true.
Following are some conventions o f writing formulas and sets o f formulas:
• A, B, ~A, -~B are literals.

• F, G are clauses.

* Corresponding address: Sandtuene 20, 4033 Forus, Norway.

0304-3975/96/$15.00 (~) 1996--Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00144-1

278 W. Zhan O I Theoretical Computer Science 155 (1996) 277-288

• F, F0, FI are sets of clauses.

• We write Fo, Ft instead of Fo U FI, and 1",F or {F,F} instead of F U {F}.

Definition 1.1. Let F be a set of clauses and A be a literal. F[A is the set of clauses

with the property: F E 1"1.4 iff
• -~A,`4 ~ F and

• F E F o r F U { ~ A } E F .

The order of the `4i's in 1"1A11`42] " ' [`4, does not matter, since F]AIB and FIBI`4
are equivalent. Both of them are equivalent to the set of formulas of which F is an

element if and only if:

-~.4,.4 CF,

-~B,B ¢F,

F ~ r , F u (-~`4} E r , F U (~B} ~ r or FU{-.A,-~B} E F.

We write F[AI 1.42["'" [An as F].41AA2 A.--A.4,. I f F is the clause Al V.42 V. . . VA,,

we use FI-~F to represent FI-~A1 A 7.4 2 A . . . A 4 .4n and we use F,-~F to represent

F, "-'.41,-~A2 --,.4, (where ~.4i's are unit clauses).

Theorem 1.1. 4̀1 A,42 A. . . A`4. implies that 1" and F]A1 A`42 A ' " • AA, are equivalent.

Corollary 1.1. {I"1.41 A.42 A . . . A`4,,`41,`42 `4,} and {F, A1,A2 `4,} are equiv-
alent.

2. Number of models of formulas

A variable can be interpreted as either true or false. A truth-table of n variables

contains 2 n interpretations and the number of models of a formula is the number of

interpretations in which the formula has value true.

Definition 2.1. Let F be the set of clauses { F I , F 2 Fn}. F forms a base if F is

inconsistent and Fi U Fj contains a complementary pair for 1 ~< i < j ~< k.

Note that a clause does not contain a complementary pair.

Lemma 2.1. I f F forms a base with k variables, there is exactly one of the clauses
of F which is false for any interpretation which contains the k variables.

Proof. There must be one false clause for any interpretation, since F is inconsistent.

There cannot be two false clauses simultaneously, since they contain a complementary

pair. []

W. Zhang l Theoretical Computer Science 155 (1996) 277-288 279

Definition 2.2. Let m(S) be the number of members of the set S. Let 2" be the number
of combinations of all possible interpretations of atomic formulas.
• Pn({ }) = 2 n.
• p . ({{ } }) = 0.
• p.(F) = y']~/k=l p.(F[~Fi)/2 m(F)̀ where {F1,F2 Fk} is any chosen set of clauses

which forms a base.

Theorem 2.1. p,(F) is equal to the number of interpretations in which F is evaluated
to true.

Proof. The first item means that every interpretation satisfies the empty set. The second
item means that no interpretation satisfies a set consisting of the empty clause. In the
following, we show that the third item holds. Let F0 = {FI,F2 Fk) be a set which
forms a base, and J i be the set of interpretations which satisfy -~Fj. Let J be the set

of interpretations which satisfy F. J A J ~ is the set of interpretations which satisfy both
~Fi and F. We obtain U ~=1(JNJi) = j and (J fqJ i)N(JNJ j) = 0 if i ~ j according

k k
to lemma 2.1. Hence p,(F) = m (J) = Z i = I m(,ff I"'1 J f i) = E i = I p,(F, -~Fi). Further,
we have p,(FI~F) = p,(F I ~F, ~F). 2 mtF) = p,(F, ~F). 2 re(F). Hence pn(F,-~F) =
p.(YI-~F)/Z'(F) and p.(r) = ~=~ pn(Fl-~Fi)/2 m(F~). []

Note that F[-~Fi is not necessary simpler than F. If F does not contain any variable

which appears in Fi, we obtain F[~Fi = F and p,(F) = ~--]~=l Pn(F)/2"(Fi). If F is
valid, we obtain p,(F) = p~(F[Fi) = 2 n and 2" = Eik=l 2"/2 "(F'). Both lead to the
following equation.

Corollary 2.1. I f {Fl Fk} forms a base, then ~/k=l 1/2 m(Fi) = 1.

Definition 2.3. To avoid the number n in the calculation, we define p0 as follows:

• PO({ }) = 1.
• po({{ } }) = o.
• po(F)= ~-~fi=l Po(F]-~Fi)/2m(Fi) where {FI,F2 Fk} is any chosen set of clauses

which forms a base.

Theorem 2.2. I f 2 n is the number of combinations of all possible interpretations of
atomic formulas, then po(F)= pn(F)/2 n.

Proof. This theorem follows from Definitions 2.2, 2.3 and Theorem 2.1. We may say

that po(F) (or po(F). 100) is the percentage of the interpretations in which F is true.

The advantage with this definition is that we can calculate po(F) without mentioning
the total number of interpretations. []

Corollary 2.2. po has the following properties:
• p o (r u {{ }}) = 0.
• po(A) --- 1/2, i fA is a literal.

280 14(Zhang / Theoretical Computer Science 155 (1996) 277-288

• po(F,A) = po(F)" p0(A), i f F and A have no variables in common.
• po(F) = ~ik=l po(F, "-,Fi), i f {F1,F2 Fk} forms a base.
• poW, F v G) = po(F,Y) + po(r, ~F, G).

Theorem 2,3. po(r ,A VA2 V.--YAk) = ½po(r[~)+ ~po(rlA2 A ~A,)+ ~po(rlA3
A-~A2 A -~AI) + " - + ~po(F [Ak A ~Ak- 1 A - - . A ~A1).

Proof. Let Fi = A1 VAz V . . - YAk-1 V ~Ak for i =- 1 k and let Fk+l ~- 41 VA2
V . . - VA~-l VAk. Since {F1 Fk+l} forms a base, we obtain

po(F, A1 V A 2 V " ' V A k)

k+l
= Z] po({r, Al vA2 v . . . VAk}I-~Fi)/2 m(F')

i=1

k
=]E po({r,A, vA2 v - . . VAk}I ~fi)/2 m(F')

i=1

k
= ~ po(F[-~Fi)/2 m(Fi)

i=1

= lpo(I"IAI) + ~-~po(F[A2 A ~A1) + ~-~po(F]A3

+ . . . + ~--kpo(F[Ak A -,A~-i A .. . A ~AI). []

A ~A2 A -~A 1)

2.1. Complexity

In the discussion of complexity, the time used in one step in the calculation is a

polynomial function o f the size o f the set o f clauses. We first look at the cases where

clauses are restricted to be either unit clauses, 2-literal clauses or 3-1iteral clauses. We

obtain:

p0(r,A) = po(r I A)/2.

po(r,A v a) = po(r fA)/2 + po(rJ-~A A B)/4.

po(r,A v B V C) = po(r J~)/2 + po(F[-~A A B)/4 + po(rl ~A A -~B A C)/8.

The complexity o f calculating the number o f models of a set of clauses with length

greater than 1 is exponential. I f we use the recurrence function f (n) = f (n - 1) +

f (n - 2) + f (n - 3) as a starting point, we obtain f (n) = O(~k~), where n is the number

o f variables in the set o f clauses and ~k3 is the largest root of 1 - 2 • z 3 + z 4 = 0 and

it is approximately 1.839287.

Many problems can be solved by only using po(F,A) = po(F[A)/2 and po(F,
A V B) = po(FIA)/2 + po(F[-~A,B)/4. In these cases, the complexity function f (n)
will be O(ff~) where if2 is the largest root o f 1 - 2 • z 2 + z 3 = 0 and it is equal to

(1 + v/-5)/2 which is approximately 1.618034. The pigeon-hole principle [2] is among

these problems.

W. Zhangl Theoretical Computer Science 155 (1996) 277-288 281

Generally, if the upper bound of the number of literals in a clause of a set is k, we

only need using the equations po(F, Al VA2 V - " V A i) - ~ ½po(rlAl)+ ~po(rlA2 A

~ A I) + ~ p o (F I A 3 A ~ A 2 A ~ A 1) + ' " " + ~ p o (F I A i A ~ A i - I A.. "A~AI) for i = 1,2 k.
By solving the recurrence f (n) = f (n - 1) + . . . + f (n - k), we obtain an upper bound
for the number of steps needed to calculate the number of models of sets of clauses
where the length of any clause is bounded by k. Since f (n) = O(~b~,), where ~bk is
the largest root o f 1 - 2 • z k + z k+l = 0, we obtain the following theorem.

Theorem 2.4. The number o f models o f a set o f clauses can be calculated within
O(~k~) steps, where n is the number o f variables and k is the upper bound o f the

number o f literals in a clause.

Some approximate values for ~kk are as follows: qJ2 ----- 1.618034, 1~3 = 1.839287,

1~4 ~--- 1.927562, if5 = 1.965948 and ffk approaches 2 as k approaches infinity.

3. Satisfiability

Satisfiability is easier to calculate than the number of models. The former is NP-

complete and the latter is #P-complete [3]. For satisfiability, we can c u t a w a y many
branches of the calculation by using appropriate theorems. For instance, if we know

po(F) = po(Fo)/a+po(F1)/b and po(Fo) >>- p0(F1), we can conclude that po(F) = 0 iff
po(Fo) = 0 and hence there is no need to calculate p0(F1). We have some inequalities:

po(F) >~ po(F,F) .

po (F ,F V G)>~ po(F,F) .

1~> p0(F)~>0.

po(F) > 0 iff F is satisfiable.

We use the pigeon-hole principle as an example of reasoning about unsatisfiability.
The pigeon-hole principle can be understood as that there is no injective mapping from

a set with n + 1 elements to a set with n elements [2]. We use Pij to represent that
the ith element in the first set maps to the j th element in the second set. Let F, be

the set o f formulas { Pn V Pi2 V . . . v Pin I i = 1 n + 1} and An be the set o f
formulas {Pik A Pjk I k = 1 n and 1 ~< i < j <~ n + 1 }. The pigeon-hole principle can
then be represented by: F, --~ A, . Proving this formula is the same as proving the

inconsistency of Fn, At,, where A', is the set o f formulas {-~Pik V -'Pjk [k = 1 n

and 1 ~< i < j ~< n + 1 }. Let us denote Fn, A'n by H~.
We obtain po(H,) = po(l ln,Pl l) + po(II~, ~P11,P12) + " " + po(II , , -~P11, ~P12

Pl,n). From the symmetry of the variables Pij in Hn, we conclude that p o (H ~ , P l l) =

po(II , ,P12) po(IIn,Pl,n). Since po(Hn,PmlI)<~po(Fln,Pl i) for any set H,
we obtain p o (l l ,) < , n , po(Fl~,Pll). Since we also have po(H, ,P t l)<~po(l l ,) , we

obtainpo(/-/n) = 0 if and only if po(H~, Pi t) = 0. Further we have po(Hn, P l l) = 0 ¢~.
po(II , IP11) = 0 and po(II , IPll) = 0 ~ po(Fl, IPll,-~P21 ~P,+l , l) = 0, since,

282 W. Zhang / Theoretical Computer Science 155 (1996) 277-288

--nPll V -1/°21 -~P11 V ~Pn+l,1 6~ /'/n. The last equation is equivalent to po(I ln_ l)

= 0. Hence after n - 1 steps, we obtain po(IIn) -- 0 if and only if po(lll) = O. The
validity of po(ll l) = 0 is easy to prove. It is a simple way to reason the validity of
the pigeon-hole formulas. For automatic reasoning, the main problem here is to detect
the structural similarity of po(lln,Pli) for i = 1 n. I f there is no such mechanism

in an automatical proof procedure, it will carry out n such proofs and the number of
steps will be an exponential of n.

In the rest of this section we present theorems about the relations between unsatis-
fiable formulas. We need the following notations for the theorems and the following
analysis.

• Inc(F) means po(F) = 0 (i.e. F is unsatisfiable).

• F1 O F2 means the set of clauses which is in F1 and not in F2.

• FI C/ '2 means any clause in F1 is also in / '2 (and it implies that F1 O F2 is empty).
• F[F/A] means the result of substituting A by F in F (-,A is not substituted by -~F

in this substitution).

Theorem 3.1. Inc(F,d) ¢¢, Inc(F]A).

Proof. Since po(F,A) = po(F[A)/2 by Theorem 2.2, we obtain po(F,A) = 0 if and
only if po(F[A) = 0. This theorem corresponds to the unit clause rule of the Davis-
Putnam procedure [1]. []

Theorem 3.2. Inc(F,F v G) <=> Inc(F,F) A Inc(F, -~F, G).

Proof. Since po(F,F V G) = po(F,F) + p0(F, -~F, G) and po(F,F), p0(F,-~F, G)i> 0,
we obtain po(F,F V G) = 0 if and only if po(F,F) = 0 and po(F,-~F,G) = 0. Note
that F may be a clause of more than one literal. In the special case where F is a literal,
we obtain F , F V G is unsatisfiable if and only if F , F and F, -~F, G are unsatisfiable

and they are unsatisfiable if and only if F[F and {F,G}[~F are unsatisfiable. This
special case corresponds to the split rule of the Davis-Putnam procedure. []

Corollary 3.1. Inc(F,A V B,-,A V C) .~ Inc(FlA A C) A Inc(F I ~A AB).

Note that B and C could be the same literal or a complementary pair and both of
them should be different from A and -~A.

Corollary 3.2. Inc(F,A V B,A V C) ~ Inc(F]A) A Inc(F] -~A A B A C).

Corollary 3.3. Inc(F,A V B,A V C,A V D) <=~ Inc(F [A) A Inc(F[~A A B A C A D).

Theorem 3.3. I f F I Al A A2 A ... A An C F, then Inc(F) <=* Inc(F,A~,A2 An).

Proof. Since F[Aa A A2 A --. A An C F, we obtain po(F)>~po(F, A1,A2,...,An) =
po(FIAl AA2 A . . . AAn)/2 n >>- po(F)/2 n. Hence po(F) = 0 if and only if po(F, AI,A2,
. . . . A,) ---- 0. A special case of this theorem is that if the negation of a literal A does not

IV.. Zhan#l Theoretical Computer Science 155 (1996) 277-288 283

appear in F, then F is unsatisfiable if and only if the set obtained by removing clauses

containing A from F is unsatisfiable. This special case corresponds to the pure literal
rule of the Davis-Putnam procedure. []

Theorem 3.4. I f A and B do not appear in F (--,A and -~B may appear in F), then
Inc(F,A VBV C) ¢=~ Inc(F I CA -~A A -~B) Alnc(FI-~C AA A -~B) Alnc(FI-~C A-~A AB).

Proof . Since po(F,A V B V C) = po(F I C)/2 + po(F[--,C A A)/4 + po(F I --,C A --,A A

B)/8, po(F,A V B V C) = 0 if and only if po(FIC) = O, po(F[-~CAA) = 0 and

po(F I --,C A -~A A B) = 0. Since F I C I --,A A --,B C F I C, we obtain po(F I C) = 0 if
and only if po(FI C m --,A A -~B) = 0. Since F I --,C m A I -,B C F I - ,C m A, we obtain
po(F[-~C A A) = 0 if and only if po(Fl-~C AA A -~B) = 0. Hence we obtain the
theorem. []

Theorem 3.5. I f A does not appear in F, then Inc(F,A V F) ~ Inc(F[F/-~A]).

Proof . Let F be F',-~A V GI --,A V Gk where A and ~A do not appear in F ' . We
obtain

po(F,A V F) = po(F ' , -~A V GI --1/1 V Gk,A V F)

= p0(F I, -~A V Gl ~A V Gk,F) + po(F 1, ~A V G t , . . . , ~A V Gk,--,F,A)

= po(F ~, -~A V GI --,A V Gk-l,F, --,A)

+ po(F',-',A V GI --,A V G~-I,F,A, Gk) + po(F', G1 Gk, ~F,A)

= po(F',F, -',A) + po(F', G1 Gk-i,F,A, Gk) + po(F', G1 Gk, --,F,A)

: po(F',F)/2 + po(F', Gl Gk-I,F, Gk)/2 + po(F', GI Gk, ~F)/2.

po(F[F/'~A]) = po(F',F V Gl F V Gk)

= po(Ft,F V G1 F V Gk-I ,F) + po(F',F V G1 F V Gk-l, -~F, Gk)

= po(F' ,F) + po(F', G1 Gk-1,-~F, Gk).

Since p o (F ' , F) = 0 implies po(F',G1 Gk-I,F, Gk) = 0, we obtain po(F,A V F)
= 0 if and only if po(F[F/-~A]) = O. []

Corollary 3.4. I f A appears only in A V B V F o f F , then Inc(F) ¢:~ Inc(FIB A--,A) A
Inc(r[F/-~A] I -~B A .4).

I f F is the empty clause, we obtain F[F/-~A] I -~B A A = F I ~B A A.

284 W. Zhan91 Theoretical Computer Science 155 (1996) 277-288

4. 3-SAT problems

We divide a set F (which may contain unit clauses, 2-literal clauses and 3-literal

clauses) into 3 parts Fo, FI,F2 and F3. Fo is a set of one-literal clauses, Fl is a set
of two-literal clauses and every variable appears only once in Fl U F0, F2 is the set
of formulas containing the one-literal and two-literal clauses not in F1 U F0 and F3
is the set of three-literal clauses. Let n be the number of variables in F, a be the
number of clauses in F0, b be the number of clauses in FI, c be 0 if F2 is empty,

c be 1 if F2 contains one clause and c be 2 if F2 contains more than one clause.
We assume a + b + c > 0. We denote the complexity of the set F by f (n ,a ,b , c)
where a, b, c, n ~> 0. We use the number of branches of subproofs as the measure of
the complexity. In the following, we try to find the properties of this function. Some

desired properties of f (n , a, b, c) are:

a <a' ~ f (n ,a ,b , c) > f (n ,a ' ,b ,c) .

b < b' --+ f (n ,a ,b , c) > f (n ,a ,b ' ,c) .

c < c ' ~ f (n ,a ,b , c) > f (n ,a ,b ,c ') .

n > n' ~ f (n ,a ,b , c) > f (n ' ,a ,b ,c) .

In addition to these inequalities, we need the following inequalities in the following

discussions.

1. f(n,a,b,c)>~ f (n - 1 , a - 1,b,0). (case 1).
2. f (n , l , O , c) > ~ f (n - 1 ,0 ,0 ,1)+ f (n - 4 , 0 , 0 , 1) . (case 1).

3. f (n , 1,O,c)>>.f(n - 3, 1,0,0). (case 1).

4. f(n,O,b,c)>_-f(n, 1 , b , c - 1). (case 2, 3).
5. f(n,O,b,c)>~f(n, 1 , b - 1,c). (case 2, 3).
6. f (n ,O,b ,c)>>. f (n- 1 , m - 1 , b - m , O) for m > 1. (case 3).

7. f (n , O , b , c) > > . 2 . f (n - 2 , 0 , b - 2 , 1) . (case 4, 5).
8. f(n,O,b,c)>>.3 • f (n - 3,0,b - 2, 1). (case 4).
9. f(n,O,b,c)>>.2, f (n - 3,0,b - 3, 1) + f (n - 4,0,b - 3, 1). (case 4).

10. f(n,O,b,c)>>.f(n - 1,0,b - 1,2) + f (n - 3,0,b - 2, 1). (case 5).

11. f(n,O,b,c)>_.f(n,O,b+ 1 , c - 1). (case 5).
12. f (n,O,b,O)>>.f(n- 1 , 0 , b - 1 , 2) + f (n - 2 , 0 , b - 1,1). (case 6).

4.1. Case analysis

In the following discussion, we first remove all subsumed 3-literal clauses in F
for simplifying the analysis. Subsumed 2-literal clauses are not removed for technical

reasons, because removing them will affect the value of b and c.
Case 1: a > 0. We use Theorem 3.1 to reduce the number of the variables in F.

In case the result of the reduction does not contain unit clauses or 2-literal clauses,

Theorem 3.2 is used to split the set to two sets. Two subcases:

IV.. Zhang l Theoretical Computer Science 155 (1996) 277-288 285

(i) a > 1 or a ---- 1 A b > 0. We obtain Inc(FoU{A}, Fx, F2, F3) ¢=~ Inc(Fo, FllA, F2IA
F3 [A) by Theorem 3.1. We restructure {Fo, F1 [A, F2 [A, F3 IA} to {F'o,F~,F~,F'3}. The
number of variables in {Fto, F~,F~,F~} is n' with n ' ~ n - 1, the number of clauses in

F ~ i s a ' w i t h a ' > ~ a - 1, the number of clauses in F~ is b I with bt~ b, the number

of clauses inF~ is e ~ wi thc ~ > 1 0 . W i t h a > l o r a = 1 A b > 0 , we o b a t i n a ' + b ~+

c'>~ a - 1+ b > 0. Hence by the induction hypothesis, we can prove Inc(F~o, F~, F~, F'3)
within f (n ' ,a ' ,b ' , c ') branches and f (n ' , a ' , b ' , e ') < ~ f (n - l , a - 1,b,0). Hence we can

prove Inc(F) within f (n - 1 , a - 1,b,0) branches. In the following, we omit this kind
of details in the proofs.

(ii) a = 1 and b = 0. Assume A E F0 and B V C V D E F3. We obtain Inc(F) ¢=~
Inc(F [A, B V C) A Inc(F I A A -~B A -~C A D) by Theorems 3.1 and 3.2. If F IA A -,B A
-~C A D C F, we obtain Inc(F) ¢=~ Inc(F,A, -~B,-,C,D) ¢=~ Inc(F[A A -~B A -~C,D) by

Theorem 3.3. Hence we can prove Inc(F) within f (n - 3, 1,0,0) branches. Otherwise

we can prove Inc(F) within f (n - 1,0,0, 1) + f (n - 4,0,0, 1) branches.

Case 2: a = 0 and there is a unit clause in F2. We move one of the unit clauses

from F2 to F0 and make sure that the variables of FI and that of F0 are different by

possibly move a 2-literal clause from Fl to Fz. Hence we can prove Inc(F) within

either f (n , 1 , b , e - 1) branches or within f (n , 1 , b - 1,c) branches.

Case 3: a = 0, F [Bt AB2 A. • • ABm C F and either Bi, -~Bi or both of them appear
in F for i = 1 m (m~>l). We obtain Inc(F) ¢=~ Inc(F, B l , . . . ,Bm) by Theorem

3.3. If m = 1, we can prove Inc(F) within either f (n , 1,b,c - 1) branches or within

f (n , 1, b - 1, c) branches. If m > 1, we can prove Inc(F) within f (n - 1, rn - 1, b - m, O)
branches.

Case 4: F[A O F = {F} and there is no unit clause in F. F is either a unit
clause or a 2-literal clause. (i) I f F is a unit clause, let F be B. -,A appears only

in -~A VB. We obtain Ine(F) ~ Inc(F[B AA) A Inc(F[-,B A -,.4) by Corollary 3.4.

Either we can reduce it to case 3 (when Theorem 3.3 is applicable) or we can prove

it within f (n - 2,0,b - 2,1) + f (n - 2,0,b - 2,1) branches. (ii) If F is a 2-literal

clause, let F be B V C. -~A appears only in -~A V B V C of F. We obtain Inc(F) ¢e~
Inc(F [B A A) A Inc(F[C/A] [-,B A-~A) by Corollary 3.4.

(a) If F[B A A c F, this case is reduced to case 3.

(b) If F[C/A][-,B A --,A C F, B appears only in -~A V B V C. We obtain Inc(F)
Inc(FlC A A A -~B) A Inc(F[~C A -,A A -~g) A Inc(F[-,C A A A B) by Theorem 3.4.
Either we can reduce this case to case 3 or we have the following cases:

- None of B and -~B appears in Fl.

We can prove Inc(F) within f (n - 3 , 0 , b - 2 , 1) + f (n - 3 , 0 , b - 2 , l) + f (n - 3 , 0 , b - 2 , 1)
branches.

- --B V D is in Fl and D is one of A, -~A, C, -~C.

We can prove Inc(F) within f (n - 3 , O, b -2 , 1)+ f (n - 3 , 0, b -2 , 1) + f (n - 3 , 0, b-2 , 1)
branches.

- -~B V D is in FI and D is different from any of A,-~A, C,-~C.

We can prove lnc(F) within f (n - 3 , 0 , b - 3 , 1) + f (n - 3 , 0 , b - 3 , 1) + f (n - 4 , 0 , b - 3 , 1)
branches.

286 W. Zhang l Theoretical Computer Science 155 (1996) 277-288

(c) None of F I B A A C F and F[C/A]I--,BA--,ACF.
There must be at least one new clause in each of FIB A,4 and F[C/,4]I--,BA-~A

and we can prove Inc(F) within f (n - 2,0,b - 2, 1) + f (n - 2,0 ,b - 2, 1) branches.

Case 5: c >/1 and there is no unit clause in F.
(a) AVB in F2 and -~AVC in Fl. We obtain Inc(F) ¢:~ Inc(FIAAC)Alnc(F[-~AAB)

by Corollary 3.1.
We can either reduce this case to case 3 or we can prove Inc(F) within f (n - 2,0,

b - 2, 1) + f (n - 2, 0, b - 2, 1) branches.

(b) A V B in F2 and A V C in F1. We obtain Inc(F) ¢~, Inc(FlA)Alnc(FI ~ A A B A C)
by Corollary 3.2.

We can either reduce this case to case 3, case 4 or we can prove Inc(F) within

f (n - 1,0,b - 1,2) + f (n - 3,0,b - 2, 1) branches.
(c) .4 V B i n / ' 2 and none of the literals A, -,A, B, -~B appears in F1. We move A V B

from F2 to F1 and obtain that we can prove Inc(F) within f(n,O, b + 1 , c - 1) branches.

Case 6: a = c = 0. Fl must be nonempty. Assume that A V B is in Fl . We obtain

Inc(F) ~ Inc(F 1.4) A Inc(Fl-~.4/x B) by Theorem 3.2. We can either reduce this case

to case 3, case 4 or we can prove Inc(F) within f (n - 1 , 0 , b - 1 , 2) + f (n - 2 , 0 , b - 1, 1)
branches.

4.2. Complexity

To begin with, we write f (n , a, b, c) as an exponential function ~O n-x'a-y'b-z'c, where

x ,y , z are numbers between 0 and 1 (which are meant to be the weights of a,b,c) and

x>/y>/z. For simplicity we set x = y = z. We shall find a tp that satisfies the set

o f inequalities listed at the beginning of this section. By replacing f (n ,a ,b , c) with
~o n-x'a-y'b-z'c, we obtain the following inequalities:

1. ~o n-x(a+b+c) ~ (pn-l-x(a-l+b).

2. ~pn-X(l+c) >/tpn-l-x + (pn--4--x.
3. ~0 n-x(l +c) >/ ~0 n-3-x .
4. (pn-x(b+c) >/tpn-x(l+b+c-1).

5. (pn-x(b+c) >/ (pn-x(l +b- l +c).

6. (pn-x(b+c)>/tpn-l-x(rn-l+b-rn) for m > 1.
7. tp n-x(b+c) >/2 • tp n-2-x(b-2+l).

8. <pn-x(b+c) >/ 3 • (pn-3-x(b-2+l).
9. q~n-x(b+c) >/ 2 • (pn-3-x(b-3+ l) "4- (pn-4-x(b-3+ l).

10. q)n-x(b+c) >/(pn-l-x(b-l+2) .4_ q)n-3-x(b-2+l).

11. ~pn-x(b+c) >I ~n-x(b-l+c+l).
12. q~n-x.b >1 q)n--l--x(b--l+2) + (pn-2--x(b-l+l).

First, we remove inequalities 4, 5 and 11, since the left-hand side and the right-
hand side are equal. Second, since c~<2 and ~On--x't~fp n-x's if s>/t, ~p satisfies the

inequalities, if ¢p satisfies the inequalites with c replaced by 2 in the left-hand side

W. Zhan91 Theoretical Computer Science 155 (1996) 277-288 287

terms. It results in the following 9 inequalities:

1. (pn-x(a+b+2) ~ (pn-l-x(a-l+b).
2. (p~,-ax ~ (pn--l--x .+ (pn--a--x.

3. (pn-3x >~ (pn--3-x.
4. (pn-x(b+2) >/(pn--l-x(b--1).

5. (pn-x(b+2) >. 2 • ¢pn-Z-x(b-1).
6. (p,-x(b+2) >/3 • (pn-3-x(b-1).
7. (pn-x(b+2) >>. 2 • (pn-3-x(b-2) + (pn-4-x(b-2).
8. (pn-x(b+2) ~ (pn-l-x(b+l) .q_ (pn-3-x(b-l) .
9. (p b ~ (pn- l-x(b+ l) .~_ (pn- Z-x.b.

First, we remove item 3 by assuming x < 1 and (p > 1. Second, we remove item 4,
since it is the same as item 1. Third, we assume that (p is between 1.5 and 2. By this
assumption, we remove item 1 and item 6, since both are consequences of item 5. By
simplifying the remaining inequalities, we obtain:

1. 1 >/(p2x-1 + (pz~-4.

2. 1 ~>2 • (p3x-2.
3. 1 >_-2 - (p4x-3 + (p4x-4.
4. 1 ~>(px-I + (p 3 x - 3 .

5. 1 . /> (p - t -x+(p -2.

Since the smaller the value of x is the smaller can (p be for the first 4 inequalities
and the larger the value of x is the smaller can (p be for the 5th inequality, the last item
is critical for determining an optimal x. Hence we set (px = ((p _ (p-1)-1 according
to the 5th inequality and use this value to find the minimum value for (p according to
the other inequalities. (p must satisfy:

1. 1 />((p - (p - l) - 2 . ((p - l + (p-4) .

2. l / - > 2 . ((p - (p - t) - 3 . (p -2.
3. 1 .--> ((p -- (p - I) -4 - (2 - (p-3 + (p-4).
4. l ~ ((p - (p - l) -1 .(p-1 q_ ((p _ (p - l) - 3 , (p-3.

Let (P~,(P2,(P3, (p4 be the largest root of, respectively, the following equations.

1 = ((p - (p - 1) - 2 . ((p-L + (p-4) .

1 = 2 - ((p - ~o-1) -3 • (p-2.

1 = ((p - (p - l) - 4 . (2 • (p-3 + (p-a) .

1 = ((p - (p - l) - I . (p-I + ((p _ (p - l) - 3 . (p-3.

The minimum value of ~o satisfying the 4 inequalities is the maximum of the val-
ues of (pl, (P2, (P3 and (P4 (which are approximately 1.549907, 1.569804, 1.556978 and
1.570214). Since ¢P4 is the largest of them and 1 = ((p_(p-1)-1 .(p-I +((p_(p- I)-3.(p-3
is equivalent to ((p2 _ 1)2. ((p2 _ 2) = 1, we obtain the following lemma.

288 W. Zhang/Theoretical Computer Science 155 (1996) 277-288

Lennna 4.1. I f a set of unit clauses, 2-literal clauses and 3-literal clauses with n
variables contains at least one unit clause or one 2-literal clause, satisfiability of this
set of clauses can be determined within O(cpg) branches of subproofs where q~o is the
largest root of the equation (~p2 _ 1)2. (tp2_ 2) = 1.

Since 1.5 < tp0 < 2 and x = log(tp0 - ~po1)-l/Iog(tp0) < 1, this lemma follows
from the above case analysis. The above analysis incorporates many proof strategies.
By using these strategies, we can cut away many branches of the proofs.

Theorem 4.1. Satisfiability of any set of unit clauses, 2-literal clauses and 3-literal
clauses with n variables can be determined within O((pg) branches of subproofs.

Note that the time used in the process of dividing a proof to several subproofs is
a polynomial function of the size of the set of clauses. A little increase of q~0 (which
is approximately 1.570214) is enough to get rid of the polynomial factor. Hence we
obtain the following corollary.

Corollary 4.1. Satisfiability of any set of unit clauses, 2-literal clauses and 3-literal
clauses with n variables can be determined within O(1.571 n) time units, if the size of
the set of clauses is bounded by a polynomial function of n.

References

[1] C. Chang and R. Lee, Symbolic Logic and Mechanical Theorem Proving (Academic Press, New York,
1973).

12] S.A. Cook and R.A. Reckhow, The relative efficiency of propositional proof systems, The J.Symbolic
Logic 44 (1979) 36-50.

[3] Michael R. Garey and David S. Johnson, Computers and Intractability - A Guide to the Theory of
NP-completeness (W. H. Freeman and Company, New York, 1979).

[4] B. Monien and E. Sehiermeyer, Solving satisfiability in less than 2 n steps, Discrete Appl. Math. 10
(1985) 287-295.

[5] I. Schiermeyer, Solving 3-satisfiability in less than 1.579" steps, in: Computer Science Logic, Lecture
Notes in Computer Science, Vol. 702 (Springer, Berlin, 1993) 379-394.

