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a b s t r a c t

The Randić index of a graph G is defined as R(G) =
∑
u∼v(d(u)d(v))

−
1
2 , where d(u) is

the degree of vertex u and the summation goes over all pairs of adjacent vertices u, v. A
conjecture onR(G) for connected graphG is as follows:R(G) ≥ r(G)−1,where r(G)denotes
the radius ofG.Weproved that the conjecture is true for biregular graphs, connected graphs
with order n ≤ 10 and tricyclic graphs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph, where V is vertex set, E is edge set. If |V | = n, we call G a graph with order n. For
v ∈ V (G), d(v) (or dv) and N(v) denote the degree and the neighbor set of vertex v, respectively. The distance dG(u, v) is
defined to be the number of edges in a shortest path from u to v in G. The eccentricity of a vertex x, denoted by ρ, is equal
to maxy∈V (G) dG(x, y). And the radius of G is defined as r(G) = minx∈V (G)maxy∈V (G) dG(x, y) and a center u is a vertex for
which maxy∈V (G) dG(u, y) = r(G). The minimum and maximum degrees of G are denoted by δ(G) and∆(G), respectively. A
bipartite graph G is called (a,b)-biregular if all vertices in one part of G have degree a and all vertices in the other part have
degree b. For terminology and notation not defined here, we refer the readers to [2].
The Randić index is a graph invariant defined as

R = R(G) =
∑
u∼v

1
√
d(u)d(v)

,

where u ∼ v denotes adjacent vertices u, v.
Recently many researches on extremal aspects of the theory of Randić index have been reported (see [6]). But some

problems are still open. In [4], S. Fajtlowicz proposed the following conjecture.

Conjecture ([4]). For all connected graphs G,

R(G) ≥ r(G)− 1,

where r(G) denotes the radius of G.
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In [3], Caporossi and Hansen proved the following:

Theorem A ([3]).
(1) For all trees T , R(T ) ≥ r(T )+

√
2− 3

2 ≥ r(T )− 0.086;
(2) For all trees T except even paths, R(T ) ≥ r(T ).

In [7], Bolian Liu and I. Gutman proved the following:

Theorem B ([7]).
(1) Let G be an (n, m) unicyclic (bicyclic) graph (n ≥ 3). Then R(G) ≥ r(G)− 1.
(2) Let G be a graph of order n with δ(G) ≥ 2. If n ≤ 9, then R(G) ≥ r(G)− 1.

Recently in [6], X. Li and I. Gutman pointed out that ’’ It does not seem to be easy to extend these results to general graphs.’’
In [7], the conjecture is proved for unicyclic and bicyclic graphs and connected graphs of order n ≤ 9 with δ(G) = 2.

In this paper, we prove that the conjecture is true for biregular graphs, connected graphs with order n ≤ 10 and tricyclic
graphs.

2. Biregular graphs

Lemma 2.1. Let G be a connected graph and u be a center of G. Denote Si = {v ∈ V (G) : dG(u, v) = i} for 0 ≤ i ≤ r (r is the
radius). Then |Si| ≥ 2 for 1 ≤ i ≤ r − 1.
Proof. If r ≤ 1, then there is nothing to prove.
Now we consider r ≥ 2.
Let u be a vertex with the eccentricity ρ ≥ 2 and Si = {v ∈ V (G) : dG(u, v) = i} for 0 ≤ i ≤ ρ. Suppose that some Si

with 1 ≤ i ≤ ρ − 1 has only one vertexw. There is a vertex y such that d(u, y) = 1 and d(y, w) = i− 1. Then the distances
from y to the vertices in Sj (j < i) are at most j+ 1, and j+ 1 ≤ i < ρ. And the distances from y to the vertices in Sj (j ≥ i)
are j− 1, owing to a path throughw, and j− 1 < ρ. Thus the eccentricity of y is less than ρ. Then u is not a center.
Hence if u is a center, then all sets Si (1 ≤ i ≤ r − 1) have at least 2 vertices. �

Theorem 2.2. Let G be a connected biregular graph, then

R(G) ≥ r(G).

Proof. Let (X, Y ) be the two parts of V (G), |X | = x, |Y | = y. Each vertex of X has degree a and each vertex of Y has degree b.
If a or b = 1, then G is a star graph. By direct calculation, r(G) = 1 ≤ R(G).
In the following, let min{a, b} ≥ 2.
Since G is a biregular graph, then{

x+ y = n
xa = yb.

Thus
a
b
=
y
x

and

R(G) =
∑
u∼v

1
√
ab
=

1
√
ab
xa =

√
a
b
x =

√
y
x
x =
√
xy.

Let u be a center of G, i.e., a point for which maxy∈V (G) dG(u, y) = r(G) = r , and Si = {v ∈ V (G) : dG(u, v) = i} for 0 ≤ i ≤ r .
By Lemma 2.1, |Si| ≥ 2 (1 ≤ i ≤ r − 1).
Note that Si ∩ Sj = Ø for i 6= j and n =

∑r
i=0 |Si|.

If r is even, then S0, S2, . . . , Sr ⊂ X and S1, S3, . . . , Sr−1 ⊂ Y .
Using |Si| ≥ 2 (i = 1, 2, . . . , r−1), we get x = |S0|+|S2|+· · ·+|Sr | ≥ 1+ r−22 ×2+1 = r , y = |S1|+|S3|+· · ·+|Sr−1| ≥

r−1+1
2 × 2 = r .
Hence xy ≥ r2, R(G) =

√
xy ≥ r .

If r is odd, then r − 1 is even, S0, S2, . . . , Sr−1 ⊂ X and S1, S3, . . . , Sr ⊂ Y .
Thus x = |S0| + |S2| + · · · + |Sr−1| ≥ 1+ r−1

2 × 2 = r .
y = |S1| + |S3| + · · · + |Sr | ≥ r−2+1

2 × 2+ 1 = r .
Hence xy ≥ r2, R(G) =

√
xy ≥ r . �

Corollary 2.3. Let G be a complete bipartite graph, then

R(G) ≥ r(G).
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Fig. 1. A spanning tree T has 9 vertices, radius 4, and T is not P9 .

3. Graphs with order ≤ 10

Lemma 3.1 ([1]). Let G be a graph of order n, containing no isolated vertices. Then

R(G) ≥
√
n− 1,

where equality holds if and only if G is a star.

Theorem 3.2. Let G be a connected graph of order at most 7, then

R(G) ≥ r(G)− 1.

Proof. By the proof of Lemma 2.1, we know that r(G) − 1 ≤ b n2c − 1 ≤
√
n− 1 for n ≤ 7. By Lemma 3.1, r(G) − 1 ≤

√
n− 1 ≤ R(G). �

Theorem 3.3. Let G be a connected graph of order n = 8, then

R(G) ≥ r(G)− 1.

Proof. We consider the following two cases:
Case 1. There exists a spanning tree T that is not isomorphic to P8.
Then r(T ) ≤ 3. Hence r(G)− 1 ≤ r(T )− 1 ≤ 3− 1 = 2 ≤

√
8− 1 =

√
7 ≤ R(G).

Case 2. G ∼= P8 or C8.
It is easy to check that R(G) ≥ r(G)− 1 = 3 by counting.
Hence the conjecture is true for n = 8. �

Theorem 3.4. Let G be a connected graph of order n = 9, then

R(G) ≥ r(G)− 1.

Proof. By Theorem B (2), it is sufficient to prove that the conjecture is true for δ(G) = 1.
We consider the following two cases.
Case 1. G has the only spanning tree P9 and δ(G) = 1, i.e., G = P9.

R(P9) =
1
2
× 6+

2
√
2
= 3+

√
2 ≥ 4− 1 = 3 = r(G)− 1.

Case 2. There is a spanning tree T which is not P9.
(1) If r(T ) ≤ 3, by Lemma 3.1, then r(G)− 1 ≤ r(T )− 1 ≤ 3− 1 = 2 ≤

√
9− 1 ≤ R(G).

(2) If r(T ) = 4, then the spanning tree of G is P8 = v1 · · · v8 with one edge added.
For example, a spanning tree is shown as in Fig. 1.
Since the vertex v9 can be connected to at most 3 vertices of the path v1 · · · v8 (otherwise a spanning tree with shorter

radius appears), by the theorems on trees, unicyclic and bicyclic graphs ( [3], [7]), the conjecture is true. �

Theorem 3.5. Let G be a connected graph of order n = 10, then

R(G) ≥ r(G)− 1.

Proof. There are two cases:
Case 1. If G has a spanning tree T which is not path P10.
Then r(G)− 1 ≤ 4− 1 =

√
10− 1 ≤ R(G).

Case 2. If G has the only spanning tree P10, then G ∼= P10 or C10.
For C10, R(G) = 1

2 × 10 = 5 ≥ 5− 1 ≥ r(G)− 1.
For P10, R(G) = 1

2 × 7+
2
√
2
≥ 3.5+ 1.41 = 4.91 ≥ 5− 1 ≥ r(G)− 1. �

Up to now, we have shown that the conjecture R(G) ≥ r(G)− 1, is true for all connected graph with order n ≤ 10.
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4. Tricyclic graphs

Since in Section 3, the conjecture is true for order n ≤ 10, we may suppose that the order of graphs is at least 11 in this
section.

Lemma 4.1 ([7]). Let G be a unicyclic graph and v1v2 be an edge in a cycle of G with d(v1) = d1, d(v2) = d2. Then the minimum
value for the difference R(G)− R(G− v1v2) is reached when d1 = d2 = n+1

2 .

Thus R(G)− R(G− v1v2) ≥ 2
(
n+ 1
2
− 2+

1
√
2

)(√
2
n+ 1

−

√
2
n− 1

)
+

2
n+ 1

≥
√
2 · n ·

(√
1
n+ 1

−

√
1
n− 1

)
+

2
n+ 1

. (1)

The cyclomatic number of a connected graph G is defined as c(G) = m−n+1. A graph Gwith c(G) = k is called k-cycles
graph. Now we investigate the conjecture for tricyclic graphs.

Lemma 4.2 ([7]). Let x be a positive integerwith x ≥ 3. Denote k(x) =
√
2·x·

(√
1
x+1 −

√
1
x−1

)
+

2
x+1 . Then k(x) ismonotonously

increasing in x.

Lemma 4.3 ([5]). Let G be a connected k-cycles graph. There are k edges e1, . . . , ek of cycles of G such that G− e1 − · · · − ek is
a spanning tree of G.

Lemma 4.4. Let x be a positive integer with x ≥ 11. Denote f (x) =
√
2 · (x + 1) ·

(√
1
x+3 −

√
1
x+1

)
+

2
x+3 . Then f (x) is

monotonously increasing in x.

Proof. Let

f (x) =
√
2g(x) =

√
2

[
(x+ 1) ·

(√
1
x+ 3

−

√
1
x+ 1

)
+

√
2

x+ 3

]
. (2)

We consider the first derivative of g(x).

g ′(x) =
1

√
x+ 3

−
1

√
x+ 1

+ (x+ 1)
[

1

−2
√
x+ 3(x+ 3)

+
1

2
√
x+ 1(x+ 1)

]
−

√
2

(x+ 3)2

=
x+ 5

2
√
x+ 1(x+ 3)

−
1

2
√
x+ 1

−

√
2

(x+ 3)2
.

Thus

2
√
x+ 1(x+ 3)2g ′(x) = (x+ 5)

√
x+ 1
√
x+ 3− (x+ 3)2 − 2

√
2
√
x+ 1. (3)

Let t(x) = 2
√
x+ 1(x+ 3)2g ′(x) = (x+ 5)

√
x+ 1
√
x+ 3− (x+ 3)2 − 2

√
2
√
x+ 1.

We will prove that t(x)monotonically increases in x (x ≥ 11).
Note

t ′(x) =
[
(x+ 5)

√
x+ 1
√
x+ 3− (x+ 3)2 − 2

√
2
√
x+ 1

]′
=

√
x2 + 4x+ 3+ (x+ 5)

x+ 2
√
x2 + 4x+ 3

− 2(x+ 3)−

√
2

√
x+ 1

.

Thus√
x2 + 4x+ 3 · t ′(x) = x2 + 4x+ 3+ (x+ 5)(x+ 2)− 2(x+ 3)

√
x2 + 4x+ 3−

√
2
√
x+ 3

= 2x2 + 11x+ 13− 2(x+ 3)
√
x2 + 4x+ 3−

√
2
√
x+ 3

> 2x2 + 11x+ 13− 2(x+ 3)(x+ 2)−
√
2
√
x+ 3

= x+ 1−
√
2
√
x+ 3.

It is easy to verify that x+ 1−
√
2
√
x+ 3 > 0 for x ≥ 11.

Thus t(x) = (x+ 5)
√
x+ 1
√
x+ 3− (x+ 3)2 − 2

√
2
√
x+ 1 is a monotonically increasing function for x ≥ 11.

Hence t(x) ≥ t(11) > 1.5857 > 0 for x ≥ 11.
By (3), we have g ′(x) > 0 for x ≥ 11 and g(x)monotonically increases in x for x ≥ 11.
From (2), f (n) ≥

√
2 · g(11) ≥ −0.2206 for n ≥ 11. �
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Fig. 2. The bicyclic graph has the minimum difference R(G)− R(G− v1v2)when n is even.

Lemma 4.5. Let G be a bicyclic graph and v1v2 be an edge in a cycle of G. Then R(G)− R(G− v1v2) ≥ −0.2683.

Proof. Let v1v2 be an edge in a cycle of G with d(v1) = d1, d(v2) = d2. By definition of Randić index, it is not difficult to
obtain the following result

R(G)− R(G− v1v2) =
∑

v1∼vx 6=v2

1
√
dx

(
1
√
d1
−

1
√
d1 − 1

)
+

∑
v2∼vy 6=v1

1√
dy

(
1
√
d2
−

1
√
d2 − 1

)
+

1
√
d1d2

. (4)

Since v1v2 is an edge in a cycle, there exist at least two vertices vx 6= v2, vy 6= v1 for which dx, dy ≥ 2, because vx and vy
have to be connected by a path, different from {v1, v2} (or dx = dy).
Hence from expression (4)

R(G)− R(G− v1v2) ≥
(
d1 − 3+

2
√
2

)(
1
√
d1
−

1
√
d1 − 1

)
+

(
d2 − 3+

2
√
2

)(
1
√
d2
−

1
√
d2 − 1

)
+

1
√
d1d2

. (5)

Note that G is a bicyclic graph (n ≥ 4).
Case 1. n is even.
The minimum value for the difference R(G)− R(G− v1v2) is reached when d1 = d2 = n+2

2 . And the graph is depicted as
Fig. 2.
From inequality (5),

R(G)− R(G− v1v2) ≥ 2
(
n+ 2
2
− 3+

2
√
2

)(√
2
n+ 2

−

√
2
n

)
+

2
n+ 2

≥
√
2(n− 1)

(√
1
n+ 2

−

√
1
n

)
+

2
n+ 2

≥
√
2(n+ 1)

(√
1
n+ 2

−

√
1
n

)
+

2
n+ 2

:= h(n).

Then h(x) = k(x+ 1), where k(x) is the function in Lemma 4.2. By Lemma 4.2, h(x) is also monotonously increasing in x.
Hence R(G)− R(G− v1v2) ≥ h(n) ≥ h(11) ≥ −0.2683 for n ≥ 11.
Case 2. n is odd.
The minimum value for the difference R(G)− R(G− v1v2) is reached when d1 = n+3

2 , d2 =
n+1
2 . And

R(G)− R(G− v1v2) ≥
(
n+ 3
2
− 3+

2
√
2

)(√
2
n+ 3

−

√
2
n+ 1

)

+

(
n+ 1
2
− 3+

2
√
2

)(√
2
n+ 1

−

√
2
n− 1

)
+

2
√
(n+ 1)(n+ 3)

≥

(
n+ 3
2
− 3+

2
√
2

)(√
2
n+ 3

−

√
2
n− 1

)
+

2
n+ 3

≥
n
√
2

(√
1
n+ 3

−

√
1
n− 1

)
+

2
n+ 3

:= m(n).

Analog of the proof in Lemma 4.4, it is no difficult to verify that m(n) is monotonously increasing in x. Then R(G) − R(G −
v1v2) ≥ m(n) ≥ m(11) ≥ −0.2381 for n ≥ 11.
By the above discussions, the lemma follows. �

Lemma 4.6. Let G be a tricyclic graph and v1v2 be an edge in a cycle of G. Then R(G)− R(G− v1v2) ≥ −0.2673.
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Fig. 3. The first extremal tricyclic graph with the minimal difference R(G)− R(G− v1v2).

Fig. 4. The second extremal tricyclic graph with the minimal difference R(G)− R(G− v1v2).

Proof. Let v1v2 be an edge in a cycle of Gwith d(v1) = d1, d(v2) = d2.
Completely similar to the proof of Lemma 4.5, from expression (4), and note that G is a tricyclic graph (n ≥ 4), there are

two extremal graphs (Figs. 3 and 4) when R(G)− R(G− v1v2) attains the minimal value.
Case 1. The extremal graph is Fig. 3.
Subcase 1.1. n is odd.
The minimum value for the difference R(G)− R(G− v1v2) is reached when d1 = d2 = n+3

2 . Then

R(G)− R(G− v1v2) ≥ 2
(
n+ 3
2
− 4+

3
√
2

)(√
2
n+ 2

−

√
2
n+ 1

)
+

2
n+ 3

=
√
2
(
n− 5+

3
√
2

)(√
1
n+ 3

−

√
1
n+ 1

)
+

2
n+ 3

≥
√
2(n+ 1)

(√
1
n+ 3

−

√
1
n+ 1

)
+

2
n+ 3

.

By Lemma 4.4, R(G)− R(G− v1v2) ≥ f (11) ≥ −0.2206.
Subcase 1.2. n is even. The minimal value for the difference R(G) − R(G − v1v2) is attained when d1 = n+4

2 , d2 =
n+2
2 .

Then

R(G)− R(G− v1v2) ≥
(
n+ 4
2
− 4+

3
√
2

)(√
2
n+ 4

−

√
2
n+ 2

)

+

(
n+ 2
2
− 4+

3
√
2

)(√
2
n+ 2

−

√
2
n

)
+

2
√
(n+ 2)(n+ 4)

≥
√
2
(
n+ 4
2
− 4+

3
√
2

)(√
1
n+ 4

−

√
1
n

)
+

2
n+ 4

≥
n+ 1
√
2

(√
1
n+ 4

−

√
1
n

)
+

2
n+ 4

:= l(n).

Similarly, l(x) is monotonously increasing in x for x ≥ 11.
Thus R(G)− R(G− v1v2) ≥ l(11) ≥ −0.2673.
Case 2. The extremal graph is Fig. 4.
Subcase 2.1. n is even.
The minimal value for the difference R(G)− R(G− v1v2) is attained when d1 = d2 = n+2

2 . Then

R(G)− R(G− v1v2) ≥ 2
(
n+ 2
2
− 3+

2
√
3

)(√
2
n+ 2

−

√
2
n

)
+

2
n+ 2

≥
√
2(n+ 1)

(√
1
n+ 2

−

√
1
n

)
+

2
n+ 2

.

By Lemma 4.2, R(G)− R(G− v1v2) ≥ −0.2683 for n ≥ 11.
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Subcase 2.2. n is odd.
The minimal value for the difference R(G)− R(G− v1v2) is attained when d1 = n+3

2 , d2 =
n+1
2 . Then

R(G)− R(G− v1v2) ≥
(
n+ 3
2
− 3+

2
√
3

)(√
2
n+ 3

−

√
2
n+ 1

)

+

(
n+ 1
2
− 3+

2
√
3

)(√
2
n+ 1

−

√
2
n− 1

)
+

2
√
(n+ 1)(n+ 3)

≥
n
√
2

(√
1
n+ 3

−

√
1
n− 1

)
+

2
n+ 2

.

Similarly, R(G)− R(G− v1v2) ≥ −0.2271 for n ≥ 11.
By the above discussions, if G is a tricyclic graph and v1v2 is an edge in a cycle of G, the R(G)− R(G− v1v2) ≥ −0.2673

for n ≥ 11. �

Theorem 4.7. Let G be a tricyclic graph with order n (n ≥ 5,m = n+ 2), then

R(G) ≥ r(G)− 1.

Proof. Let e1 be an edge in a cycle of G. By Lemma 4.3, G − e1 is a bicyclic graph. And by Lemma 4.6, R(G) − R(G − e1) ≥
−0.2673.
Let e2 be an edge in a cycle of G− e1. Similarly, by Lemmas 4.3 and 4.5, R(G− e1)− R(G− e1 − e2) ≥ −0.2683.
Let e3 be an edge in the cycle of G− e1 − e2. Denote T = G− e1 − e2 − e3 by a spanning tree of G. By the inequality (1)

in Lemmas 4.1 and 4.3, R(G− e1 − e2)− R(T ) ≥
√
2 · 11 ·

(√
1

11+1 −

√
1

11−1

)
+

2
11+1 ≥ −0.2620 for n ≥ 11.

Then

R(G) = R(G)− R(G− e1)+ R(G− e1)− R(G− e1 − e2)+ R(G− e1 − e2)− R(T )+ R(T )
≥ R(T )− 0.2673− 0.2683− 0.2620
= R(T )− 0.7976
≥ r(T )− 0.086− 0.7976 (Theorem A)
= r(T )− 0.8836 ≥ r(G)− 0.8836 ≥ r(G)− 1. �
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