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Abstract

The special role of countability in topology has been recognized and commented upon very early
in the development of the subject. For example, especially striking and insightful comments in this
regard can be found already in some works of Weil and Tukey from the 1930s (see, e.g., Weil (1938)
and Tukey (1940, p. 83)). In this paper we try to expose the chain condition method as a powerful tool
in studying this role of countability in topology. We survey basic countability requirements starting
from the weakest one which originated with the famous problem of Souslin (1920) and going towards
the strongest ones, the separability and metrizability conditions. We have tried to expose the rather
wide range of places where the method is relevant as well as some unifying features of the method.
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Introduction

A topological spaceX satisfies thecountable chain condition(often calledSouslin’s
condition) if every family of pairwise disjoint open subsets ofX is countable. This is the
weakest chain condition considered in this survey where we make an attempt to expose the
classifying power of an array of other chain conditions that one can put on a given space
before the ultimate one, theseparabilitycondition onX. For example, if one thinks of ccc
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as saying that every point-1 family of open subsets ofX must be countable, or in short,
‘point-1= countable’ one may ask about other such equalities:

point-2= countable

point-3= countable
...

point-finite= countable

and finally, one may ask for the strongest one of this kind:

point-countable= countable

and see whether one really gets different conditions. The answer depend on the class of
spaces we are working with, and this what we meant when we said ‘classifying power’.
In any spaceX, the ccc is the same as the requirement that for any integerk, point-k
families of open subsets ofX are countable. To identify ccc and the requirement that
point-finite families are countable one needs to assume something like compactness onX.
This has been first established by Rosenthal [37,38] dealing with a problem in Banach
space theory, and independently by Arhangel’skii [4] solving a problem from the theory of
Moore spaces. Tall [57] noted that the argument given in [4] shows that the requirement
thatX be a Baire space is all that is needed to identify ccc and the condition ‘point-finite
= countable’. Already these simple results give us a clear indication that better spaces are
likely to identify more chain conditions than the more pathological ones. For example, not
even the class of compact spaces seem to be restrictive enough to identify the remaining
chain condition listed above asserting that point-countable families of open subsets ofX

must be countable. This turned out to be a major new chain condition introduced long
ago by Shanin [41] and it will therefore be referred to here asShanin’s condition.While
productiveness of the ccc is questionable, and the productiveness of separability false, it
turns out that Shanin’s condition is always productive:

Theorem 1 (Shanin). Shanin’s condition is preserved in Tychonoff products of any num-
ber of factors.

The theme ‘point-countable= countable’ in topology has proved to be quite a fruitful
one as the following beautiful result of Mischenko [31] shows.

Theorem 2 (Mischenko).Every point-countable basis of a compact space is in fact
countable.

Back to the new chain condition and the question which classes of spaces would identify
Shanin’s condition with either ccc or separability. This turned out to be a quite subtle matter
as the following result shows.

Theorem 3 [52]. MAω1 is equivalent to the statement that the ccc and Shanin’s condition
are equal restriction on a given compact space.
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The proof of Theorem 1 required a new combinatorial idea, a still prominent theme in
combinatorics today (both finite and infinite; see, e.g., [93]):

Delta-System Lemma (Shanin). Every uncountable familyF of finite sets contains an
uncountable subfamilyF0 such thatE ∩F =⋂F0 for everyE 6= F in F0.

Interestingly, a proof of Theorem 2 also involves the Delta-System lemma, and the
Solovay–Tennenbaum proof of the consistency of MAω1 uses this lemma at a crucial point
(see [21,59]). While Shanin’s theorem and the Delta-System lemma are easily seen to be
just reformulations of each other, Mischenko’s theorem and the Delta-System lemma are
some sort of duals. To prove Mischenko’s theorem consider the family of all finite minimal
covers of the space by members of the basis and prove, using the Delta-System lemma,
that it must be countable. Conversely, given an uncountable familyF of finite sets, all
of the same size, letX be its closure in{0,1}I , whereI is the union ofF and where
we identify sets with their characteristic functions. For a givenD ∈ X there is a natural
choice of a familyBD of basic open sets of the Cantor cube{0,1}I which separatesD
from its supersets and subsets inX . SinceX is not metrizable, by Mischenko’s theorem,
B =⋃D∈X BD cannot be point-countable. So there is aD ∈ X whoseBD is uncountable.
AssumingD has a maximal size of a set with this property, it is easy to build a Delta-
subsystemF0 of F with rootD =⋂F0. We have made this short exposition in order to
hint at a reappearing phenomenon of this subject. Seemingly quite different topological
results tend to have common combinatorial essence. On the other hand, the discovery of
these combinatorial results would have been much more difficult without the powerful
topological intuition behind.

Today we know many more chain conditions and many remarkable results associated
with them, so selecting a small but representing part of the theory was a quite demanding
task. The process of selecting was in part made more difficult by our decision to concentrate
on recent results rather than older ones. Let us now give a short overview of the content
of this paper. In Section 1 we consider the problem of productiveness of the countable
chain condition which historically was quite important for the development of the subject.
In Section 2 we consider another great motivating source of this subject, the problem of
the existence of strictly positive measures. It was this area that initiated the study of a
whole new array of chain conditions which all, in some sense, resemble the dual form
of the separability condition. In Sections 3–6 we study some special classes of compact
spaces by examining which chain conditions they identify. In Section 8 the same study is
presented but from a different angle involving some basic cardinal characteristics of the
continuum. In Section 9 we present some applications of the chain condition method in
studying compact subsets of function spaces.

1. The countable chain condition of products

Proving that a given space satisfies the countable chain condition can sometimes be quite
difficult especially when the space is ‘barely’ ccc. For a quite long time it was not clear how
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to express the idea that some spaces are ‘barely ccc’. One property that hints to the ‘barely
ccc’ is the question of its productiveness which already appears in the Scottish-book of
problems (see [72, Problem 192]), but whose importance was fully recognized only after
the following result of Kurepa [24].

Theorem 1.1 (Kurepa). The square of a Souslin continuum is not ccc.

Proof. Let S be a given Souslin continuum and recursively pick sequencesIξ , Jξ , Kξ
(ξ < ω1) of nonempty open intervals ofS such that:

(1) Iξ , Jξ ⊆Kξ andIξ ∩ Jξ = ∅,
(2) Kη contains no end-point of anyIξ , Jξ , orKξ for ξ < η.

ThenIξ × Jξ (ξ < ω1) is a disjoint family of open rectangles ofS2. 2
This elegant and rather simple argument, however, contains an idea which can vastly be

generalized. We mention one result which uses the idea, a result would have been perhaps
hard to discover in a different context:

Theorem 1.2 [75]. LetX be a compactum such that not onlyX2 but any of its subspaces
satisfies the ccc. ThenX is separable.

Proof. Letπ be theπ -weight ofX, the minimal cardinality of aπ -basisofX, i.e., a family
P of nonempty open subsets ofX such that every nonempty open subset ofX includes a
member ofP . Choose recursively a sequence(Fξ ,Gξ ) (ξ < π ) such that

(1) Fξ is a closedGδ-subset ofX with nonempty interior,
(2) Gξ is an openFσ -subset ofX containingFξ ,
(3) Gη contains no nonempty intersection of finitely many sets of the formFξ orX \Gξ

for ξ < η.
It is not hard to show that for everyξ < π , the productFξ × (X \Gξ) cannot be covered
by finitely many products of the formGη × (X \ Fη) for η 6= ξ . So, by compactness, for
everyξ < π we can pick a point(xξ , yξ ) from the set(

Fξ × (X \Gξ)
) \⋃

η 6=ξ
Gη × (X \Fη).

It follows that (xξ , yξ ) (ξ < π ) is a discrete subspace ofX2, and so this finishes the
proof. 2

While Souslin continua are hard to find, a search for a spaceX that can be constructed
without any appeal to additional set-theoretical assumptions but which would closely
resemble Souslin continuum in some of its striking properties has resulted in the following
example wherēc denotes the cofinality of the continuum.

Theorem 1.3 [54]. There is a compactificationaN of N with character of any point
smaller than̄c such that the growthaN \N satisfies̄ccc but its square does not.
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Corollary 1.4 (c̄ = ω1). There is a first countable compact ccc space whose square is
not ccc.

This result shows that the problem of productiveness of the ccc property is not only re-
lated to the Souslin Problem (Theorem 1.1 above) but also to the Continuum Problem. In
fact, the result says much more than that, it says that the phenomenon that products might
have larger cellular families from their factors are always present even at levels which mea-
sure some characteristics of the continuum such as its cofinality. For example, we know
one more characteristic of the continuum where the same phenomenon happens, the cardi-
nalb, the minimal cardinality of a family of integer-valued functions on integers which is
unbounded in the ordering of eventual dominance (see [53, Section 1]). The space of Theo-
rem 1.3, and therefore that of Corollary 1.4, is constructed using also a well-ordering of the
continuum as one of the parameters. The following remarkable result of Shelah [48] shows
that some non-effective procedure is in fact necessary if one wants to produce such an
example.

Theorem 1.5 (Shelah). The countable chain condition of a Borel partial ordering is
productive.

Natural spaces tend to be associated, in one way or the other, with sets of reals in the
sense that they have bases which can naturally be ‘coded’ as sets of reals. Theorem 1.5
says that whenever these sets of reals are Borel (i.e., natural), together with relations which
correspond to relations of inclusion and disjointness, the spaces will have their countable
chain condition productive. The following result gives us another clear indication of the
usefulness of the idea of considering the productiveness of ccc.

Theorem 1.6 [43]. The superextensionλX of a compact spaceX satisfies the countable
chain condition if and only if the infinite power ofX does.

One also has the following quite general result of this sort (for definitions see [60] or [43,
Section 1]).

Theorem 1.7 [43]. LetF be a normal functor of infinite degree. Then for every compact
spaceX, F(X) satisfies the countable chain condition if and only if the infinite power of
X does.

The functors exp(X) and P(X) are natural examples of normal functors of infinite
degree. The results Theorems 1.6 and 1.7 are proved by relating the intersection properties
of cellular families of open sets ofF(X) to those of finite powers ofX. The algebraic
approach here was quite instrumental and, therefore, it is easiest to understand the result
in the case of Stone spaces (an assumption which is easy to remove). Here is the crucial
lemma in its algebraic form
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Lemma 1.8 [43]. SupposeEaξ (ξ ∈ I) is an uncountable sequence ofn-tuples of pairwise
disjoint nonzero elements of some Boolean algebraB. Then either

(1) there is uncountableJ ⊆ I such thatEaξ (ξ ∈ J ) can be refined to a separated
sequenceEbξ (ξ ∈ J ), or

(2) there is uncountableJ ⊆ I such that for allξ 6= η in J either
⋃n
i=1 a

i
ξ is disjoint

from
⋃n
i=1 a

i
η or is included in someajη (i = 1, . . . , n), or vice versa with roles ofξ

andη exchanged.

Here ‘separated sequenceEbξ (ξ ∈ J )’ means that there is a fixed partition of unity

c1∪ c2∪ · · · ∪ cn = 1

such thatbiξ ⊆ ci for all ξ ∈ J and i = 1, . . . , n. Also, ‘Ebξ (ξ ∈ J ) refinesEaξ (ξ ∈ J )’
means simply thatbiξ ⊆ aiξ for all ξ ∈ J andi = 1, . . . , n.

To get an idea of how the lemma relates to Theorems 1.6 and 1.7 let us consider the case
F = exp of Theorem 1.7. So let us assume that exp(X) is ccc and let

Pξ = a1
ξ × · · · × anξ (ξ < ω1)

be a given family of basic clopen subsets of some finite powerXn. By Lemma 1.8, refining
the sequence, we may assume that either (1) or (2) holds. Forξ < ω1, set

Uξ =
{
F ∈ exp(X): F ⊆

n⋃
i=1

aiξ andF ∩ aiξ 6= ∅ for i = 1, . . . , n

}
.

Since exp(X) is ccc pickξ 6= η such thatUξ andUη intersect. It is not hard to see that
neither of the two cases of (2) can hold for theseξ andη. This shows that actually it must
be that (1) holds, or in other words, that some fixed partition of unity

c1∪ · · · ∪ cn = 1

separates the sequence(a1
ξ , . . . , a

n
ξ ) (ξ < ω1). However, if this is the case, then it is not

hard to see that for everyξ andη in ω1 we have that

Pξ ∩ Pη 6= ∅ if and only if Uξ ∩Uη 6= ∅,
and so we are again done by the ccc property of exp(X).

Shanin’s theorem (Theorem 1) gives us one sufficient condition for a product

X =
∏
i∈I
Xi

to be ccc. That this can be useful is shown by the following interesting list of equivalences.

Theorem 1.9 (Noble and Ulmer, Schepin).The following conditions are equivalent for
any productX of uncountably many nontrivial factors:

(1) X is ccc,
(2) every regular-open subset ofX depends on at most countably many coordinates,
(3) every continuous real-valued function defined on an open subspace ofX depends

on at most countably many coordinates.
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2. Strictly positive measures

A compact spaceX carries astrictly positive measureif there is a bounded Radon
measureµ onX such thatµ(U) > 0 for all nonempty openU ⊆ X, or equivalently, for
every open setU which belongs to some fixedπ -basisof X. (Recall that aRadon measure
µ onX is a measure defined on aσ -field of subsets ofX which includes the family of all
open subsets ofX and which isinner regularwith respect to the family of compact sets,
i.e.,µ(E)= sup{µ(K): K ⊆E,K compact} for any measurable setE.) This concept was
introduced by Rosenthal [37,38] in a course of studying the Banach spacesC(X) and their
conjugates. For example Rosenthal [37] shows that, if for a compact spaceX the Banach
spaceC(X) is isomorphic to a conjugate space, thenX carries a strictly positive measure.
Moreover, Rosenthal [37] has established the following reformulations of both ccc and this
new condition showing thus their close relationship.

Theorem 2.1 (Rosenthal).
(1) A compact spaceX is ccc if and only if every weakly compact subset ofC(X) is

separable.
(2) A compact spaceX carries a strictly positive measure if and only ifC(X)∗ contains

a weakly compact total set.

It is interesting that in proving (1) Rosenthal proves the following identification result
for chain conditions in compact spaces:

Lemma 2.2. In a compact ccc space point-finite families of open sets must be countable.

Proof. LetU be a given uncountable family of open subsets of some compact ccc spaceX.
If U is point-finite, using the ccc property ofX we can easily conclude that there must be
a nonempty open setG⊆X such that every nonempty open subset ofG has uncountably
many different intersections with members ofU . Thus, we may as well assumeG = X.
For an integerk, letXk be the set of allx ∈X which belong to at leastk many members of
U . Our assumptionG=X means that eachXk is a dense open subset ofX, so by the Baire
category theorem

⋂∞
k=0Xk is nonempty. Anyx from the intersection belongs to infinitely

many members ofU , and this finishes the proof.2
To see how this is related to Theorem 2.1(1), consider a compact spaceX for

which C(X) contains a subset homeomorphic in its weak topology to the one-point
compactification of an uncountable set (the general case reduces to this one using a deep
result of [2]). Thus, we may assume that there is uncountableF ⊆ C(X) and ε > 0
such that‖f ‖ > ε for all f ∈ F and such that every sequence of distinct elements of
F converges weakly to zero. Then{

x ∈X: |f (x)|> ε} (f ∈F)
is an uncountable point-finite family of open subsets ofX.
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More generally (see [11, Chapter 6]), we shall say that an arbitrary spaceX carries a
strictly positive measureif there is aπ -baseP of X and a finite measureµ defined on the
σ -field generated byP such that

µ(U) > 0 for allU ∈ P .
It is not clear at all that this is a chain condition resembling any one considered so far,
but we shall soon give a reformulation, due to J.L. Kelley [45], which shows that this
condition has actually a quite natural place between ccc and separability. First of all note
that every separable spaceX carries a strictly positive measure. For if{dn}∞n=1 is a sequence
of elements ofX which is dense inX then

µ(A)=Σ{2−n: dn ∈A}
defines aσ -additive measure defined on the power-set ofX which is positive on open
subsets ofX. One of the crucial observations of Kelley is that one should really concentrate
to strictly positive finitely additive measures, and then apply standard extension procedure
to obtainσ -additive ones. This observation was based on the work of Horn and Tarski [33]
who were studying strictly positive finitely additive measures on Boolean algebras rather
than the corresponding Stone spaces. They observed that everyσ -centered algebra carries
a strictly positive measure (i.e., the dual of the fact that separable spaces carry strictly
positive measure mentioned above) and have listed a number of chain conditions that
follow from the existence of such a measure hoping that one of them would capture this
notion. For example, by considering some of the properties of the family

Bn =
{
a ∈ B: µ(a)> 1/n

}
(n ∈N),

of subsets of a Boolean algebraB they have isolated the following two interesting chain
conditions:

Definition 2.3. A Boolean algebraB satisfiesσ -finite chain conditionif it can be split into
a sequence{Bn} of subsets none of which includes an infinite subset of pairwise disjoint
elements. If we require that for eachn every set of pairwise disjoint elements ofBn has
size at mostn, we get a stronger chain condition which can naturally be calledσ -bounded
chain condition.

It is interesting that so far there are no known examples showing that these two variations
give us indeed different chain conditions. Isolating theσ -finite chain condition made it
immediately clear that algebras which support a strictly positive measure have in fact a
stronger property than ccc, a property considered before by Knaster [65] in connection
with the Souslin Problem: Every uncountable subsetS of B contains an uncountable subset
in which no two elements are disjoint. Today this condition is known under the name
Knaster’s condition, or Property K. To see thatσ -finite chain condition implies Knaster’s
condition, find ann such thatS∩Bn is uncountable and apply the Dushnik–Miller partition
relationω1→ (ω1,ω)

2 to the disjointness graph of this set. The fact that every measure
algebra has Knaster’s property was observed long before by Marczewski–Szpilrajn who
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was also the one to prove the following interesting result even before Shanin proved his
preservation result mentioned above in Theorem 1.

Theorem 2.4 (Szpilrajn [42]). Knaster’s condition is preserved in Tychonoff products of
any number of factors.

Proof. First note that Knaster’s condition is preserved in products of two factors and then
use the Delta-System lemma to reduce the general case to the case of products of finitely
many factors. 2

It should be noted that Szpilrajn [42] does not explicitly state the Delta-System lemma
but his arguments do contain its proof. Shanin [41], very likely motivated by Szpilrajn’s
paper, considers Shanin’s condition and proves the analogue of Szpilrajn’s result for this
case. However, he notices the independent interest of the Delta-System lemma and so he
states it explicitly.

It turns out that theσ -bounded chain condition of Horn and Tarski [33] is not strong
enough to capture the notion of existence of strictly positive measure. For this one needs
a deeper insight into the intersection properties of sets of the form{a ∈ B: µ(a)> 1/n}
considered above, and that was the contribution of Kelley [45]. So letBX be the field of
sets generated by someπ -basisP of X. For a nonemptyF ⊆ BX , let

I (F)= inf
i( EF)
| EF | ,

with infimum taken over all finite sequencesEF = 〈F1, . . . ,Fn〉 of (not necessarily distinct)
elements ofF , where| EF | is the lengthn of the sequenceEF , and where

i( EF)=max

{
|J |: J ⊆ {1, . . . , n},

⋂
j∈J

Fj 6= ∅
}
.

The numberI (F) is theintersection numberof the familyF . Note that

I (F)= 1 iff F is centered,

i.e.,F1 ∩ · · · ∩ Fn 6= ∅ for every finite sequenceF1, . . . ,Fn of elements ofF . The reader
may also wish to recheck that ifµ is a finitely additive probability measure onBX, then
for everyε ∈ (0,1], the family

Fε =
{
F ∈ B: µ(F)> ε

}
has intersection number> ε. The following result of Kelley [45] is some sort of a converse
to this.

Theorem 2.5 (Kelley). For every nonempty familyF ⊆ BX there is a finitely additive
probability measureµ onBX such thatµ(F)> I (F) wheneverF ∈F .
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If X were a compact space andF a nonempty family of open subsets ofX, then the
proof would actually give us a Radon probability measureµ of X with the same property.

Corollary 2.6. For every nonemptyF ⊆ BX ,

I (F)=max
µ

inf
F∈F

µ(F),

wheresup=max is taken with respect to all finitely additive measuresµ onBX .

Corollary 2.7. A spaceX supports a strictly positive measure if and only if the family of
nonempty open subsets ofX can be split into countably many subfamilies of positive
intersection numbers.

Spaces that carry strictly positive measures enjoy considerably finer intersection
properties from the one introduced by Knaster. Out of a large body of such results we
mention the following combination ofω1→ (ω1,ω)

2 and a classical result of Gillis [44]
(see also [35]).

Theorem 2.8 (Gillis). For everyε > 0 and every uncountable familyF of measurable
sets of some probability measure space(X,Σ,µ) such thatµ(F)> α > 0 for all F ∈ F
there is an uncountable subfamilyF0 ofF such thatµ(E∩F)> α2− ε for all E,F ∈F0.

Gillis’ result is based on the following simple lemma which allows generalization to
k-intersection properties for any integerk.

Lemma 2.9. If n> 1+ (α−α2)/ε then for every sequenceF1, . . . ,Fn of measurable sets
in some probability measure space(Σ,µ) such thatµ(Fi)> α for all i there existsi 6= j
such thatµ(Fi ∩Fj )> α2− ε.

For k > 2 passing from the finite to the infinite case is not automatic since then the
partition relationω1 → (ω1,ω)

k is false. However, the proof of thekth analogue of
Lemma 2.9 can be adjusted to give us the full generalization (see [35]):

Theorem 2.10 (Fremlin). Let (X,µ) be a probability space and letF be an uncountable
family of measurable sets all of measure> α > 0. Then for every integerk > 2 andε > 0
there is an uncountable familyF0 ⊆ F such thatµ(F1 ∩ · · · ∩ Fk) > αk − ε whenever
F1, . . . ,Fk ∈F0.

Going to all dimensions simultaneously in this result is a subtle matter (see [35,
Problem 20]) as it is closely related to Martin’s axiom restricted to measure algebras.
For example, the statement that every uncountable family of elements of some measure
algebra contains an uncountable centered subfamily is equivalent to the statement that the
Haar group{0,1}ω1 cannot be covered by anω1-sequence of measure zero subsets. The
study of strictly positive measures on topological spaces as well as on Boolean algebras



S. Todorcevic / Topology and its Applications 101 (2000) 45–82 55

continues to be a rich source of fascinating problems which connect to many other areas of
mathematics (see [34,76]). Of course, one should not forget that the following result was
known long before.

Theorem 2.11 (Haar). Compact groups carry strictly positive measures.

But it was not until 1940’s that this was identified as a chain condition. For example,
after the famous result of Ivanovskii, Kuzminov and Vilenkin that compact groups are
dyadic (see, e.g., [61]) it became clear that the property K of a compact group (which one
gets from the existence of a strictly positive measure) can be considerably improved using
Shanin’s theorem as follows.

Theorem 2.12 (Folklore). Compact groups satisfy Shanin’s condition.

In the early 1980’s Tkachenko [49] proved the following supplement to this result by a
direct combinatorial argument.

Theorem 2.13 (Tkachenko).All σ -compact groups satisfy the countable chain condition.

Proof. LetW be a given uncountable family of open subsets of someσ -compact groupG.
Going to an uncountable subfamily ofW we may assume that there is a compact setK ⊆G
which intersects every member ofW . So for eachW ∈W we can fixxW ∈K ∩W and an
open symmetric neighborhoodSW of e such that bothxW · S2

W andS2
W · xW are included

in W . Let nW be an integer larger than a number of right translates, as well as number
of left translates ofSW , needed to cover the compact setK. Thus we can find an infinite
W0⊆W and an integern such thatnW = n for all W ∈W0. Applying Ramsey’s theorem
to a natural partition of[W0]2 into n2 cells, we get three different elementsU,V,W ofW0

such thatxU andxV belong to the same right translate,SW · g, of SW and such thatxV and
xW belong to the same left translate,h · SU , of SU . It follows that, on one hand,

xU · x−1
V · xW ∈ (SW · g) · (SW · g)−1 · xW = S2

W · xW ⊆W,
while on the other hand,

xU · x−1
V · xW ∈ xU · (h · SU )−1 · (h · SU)= xU · S2

U ⊆U.
This shows thatW is not a disjoint family, finishing the proof of Theorem 2.13.2

Note that the argument from the proof of Theorem 2.13 gives the stronger conclusion
that everyσ -compact group satisfies theσ -bounded chain condition of Horn and Tarski,
and so in particular it satisfies the Knaster’s condition. The fact that Tkachenko’s argument
had to be different has become clear much later:

Theorem 2.14 [62]. The free topological group over the one-point compactification of a
discrete space of size continuum does not carry a strictly positive measure and under the
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assumptionb= ω1 it contains an uncountable family of open sets which cannot be refined
to an uncountable centered subfamily.

Thus, while compact groups satisfy the rather strong Shanin’s condition, the compactly
generated ones need not satisfy even a slight strengthening of Knaster’s condition.
(It should be noted that the consistency of this fact has been first established by
Shakhmatov [50].) However, these results still leave unanswered the following interesting

Problem 2.15 (Tkachenko). SupposeH is a σ -compact group andF is an uncountable
family of nonempty open subsets ofH . Is there an uncountableF0 ⊆ F such that every
three elements ofF0 have nonempty intersection?

3. First-countable spaces

In this section we show that compact spaces with good local properties tend to identify
some of the chain conditions considered so far. What are good local properties of a given
spaceX? Of course, a good local property is that of beingfirst-countable, i.e., having a
countable local base at every point. A natural weakening of this condition is the condition
of beingFréchet–Urysohn, which says that if a pointx ∈X is in the closure of some setA
then there is a sequence{xn} of elements ofA that convergesto A. If we require only
that the sequence{xn} accumulatesto x we get still a weaker condition calledcountable
tightness. In the category of compact spaces there is a beautiful result of Shapirovskii
(see [21, 3.14]) which shows that there is a deeper level in this formal game of weaker and
weaker conditions: Every countably tight compact spaceX hascountableπ -character, i.e.,
for everyx ∈ X there is a countable collectionPx of open subsets ofX (not necessarily
neighborhoods ofx) such that for every openU containingx there isV ∈ Px such
thatV ⊆ U . We start the presentation with the following result of Shapirovskii (see [64,
75]) which is of independent interest.

Theorem 3.1 (Shapirovskii). Compact countably tight spaces have point-countableπ -
base.

Proof. The sequence(Fξ ,Gξ ) (ξ < π ) from the proof of Theorem 1.2 can of course be
chosen in such a way that the interiors ofFξ ’s form aπ -basis ofX. It suffices to show that
Fξ (ξ < π ) is a point-countable family of sets wheneverX is a countably tight space. For
suppose there isA⊆ π of order-typeω1 such thatFα (α ∈A) is a centered family. Using
the property (3) of(Fξ ,Gξ) (ξ < π ) one checks that the family

{Fα : α ∈ I } ∪ {X \Gβ : β ∈ J }
has nonempty intersection for every pair of finite setsI, J ⊆ A such that every ordinal
from I is smaller than every ordinal fromJ . This is done by an easy induction on the
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size of the setJ . By compactness ofX, for eachα ∈ A, we can pick a pointxα from the
intersection of the family

{Fξ : ξ ∈A, ξ 6 α} ∪ {X \Gη: η ∈A, η > α}.
Let x be a complete accumulation point of the sequencexα (α ∈ A). Note that on one
hand,x ∈ Fα ⊆ Gα for all α ∈ A, but on the other handxα /∈ Gβ wheneverα < β . It
follows that no countable subsequence ofxα (α ∈A) accumulates tox, and so the spaceX
is not countably tight atx. This finishes the proof.2
Corollary 3.2. Shanin’s condition is as strong as separability in the class of compact
countably tight spaces.

Corollary 3.2 is not the first such an identification result. Recall the following classical
result of Knaster [65] which shows that ordered continua identify many more chain
conditions.

Theorem 3.3 (Knaster). Knaster’s property is as strong as separability in the class of
ordered continua.

Proof. First note that, in the class of ordered continua, Knaster’s property is equivalent
to Shanin’s condition. Note also that ccc ordered continua are first countable so that
Corollary 3.2 applies. 2

These results show that in locally nice spaces the gap between ccc and separability is
really a gap between ccc and Shanin’s condition. The Souslin hypothesis is an equivalence
between ccc and separable in a very restricted class of spaces, ordered continua. Martin’s
axiom, invented during a course of solving Souslin hypothesis, is a similar identification
statement in another class of spaces, compact spaces ofπ -weight smaller than the
continuum. This equivalence was first established in our paper [52] with Velickovic and
we shall use here some methods from that paper to further analyze MA. To understand
MA one perhaps needs to analyze its strength when restricted to some nicer class of spaces
as closely approximating ordered continua as possible.

Theorem 3.4. MAω1 is equivalent to the statement that every compact first-countable ccc
space is separable.

Proof. It is well known that MAω1 implies that every compact ccc space satisfies Shanin’s
condition (see [14]) and is therefore separable by Corollary 3.2, so we are left to proving the
reverse implication. Assume MAω1 is false. By the main result of [52] there is a familyK
of finite subsets ofω1 such that:

(1) [ω1]1⊆K,
(2) E ⊆ F ∈K impliesE ∈K,
(3) every uncountable subset ofK contains two elements whose union belongs toK,
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(4) there is no uncountableH ⊆ ω1 such that[H ]<ω ⊆K.
By [14, 21 N(e)] pick a one-to-one sequenceaξ (ξ < ω1) of infinite sets of integers such
that for a finite setF ⊆ ω1,

(5) F ∈K iff
⋂
ξ∈F aξ is infinite.

Now we proceed similarly as in [54, Example D]. LetU be the set of all pairs(t, n) where
n is an integer,t a family of subsets ofn= {0, . . . , n− 1}, and for everyk 6 n,

(6) |(⋂ t) ∩ k|> |1t ∩ k|,
where1t = {min(a1b): a, b ∈ t, a 6= b}. Forξ ∈ ω1 and(t, n) ∈U , set

Uξ =
{
(s,m) ∈ U : aξ ∩m ∈ s

}
,

U(t,n) =
{
(s,m) ∈ U : m> n ands � n= t},

wheres � n= {a ∩ n: a ∈ S}. LetD be the subalgebra ofP(U) generated by

{Uξ : ξ ∈ ω1} ∪ {U(t,n): (t, n) ∈ U} ∪ Fin

and letJ be the ideal ofD generated by the ideal Fin (finite subsets ofU ) together with
all sets of the form

UF =
⋂
ξ∈F

Uξ ,

whereF is a finite subset ofω1 which does not belong toK, i.e., for whichaF =⋂ξ∈F aξ
is finite. Observe that, if for a givenF ∈ K the intersectionUF is infinite, then this
in particular means thataF is infinite and that|aF ∩ k| > |1F ∩ k| for all k (where
1F = {min(aξ1aη): ξ, η ∈ F, ξ 6= η}). On the other hand, ifF /∈ K then sizes of the
intersections

⋂
s ((s,m) ∈ UF ) are uniformly bounded by the size of the finite setaF .

From this we can easily conclude that the setUF cannot be covered (modulo Fin) by
finitely many members of the formUE for E /∈ K, i.e., it does not belong toJ . We shall
use this observation in several places below.

Claim 1. The algebraD/J is ccc.

Proof. Considering the elements ofD/J in terms of their representatives fromD we
are given an uncountable familyX of basic elements ofD/J . We need to find two
distinct elements ofX whose intersection is not inJ . A basic element ofD/J is a finite
intersection of generating sets or their complements. SinceU is a finitely branching tree,
by shrinking, and still remaining outsideJ , we may assume that all generators of the form
U(t,n) appear positively. It is also easy to see that similarly any−Uξ can be eliminated by a
further intersection with a generator of the formU(t,n). Since there are only countably many
generators of the second form we may altogether ignore them. So, the problem reduces to
the following case:X = {UF : F ∈F} for some uncountableF ⊂K. ForF ∈F , set

1F =
{
1(aξ , aη): ξ 6= η in F

}
,

aF =
⋂
ξ∈F

aξ , `F = |F |, mF = sup(1F )+ 1,
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nF =min
{
n: |aF ∩ (mF ,n)|> `F

}
,

τF =
{
aξ ∩ nF : ξ ∈ F}.

(Note that forF ∈ F , aF is infinite so the numbernF exists.) Since there exist only
countably many choices for the parameters, we can find(`,m,n, τ ) and uncountable
F0⊆F such that:

(7) 〈`F ,mF ,nF , τF 〉 = 〈`,m,n, τ 〉 for all F ∈F0.
By (3) there existE 6= F in F0 such thatE ∪F ∈K. The choice of the parameters and the
fact that they are equal forE andF ensures that for all large-enough integersn, the pair
(tn, n) satisfies (6), where

tn = {aξ ∩ n: ξ ∈E ∪F }.
It follows thatUE ∩ UF = UE∪F is infinite so by the remark above it does not belong to
the idealJ . 2
Claim 2. Every ultrafilterU ofD (and therefore every ultrafilterV ofD/J ) is countably
generated.

Proof. For a given integern, let tn be the unique subset ofP(n) such thatU(tn,n) ∈ U .
Note thattn �m= tm wheneverm6 n. Let

H = {ξ ∈ ω1: aξ ∩ n ∈ tn for all n}.
Note that ifH is infinite, the set

1H =
{

min(aξ1aη): ξ, η ∈H, ξ 6= η
}

is also infinite, so the condition (6) gives us easily that
⋂
ξ∈F aξ is infinite for every finite

F ⊆ H . By (5) this means that[H ]<ω ⊆ K, so by (4) we conclude thatH is countable.
Therefore, to prove thatU is countably generated it suffices to show that for every generator
Uξ with ξ /∈H there is somen such thatUξ ∩U(tn,n) is finite. Clearly, then that works is
anyn such thataξ ∩ n /∈ tn. 2
Claim 3. The algebraD/J contains an uncountable subset which cannot be refined to an
uncountable centered subset.

Proof. We have already seen that no generatorUξ (norU(t,n)) can be covered (mod Fin)
by finitely many elements ofUE (E /∈ K). So everyUξ represents a positive element of
the algebraD/J . It is also easy to see thatUξ andUη represent different elements of
the quotient algebraD/J wheneverξ 6= η. Suppose that for someH ⊆ ω1 the family
Uξ (ξ ∈H) is centered inD/J , i.e., that the intersectionUF =⋂ξ∈F Uξ does not belong
to J for any finiteF ⊆ H . By (6) and the definition ofUξ we easily get that for every
finite F ⊆H ,

(8) |(⋂ξ∈F aξ )∩ k| > |1H ∩ k| for everyk.
So if H is infinite then

⋂
ξ∈F aξ is infinite for every finiteF ⊆H . It follows that in this

case,[H ]<ω ⊆ K. Applying (4) we conclude thatH must be countable. This finishes the
proof. 2
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Let X = Ult(D/J ), the Stone space of the quotient algebraD/J . ThenX is ccc
(Claim 1), nonseparable (Claim 3) and first-countable (Claim 2). This completes the proof
of Theorem 3.4. 2

The spaceX = Ult(D/J ) from the proof of Theorem 3.4 has some other interesting
properties worth exposing. To see this, letD0 be the subalgebra ofD generated by Fin and

U(t,n) ((t, n) ∈ U).
LetX0=Ult(D0/J ). ThenX0 is a compact metric space and

U φ7→ U ∩ (D0/J )
is a continuous map fromX ontoX0. What we want to point out is thatφ has metrizable
fibersφ−1(V). To see this, for a given integern, let tn be the unique subset ofP(n) such
thatU(tn,n)/J belongs toV . Then as before, we have thattn �m= tm for n6m and that
the set

HV = {ξ ∈ ω1: aξ ∩ n ∈ tn for all n}
must be countable. It has also been shown above that anyU/J from φ−1(V) has a local
basis which involves only generators of the form

U(tn,n) (n ∈N), and Uξ (ξ ∈HV)
so the fiberφ−1(V) is second-countable. It follows that our spaceX = Ult(D/J ) belongs
to a rather interesting class of compact spaces which Tkachuk [74] callsmetrizably fibered,
i.e., the class of compact spaces which map continuously, with metrizable fibers, onto
metric compacta. This class of spaces looks quite restrictive but any known example of
a reasonably nonpathological compactum belongs to this class. For example, it is still
unknown whether any perfectly normal compactum belongs to this class unless it is
constructed using some pathological additional set-theoretic axiom. It is clear that every
metrizably fibered compactum is first-countable, so by Corollary 3.2 above, MAω1 implies
that the class of metrizably fibered compacta cannot distinguish ccc from the separability.
However, the exampleX = Ult(D/J ) shows that the converse of this implication is also
true.

Theorem 3.5. MAω1 is equivalent to the statement that every ccc metrizably fibered
compactum is separable.

The spaceX = Ult(D/J ), or some of its better versions, might have some other
interesting properties. A discovery of any such pleasant property ofX will shed some
further light on the relationship between MAω1 and various forms of Souslin’s hypothesis.

4. Hereditarily normal spaces

The separation axiomT5 is yet another strong restriction satisfied by any ordered
continuum and the purpose of this section is to analyze the corresponding form of Souslin’s
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hypothesis stating that every compactT5 ccc space is separable. The relation of this form
of Souslin’s hypothesis and Martin’s axiom is still unclear, but we do have the following
result announced by Shapirovskii [40] in a slightly weaker form.

Theorem 4.1. If MAω1 holds then every compactT5 ccc space has a countableπ -basis.

Proof. LetX be a givenT5 compact ccc space. Since no closed subset ofX maps onto the
Tychonoff cube[0,1]ω1, by another well known result of Shapirovskii (see [21, 3.18] or
Section 6 below), we know that the set

D = {x ∈X: x has countableπ-character}
is dense inX. To prove the theorem it suffices to find a countableD0 ⊆ D dense inX.
Suppose that suchD0 cannot be found. For eachx ∈ D fix a countable familyUx of
open subsets ofX forming aπ -basis ofx in X. By our assumptions it is easy to build
an increasing sequenceDξ (ξ < ω1) of countable subsets ofD such that, if forξ < ω1 we
let

Uξ =
⋃
x∈Dξ

Ux,

then we have the following conditions satisfied:
(1) Dξ ⊆Dξ+1 6⊆Dξ ,
(2) if for some finite F ⊆ Uξ the intersection

⋂
F is nonempty then so is the

intersection(
⋂
F)∩Dξ+1.

Let Y =Dω1, whereDω1 =
⋃
ξ<ω1

Dξ . Set

Uω1 =
⋃
x∈Dω1

Ux.

ThenUω1 � Y is aπ -basis ofY so by (2),Y is also a ccc space. Using MAω1 we conclude
that Y is separable (see [14, 43F(b)]) so let{dn}∞n=1 be a countable dense subset ofY .
(Clearly we may assume thatdn /∈Dξ for all n andξ .) Pick anx in Y such thatx /∈ Dξ
for all ξ . Then for eachξ we can choose open neighborhoodUξ of x in Y such that
Uξ ∩Dξ = ∅. Moreover we can arrange that

(3) for everyξ1 . . . , ξn there isη such thatUη ⊆ Uξi for i = 1, . . . , n.
Let F =⋂ξ<ω1

Uξ . ThenF is a closed set which avoidsDξ for all ξ . Since{dn} is dense
in Y , the family

Iξ = {n ∈N: dn ∈ Uξ \F } (ξ ∈ ω1)

of infinite subsets ofN has the finite intersection property. Using MAω1 we can find infinite
I ⊆ N such thatI \ Iξ is finite for all ξ . By our assumption thatX is T5, the subspace
G=X \ F is normal anddn (n ∈ I) is a discrete subset ofG, so we can find a sequence
of open setsVn ⊆G such thatdn ∈ Vn, and such that the sequenceVn (n ∈ I) is discrete
in G. SinceDω1 is dense inY , for eachn ∈ I we can pickξn such that

Vn ∩Dξn 6= ∅.
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Let η < ω1 be such thatξn 6 η for all n. The subspaceDη is compact so the sequence

Vn ∩Dη (n ∈ I)
of nonempty subsets ofDη must have a complete accumulation pointy in Dη. ButDη is
disjoint fromF , and soy belongs toG contradicting the fact thatVn (n ∈ I) is discrete
in G. This finishes the proof of Theorem 4.1.2
Problem 4.2. Is there some standard fragment of MAω1 which is equivalent to the
statement that everyT5 ccc compactum is separable?

A solution to this problem is likely to involve a much deeper understanding ofT5

compacta then we presently have. What we are really hoping for is an analogue of
Theorem 3.1 for compactT5 spaces, i.e., a structure theorem for this class of spaces (not
involving MAω1 at all!) which would have Theorem 4.1 as one of its corollaries. The search
for such structure results is the real reason behind other similar problems that we are going
to ask below.

In [72] Velickovic showed that under OCA (see [53]) every separable compactT5 space
is countably tight so in this context, Theorem 4.1 relates to Corollary 3.2 above. Using
an even stronger additional set-theoretical assumption, PFA, we have a quite strong grip
on the structure of compact cccT5 spaces: They are all Fréchet–Urysohn and, therefore,
of size at most continuum. In [72], Velickovic also showed that MAω1 does not suffice in
proving that every compact separableT5 space is countably tight, and so this adds to the
interest in Theorem 4.1 above. We shall now see that there is another promising line of
investigating the class of compact cccT5 spaces which gives, in a sense, even a stronger
grip on their structure.

Theorem 4.3. (MAω1) There is a measure algebra which forces that everyT5 compact ccc
space is hereditarily separable.

Proof. Let I be an index-set of size equal to the first strong-limit cardinal of cofinalityω1

and letR be the measure algebra of the Haar group{0,1}I . In [66], we have proved that the
forcing extension ofR (or any other measure algebra) satisfies the following combinatorial
property of independent interest:

(SMω1) If F is a set-mapping which to everyξ ∈ ω1 associates a countable subset
F(ξ) of ω1 which does not containξ , then eitherω1 can be decomposed into
countably many subsetsA with the property thatF(ξ) ∩ A= ∅ for all ξ ∈ A,
or there is uncountableB ⊆ ω1 such that for every finiteC ⊂ B there are
uncountably manyη ∈ ω1 such thatC ⊆ F(η).

We shall be interested in the following consequence of SMω1 which follows easily from
Proposition 1 of [66].

Lemma 4.4. (SMω1) If a compact spaceX is not separable then it contains an uncoun-
table discrete subspace.
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Proof. Let Y be a subset ofX well-ordered by<w in order-typeω1 such that noy ∈ Y
is in the closure of{x ∈ Y : x <w y}. So, for eachy in Y , we can pick an open (inX)
neighborhoodUy of y whose closure misses the closure of{x ∈ Y : x <w y}. Having
chosenUy (y ∈ Y ) define a set-mappingF from Y into the family of countable subsets
of Y as follows

F(z)= {y ∈ Y : z ∈ Uy}.
By SMω1 we have to consider the following two cases:

Case1: There is an uncountableZ ⊆ Y such thaty /∈ F(z), or equivalentlyz /∈ Uy , for
every two elementsy <w z in Z. Clearly, any suchZ is an uncountable discrete subspace
of X.

Case2: There exists an uncountableB ⊆ Y such that for every finiteC ⊆ B there exist
uncountably manyz ∈ Y for whichC ⊆ F(z). In other words, the family

Uy ∩ Y (y ∈B)
is strongly centered in the sense that the intersection of any finite subfamily of this family
is uncountable. LetZ be the set of all elementsz of Y such that:

(1) Yz = {y ∈ Y : y <w z} is of a limit order type andB ∩ Yz is unbounded inYz.
(2) Uy ∩ Yz (z ∈ B ∩ Yz) has the finite intersection property.

Note thatZ is an uncountable subset ofY . For eachz ∈ Z, we fix a pointdz belonging to
the closure of every member of the family of sets from (2). LetZ0 be the set of allz ∈ Z
which have immediate predecessor inZ, denoted byz−. Forz ∈ Z0 let bz be the minimal
element ofB abovez. Then the sequence of neighborhoods

(X \ Yz−)∩ (X \Ubz) (z ∈ Z0)

separates the sequence of pointsdz (z ∈ Z0). So we have found an uncountable discrete
subspace ofX also in this case. This finishes the proof.2

We shall also need the following simple fact.

Lemma 4.5. If D is a discrete subspace of aT5 spaceX then there is a one-to-one
mapping from the power-set ofD into the algebra of regular-open subsets ofX.

The following fine result of Shapirovskii is another key point of the argument and a
fact about compact hereditarily normal ccc spaces which is clearly of independent interest
(see [21, 3.21]).

Lemma 4.6 (Shapirovskii). The regular-open algebra of anyT5 compact ccc space has
size at most continuum.

Proof. It suffices to show that the setD from the proof of Theorem 4.1 has a dense subset
of size at most continuum. Thus, as in that proof, we construct an increasing sequenceDξ
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(ξ < ω1) of subsets ofD of size at most continuum such that if forξ < ω1 we letUξ be as
before, then

(1) if for some finite F ⊆ Uξ the intersection
⋂
F is nonempty then so is the

intersection(
⋂
F)∩Dξ+1,

(2) if for some countableF ⊆ Uξ the differenceX \⋃F is nonempty then it contains
a point fromDξ+1.

Now it is quite easy to see that the unionDω1 =
⋃
ξ<ω1

Dξ must be dense inX. 2
To finish the proof of Theorem 4.4, we note that the index-setI was chosen in such a

way that the measure algebraR of {0,1}I forces that the power-set ofω1 has size bigger
than the continuum and so the combination of Lemmas 4.6, 4.5 and 4.4 gives us the desired
conclusion.

It is interesting that in Theorem 7 of [23], Kunen and Tall present a similar scenario
with SMω1 replaced by the statement that every compact ccc space satisfies Shanin’s
condition which today we know to be equivalent to MAω1 (see [52], or Theorem 3 of the
Introduction). It follows, therefore that the two hypothesis of Theorem 7 of [23] contradict
each other. It appears thus that the well known hypothesis 2ω < 2ω1 of Jones [46], which
has proved to be quite useful in topology especially in questions involving normality, is
incompatible with the hypothesis that compact ccc spaces satisfy Shanin’s condition. Thus,
we have to settle for some of its weakenings strong enough to have some applications like
Lemma 4.4. We believe that studying the combinatorial statements similar to SMω1 which
are forced by any measure algebra might lead to some advances in this area. Another
possible line of attack to this set of problems (which seems though much less promising) is
to prove that Jones’ hypothesis is compatible with the assertion that ccc and Knaster’s
condition are equivalent restriction on a given compact space. There is a considerable
strength in this weak form of MAω1 which has purely a Ramsey-theoretic nature making
the following problem of great interest of its own (see [53]).

Problem 4.7. Is MAω1 equivalent to the assertion that every ccc compactum satisfies
Knaster’s condition?

5. Perfectly normal compacta

One of the main sources of interest in the class of compactT5 spaces comes from a
set of beautiful results of Katetov [79] about this separation axiom. For example, Katetov
showed that ifX andY are infinite compact spaces such thatX × Y is T5 thenX andY
must in fact be perfect. From this it follows immediately that ifX is compact and ifX3 is
T5 thenX is metric. Katetov [79] asked if the same can be concluded assuming only that
X2 is T5. Today, this is a well known open problem known under the name ofKatetov’s
problem(see [80]). We conjecture that a random forcing extension similar to the one of
Theorem 4.4 above will give a positive answer to Katetov’s problem.

Katetov’s problem is just one of the attempts to understanding the class of perfect
compacta and their close relationship to the class of metric compacta. It concentrates on the
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understanding what one needs to add toT5 to get perfectness. In [81] Baturov considers
another alternative. Rather than considering products, Baturov uses a notion introduced
and extensively studied by Schepin [82,83]). Since in the case of normal spaces (a context
in which we are working) Schepin’s notion coincides with an older one introduced by
Pelczynski [85], we follow Pelczynski and say that a spaceX has theBockstein separation
propertyif every two disjoint open sets are contained in disjoint openFσ sets. An example
of such a space is of course any product of separable metric spaces which is the content of
Bockstein’s theorem (see [84] and also Theorem 1.7 above). Schepin’s class of spaces is the
class of spaces in which regular-open sets areFσ (see [82,83]). While compactT5 spaces
may contain uncountable discrete subspaces (even in the context of MAω1) the following
fact shows that the new class of spaces behaves from this point of view much the same way
as the class of perfect compacta.

Theorem 5.1. Let X be a compact space which has the Bockstein separation property
hereditarily. Then every subspace ofX satisfies the countable chain condition.

Proof. SupposeX contains an uncountable discrete subspaceD. Since the assumption on
X is hereditary, we may assume thatX = D. Recursively onξ < ω1 we build sequences
Dξ (ξ < ω1), Uξ (ξ < ω1) andxξ (ξ < ω1) such that

(1) Dξ is a countable subset ofD,
(2) xξ ∈D butxξ /∈Dη for all ξ andη,
(3) Dξ ⊆Dη , for all ξ < η,
(4) Uξ is a countable collection of open subsets ofX,
(5)

⋃
Uξ =X \Dξ ,

(6) U ∩Dξ = ∅ for all U ∈ Uξ ,
(7) if F ⊆⋃ξ6η Uξ is finite and(

⋂
F)∩D is uncountable, then(

⋂
F)∩Dη+1 6= ∅.

There are no problems in choosing these objects since for everyξ the closureDξ is a
regular-closed subset ofX, and therefore, by our assumption onX, a Gδ subset ofX
giving us a way to find the countable familyUξ of open sets satisfying (5) and (6).

Claim. The sequencexξ (ξ < ω1) has a complete accumulation point which does not
belong to the closure of the union ofDξ ’s.

Proof. The closure of

Dω1 =
⋃
ξ<ω1

Dξ,

is a regular-closed set, so its complement is anFσ -set inX. Pick a countable familyF of
closed subsets ofX such that

X \Dω1 =
⋃
F .

By (2), the union ofF covers the sequencexξ (ξ < ω1) so there isF ∈F and uncountable
I ⊆ ω1 such thatxξ ∈ F for all ξ ∈ I . Then any complete accumulation point ofxξ (ξ ∈ I)
satisfies the conclusion of the claim.2
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Fix x as in the claim. By (5), for everyξ ∈ ω1 there isUξ ∈ Uξ containingx. Note that
for every finite sequenceξ1, . . . , ξn of elements ofω1 the intersection(

n⋂
i=1

Uξi

)
∩D

is uncountable. Combining this with (6) and (7) and using compactness we conclude that(⋂
ξ6η

Uξ

)
∩Dη+1

is nonempty for eachη. Therefore for eachη we can fix an elementyη from this
intersection. First of all, note thatyη (η < ω1) is a discrete sequence since for a given
η the set(

X \Dη
)∩ (X \Uη+1

)
is an open neighborhood ofyη which contains noyξ for ξ 6= η. Let Z be the set of all
complete accumulation points ofyη (η < ω1). Note thatZ is a closed subset ofX. If z ∈Z
is an isolated point ofZ then we would be able to select a subsequenceyη (η ∈ J ) of
yη (η ∈ ω1) which hasz as only complete accumulation point. Applying the argument
from the proof of the claim to two uncountable disjoint subsequences ofyη (η ∈ J ) we
would get a contradiction. It follows thatZ contains no isolated points. LetF be a proper
closed but not open relativelyGδ subset ofZ. Then there is an infinite sequence{zn} of
elements ofZ\F which converges toF . By an easy application of the hereditary Bockstein
separation property, we conclude that there is a sequence{Wn} of pairwise disjoint open
subsets ofX \F such thatzn ∈Wn for all n and such that{Wn} has no accumulation point
in X \F . Since eachzn is in the closure ofDω1, for eachn there isξn such that

Wn ∩Dξn 6= ∅.
Let η ∈ ω1 be such thatξn 6 η for all n. Then, sinceDn is disjoint fromZ, the sequence{

Wn ∩Dη
}

of pairwise disjoint subsets ofDη has no accumulation points inDη, contradicting the
compactness ofDη. This finishes the proof of Theorem 5.1.2

It should be noted that Theorem 5.1 was first proved by Baturov [81] using the
assumption that the continuum is not bigger than the second uncountable cardinal. The
same restriction on the continuum appears in the version of the following result that appears
in [81].

Corollary 5.2. If MAω1 holds then a compact spaceX is perfect if and only if every
subspace ofX has the Bockstein separation property.

Proof. This is a combination of Theorem 5.1 and a result of Szentmiklossy [78].2
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We finish this section with the following natural problem.

Problem 5.3. Is there some standard fragment of MAω1 which is equivalent to the
assertion that every perfectly normal compactum is separable?

6. Maps onto Tychonoff cubes

In this section we consider a class of compacta which includes those considered
in Sections 3 and 4, the class of compacta which do not map onto the Tychonoff
cube[0,1]ω1. That this is indeed a ‘local property’ follows from another beautiful result of
Shapirovskii [77].

Theorem 6.1 (Shapirovskii). A compact spaceX maps onto[0,1]ω1 if and only if it
contains a closed subspace with no point of countableπ -character.

Proof. Going to a closed subspace ofX we may assume thatX does not have points
of countableπ -character. We construct recursively sequences(Fξ ,Gξ) (ξ < ω1) and
σξ (ξ < ω1) such that

(1) Fξ is a nonempty closedGδ-subset ofX,
(2) Gξ is an openFσ -subset ofX which includesFξ ,
(3) σξ ∈ Cξ , whereCξ is the set of all finite partial functions from{α: α < ξ} into {0,1},
(4) for everyσ ∈ Cξ whose domain is disjoint from that ofσξ , if the setPσξσ is

nonempty then it must intersect bothFξ andX \ Gξ , whereσξ σ is the union of
σξ andσ and where, forτ ∈ Cξ , Pτ denotes the intersection of the family{

Fα : τ (α)= 0
}∪ {X \Gα : τ (α)= 1

}
.

To see that these sequences can be chosen, given(Fξ ,Gξ ) (ξ < η) and σξ (ξ < η),
note that for everyx ∈ X, since itsπ -character is uncountable, there must be a pair
(Fx,Gx) as in (1) and (2) such thatx ∈ int(Fx) and such thatPτ 6⊆ Gx for everyτ ∈ Cη
with Pτ 6= ∅. By compactness, choose finite sequencex1, . . . , xn of elements ofX such
that int(Fxi ) (i = 1, . . . , n) coversX. If (Fη,Gη) = (Fx1,Gx1) satisfies (1)–(4) with
ση = ∅, we are done; otherwise there isτ1 ∈ Cη such thatPτ1 6= ∅ andPτ1 ∩ Fx1 = ∅. If
(Fη,Gη)= (Fx2,Gx2) andση = τ1 satisfy (1)–(4), we are done; otherwise we findτ2 ∈ Cη
with domain disjoint from that ofτ1 such thatPτ1τ2 ∩ Fx2 = ∅ andPτ1τ2 6= ∅, and so on. It
is clear that we must get what we want before we reach stagen.

Having chosen this sequence, apply the Pressing Down lemma to find an unbounded
Γ ⊆ ω1 andσ ∈ Cω1 such thatσξ = σ for all ξ ∈ Γ . For eachξ ∈ Γ choose a continuous
functionfξ :X→[0,1] such thatf−1

ξ (0)= Fξ andf−1
ξ (1)=X\Gξ . Letf :X→[0,1]Γ

be the diagonal product offξ (ξ ∈ Γ ). Thenf is continuous and by (4) its range includes
{0,1}Γ . This finishes the proof.2

So, in this section we shall be working with the class of compact spacesX with the
property that for every closed subspaceY of X there isy ∈ Y with countableπ -character
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relative toY . The first result that we mention is due to Fremlin (see [14, 44A]) who based
his proof on some ideas of Szentmiklossy [78].

Theorem 6.2 (Fremlin). AssumeMAω1 and suppose that a compact spaceX contains a
subspace which is hereditarily ccc but not separable. ThenX maps onto[0,1]ω1.

In other words, a slight (?) strengthening of the pathology ‘ccc & non-separable’ is as
strong as the ultimate one, as far as the good local properties are concerned. Theorem 6.2
follows from a lemma which gives a more precise information. The proof that we give
below is more direct from that of [14, 44A].

Lemma 6.3. AssumeMAω1, let X be a regular space, and letY be a nonseparable
subspace ofX. ThenY either contains an uncountable discrete subspace, or a nonempty
subsetD such thatZ =D has no points of countableπ -character.

Proof. Clearly, we may assume thatY can be well-ordered by some<w in order typeω1

so that for everyy ∈ Y there is an open neighborhoodUy of y (in X) such that
(1) x /∈Uy wheneverx <w y.

LetP be the set of all finite subsetsp of Y such that
(2) y /∈Ux for everyx < y in p.

If every uncountableF ⊆P contains two different elementsp andq whose union is inP ,
an application of MAω1 to P would give us the first alternative. So let us assume there is
uncountableF ⊆P such that

(3) p ∪ q /∈P for everyp 6= q in F .
Using the Delta-System lemma we may assume thatF consists of disjoint sets all of some
fixed sizen > 1. An elementp of F has a natural enumeration according to<w, so for
i = 1, . . . , n, we letp(i) denote theith element ofp according to this enumeration.

Let G1=H1=F and

D1=
{
p(1): p ∈H1

}
.

Removing countably many points fromD1 we may assume that every relatively open
subset ofD1 is uncountable (since, otherwise, one can easily select an uncountable discrete
subspace ofD1). If Z1 = D1 contains no point of countableπ -character we are done.
Otherwise, we select a pointz1 ∈Z1 and a countable localπ -baseV1 of z1 in Z1. Using (1)
there is uncountableG2⊆ G1 andV1 ∈ V1 such that

(4) V1∩Uy = ∅ for all y ∈ p ∈ G2.
Let

H2=
{
p ∈H1: p(1) ∈ V1

}
.

By our assumptionH2 is uncountable and
(5) q(1) /∈Uy for all q ∈H2 andy ∈ p ∈ G2.

Now we proceed to

D2=
{
q(2): q ∈H2

}
,
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the subspaceZ2=D2, and so on. Obviously, this process must stop at some stage< n, or
else, we get two uncountable subfamiliesGn andHn of F such that

(6) q(i) /∈Uy for all i = 1, . . . , n, q ∈Hn, andy ∈ p ∈ Gn.
But this means thatp∪ q ∈P for everyp ∈Hn andq ∈ Gn contrary to our assumption (3)
aboutF . At the stagei < n where the process has stopped we get a subspaceZi =Di with
no point of countableπ -character, i.e., the second alternative of the lemma.2

Theorem 6.2 leads naturally to the problem of determining under which conditions a
compact ccc nonseparable space maps onto[0,1]ω1. It would be desirable to have a result
giving such a condition without the involvement of Martin’s axiom or any additional
set-theoretical assumption. The analysis might require a different way of constructing
continuous maps onto large Tychonoff cubes from the one of Shapirovskii described above
in Theorem 6.1. It should also be mentioned that the dual form of Theorem 6.2 (with
‘separable’ replaced by ‘Lindelöf’) is missing.

We finish this section with a recent result of D. Fremlin [15] which solves an old problem
of R. Haydon.

Theorem 6.4 (Fremlin). If MAω1 holds then a compact spaceX carries a nonseparable
Radon measure if and only ifX maps continuously onto[0,1]ω1.

It was known before (by results of Haydon, Kunen, van Mill and Plebanek [19,22,17,
63]) that under various assumptions (such as the assumption that[0,1]ω1 can be covered by
ω1 measure zero sets) there exist compact spaceX and Radon measureµ onX such that
the corresponding measure algebra is not separable whileX does not map onto[0,1]ω1.
So, some assumption in Fremlin’s theorem is needed.

7. The role of compactness

In Section 3 we have seen that under MAω1 compact first-countable ccc spaces are
separable. This was one of the first topological applications of Martin’s axiom and it is due
to Juhasz [20]. However, in Section 3 we have also seen the rather unexpected fact, that
this consequence of MAω1 is in fact one of its equivalents. In other words, we now know
that the assertion that point-countable families of open subsets of first countable ccc spaces
are countable is equivalent to MAω1. Having in mind the large Tychonoff cubes, we see
that some size-restriction like ‘first countable’ is needed here. How about compactness?
In this section we list some examples which show that compactness is also an essential
assumption in these results.

Theorem 7.1 (Bell [6]). There is a first-countableσ -compact ccc nonseparable space.

Theorem 7.2 (Bell [8]). There is a first-countable countably-compact ccc nonseparable
space.
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Proof (Sketch). Choose a sequenceaξ (ξ < ω1) of infinite sets of integers such that:
(1) a0= ∅,
(2) aξ \ aη is finite andaη \ aξ is infinite wheneverξ < η.

LetX be the following subspace of 2N× ω1:{
(x, η): aξ \ x−1(1) is finite for allξ < η

}
.

It is not hard to show thatX is countably compact, first countable, ccc and nonsepara-
ble. 2

If one allows the second coordinateη to be equal toω1, one gets a compactificationγX
of X which is no longer first countable and non-separable but it gives the following
interesting fact which should be kept in mind any time one wants to pass from separability
to the countableπ -weight.

Theorem 7.3 (Bell [8]). There is a compact separable space of uncountableπ -weight
which does not map continuously onto[0,1]ω1.

Proof. To show thatγX does not map onto[0,1]ω1, by a result of Shapirovskii (see [21,
3.18] and Theorem 6.1 above), it suffices to show that every closed subspace ofγX

contains a (relatively)Gδ point. 2
We have already mentioned that in the class of compact spaces ccc is equivalent to the

formally stronger chain condition asserting that point-finite collections of open sets are
countable. The following example shows not only that this fails in a more general class of
spaces but it also shows that this is not a productive chain condition. It should be noted
that the nonproductiveness of this chain condition was first established by Watson and
Zhou [67] but the stress here is, however, on a more restrictive class of spaces where the
chain condition method was recently applied by Reed and his students (see [47]).

Theorem 7.4 [55]. There is a first countable(or even a Moore) spaceX such that every
point-finite family of open subsets ofX is countable butX2 fails to satisfy this chain
condition.

The spaceX of Theorem 7.4 is equal to some carefully chosen family of compact sets
of reals equipped with the Ochan topology, a refinement of the usual Vietoris topology
introduced long ago by Ochan [86] and used in more recent times by Pixley, Roy,
van Douwen and others (see [91]). It is interesting that the space of Theorem 7.1 is a
modification of the Ochan topology restricted to the collection of finite sets of reals.
It should be noted, however, that the countable chain condition of all these spaces is
quite strong, but in a different sense: all these spaces haveσ -centeredπ -bases so their
compactifications are separable.
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8. Souslinean spaces

According to the results of Sections 3–6, compact ccc nonseparable spaces have to be
quite complex unless we are using some strong set-theoretical assumptions to construct
them. Trying to find out how ‘small’ they can be, is just another approach to the same
old study of which topological properties identify which chain conditions. It turns out that
this way of looking at the problem about chain conditions has some applications outside
the intended area. For example, a ccc nonseparable space of the formγN \ N for some
compactificationγN of N, first constructed by Bell [7], has been put in a good use by van
Mill (see [25] and [26, 4.3.3]) to construct some special points ofβN \ N. It should be
noted, however, that in all examples which we list below, the fact that the space is a growth
of N is usually combinatorially easiest to establish. Making the spaces ‘optimally small’
will be our main concern here.

Theorem 8.1. There is a ccc nonseparable growth ofN of weightp.

Proof. This is basically a reformulation of Theorem 4.5 of [52], a paper which made the
real breakthrough in combinatorial analysis of Martin’s axiom and its consequences. We
start with a reformulation of the usual definition of the cardinalp as the minimal cardinal
such that:

There exist two families of infinite sets of integersA andB such thatA ∪ B has sizep
and the following conditions are satisfied:

(1) a ∩ b is infinite for everya ∈A andb ∈ B,
(2) B is totally ordered by⊆∗ and its coinitiality is uncountable,
(3) there is noc such thatc⊆∗ b for all b ∈B andc ∩ a is infinite for all a ∈A.

Fix suchA andB, and assume(|A|, |B|) is lexicographically minimal among all such
pairs. LetT be the set of all triples(s, t, n) wheren is an integer,s andt are families of
subsets ofn such that

(4) |x ∩ (⋂ t) ∩ k|> |1t ∩ k| for all x ∈ s andk 6 n,
where as before1t = {min(x1y): x, y ∈ t, x 6= y}. For a ∈ A, b ∈ B and(s, t, n) ∈ T ,
set

Ua =
{
(u, v,m) ∈ T : a ∩m ∈ u},

Vb =
{
(u, v,m) ∈ T : b ∩m ∈ v},

T(s,t,n) =
{
(u, v,m) ∈ T : m> n, u � n= s, v � n= t}.

LetB be the subalgebra ofP(T )/fin generated by these sets.

Claim 1. B is ccc.

Proof. This is similar and in fact somewhat easier than the corresponding part of the proof
of Theorem 3.4 above.2
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Claim 2. B is notσ -centered.

Proof. SupposeB+ =⋃∞i=0Bi where eachBi is a centered collection inB+. For everyi,
set

Bi = {b ∈ B: Vb ∈ Bi},
ci =

⋂
Bi,

1Bi =
{

min(x1y): x, y ∈Bi, x 6= y
}
.

By our assumption (2) there existsi such thatBi is coinitial withB, so by ignoring the rest,
we may assume thatBi is coinitial withB for all i. It follows that eachci satisfies the first
requirement of (3). Fix ani, and assume that for somea ∈A, the generatorUa belongs to
Bi . Then, sinceBi is centered, the condition (4) can be applied to show that

(5) |a ∩ ci ∩ k|> |1Bi ∩ k| for all k.
Since each1Bi is infinite, we conclude that

(6) a ∩ ci is infinite for all i ∈N anda ∈A such thatUa ∈ Bi .
If b > p then the gap formed by{ci} and B can be interpolated by a single setc
contradicting our assumption (3). On the other hand ifb = p then t = p so (1)–(3) can
be witnessed byA = {N} and some nonextendable towerB. By minimality assumption
on the pair(|A|, |B|) we conclude that in our caseA consists of a single seta and a
towerB which cannot be extended to any infinite subset ofa. But note thata ∩ ci is such
an extension for anyi for whichBi is coinitial withB, a contradiction. This completes the
proof. 2

LetX =Ult(B). ThenX is a growth of some compactification ofN, it has weightp, and
it is ccc and nonseparable by Claims 1 and 2. This completes the proof.2
Corollary 8.2 [52]. Martin’s axiom is equivalent to the statement that compact spaces of
π -weight smaller than the continuum are separable.

Proof. The direct implication is a well known application of Martin’s axiom due to Hajnal
and Juhasz [18] and Kunen (unpublished); see also [14, 43F(b)]. The converse implication
is a combination of Theorem 8.1 and the well known characterization ofp due to Bell [5];
see also [14, 14C].2
Theorem 8.3 [54]. There is a ccc nonseparable growth ofN of size continuum and cha-
racter at any point smaller thant.

Proof. This follows from the caseA= {N} andB = nonextendable tower of lengtht, in
the previous construction. The fact that every ultrafilter of the algebraB is generated by< t

many sets is analogous (and easier) to the corresponding claim in the proof of Theorem 3.4
above. The fact that the corresponding spaceX=Ult(B) has size continuum follows from
the well known cardinal equality 2<t = c (see [12]). 2
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Theorem 8.4. There is a ccc nonseparable growthX of N of countableπ -character which
admits a continuous mapf onto a compact metric space such that every fiber off is
homeomorphic to an ordinal smaller than the additivity of the Lebesgue measure.

Proof. For i ∈ N let N[i] denote the set of all integers of the form 2i (2j + 1). LetK be
the set of all subsetsx of N such that for everyi ∈N the section

x[i] = x ∩N[i]
has at mosti elements. Identifying sets with their characteristic functions, it is clear thatK

is closed, and therefore compact, subset of the Cantor set. Let

Z =
{
x ∈K: lim

i→∞
|x[i]|
i
= 0

}
.

By [92, Theorem 4] there isA ⊆ Z which is well-ordered under⊆∗ in order-type equal
to the additivity of the Lebesgue measure and which is unbounded inK, i.e., there is no
b ∈K such thata ⊆∗ b for all a ∈A. We shall assume thatA is closed under finite changes
of its elements as far as they belong toZ. Set

T = {(t, n): n ∈N, t ∈K, andt ⊆ n= {0,1, . . . , n− 1}}.
To a ∈A and(t, n) ∈ T we associate the following subsets of the treeT , respectively:

Ta =
{
(s,m) ∈ T : a ∩m⊆ s},

T(t,n) =
{
(s,m) ∈ T : m> n, s ∩ n= t}.

LetB be the subalgebra ofP(T )/fin generated by these two kinds of subsets ofT .

Claim 1. Every element ofB+ contains a nonzero element of the formTa ∩ T(t,n).

Proof. It suffices to show how to refine an element ofB+ which is equal to the intersection
of finitely many generators or their complements. Note that ifF is a finite subset ofA with
the property that the intersection ofTa (a ∈ F ) is positive inB thenb=⋃F is an element
of A being a finite modification of the maximal element ofF and belonging toK. So in
this case we have that⋂

a∈F
Ta = Tb.

Note now that the intersection of finitely many generators of the formT(t,n) is also equal
to one of them. Finally note that ifTb ∩ T(t,n) is not covered modulo a finite set by finitely
many generators (of either form) then we can find an extension(s,m) of (t, n) such that
Tb ∩ T(s,m) is infinite and it avoids all these generators.2
Claim 2. B is a ccc algebra(and in fact it satisfies Knaster’s condition).

Proof. In order to prove the ccc ofB it suffices to consider an arbitrary uncountable family
of elements of the canonical dense subset ofB+ given by Claim 1. Since there exist only
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countably many objects of the formT(t,n), relativizing the proof to one of them, we may
assume to have an uncountable familyF of sets of the formTa . We need to find two
different elementsTa andTb of F whose intersection is infinite. Going to an uncountable
subfamily ofF we may further assume to have an integerk and for eachi 6 k a setsi such
that for everyTa in F :

(a) a ∩N[i] = si for i 6 k, and
(b) |a[j ]|/j 6 1/2 for a ∈ F andj > k.

Then arbitraryTa andTb fromF have an infinite intersection, since by (a) and (b) the pair
((a ∪ b)∩ n,n) is in T for everyn. 2
Claim 3. B is notσ -centered.

Proof. Otherwise, since the cofinality ofA under⊆∗ is not countable, we can find a cofinal
subsetB ⊆A such thatTb (b ∈ B) is centered inB+. Forb ∈B, set

Kb =
{
a ∈K: (a ∩ n,n) ∈ Tb for all n ∈N}.

ThenKb (b ∈B) is a centered family of compact subsets ofK, so by compactness we can
choosec in the intersection of this family. It follows thatb ⊆ c for all b ∈ B. Sinceb is
⊆∗-cofinal inA, this gives usa ⊆∗ c for all a ∈A, a contradiction. 2

LetB0 be the subalgebra ofB generated byT(t,n) ((t, n) ∈ T ). Identifying an ultrafilterU
of B0 with the filter ofB generated byU , we make the following

Claim 4. For everyU ∈ Ult(B0) the quotient algebraB/U is an interval algebra over a
well-ordered chain of order-type smaller than the additivity of Lebesgue measure.

Proof. Note thatU is uniquely determined by an elementb of K in such a way that for
everyn, the generatorT(b∩n,n) is the only generator of leveln which belongs toU . The
quotient algebraB/U is therefore generated byTa (a ∈ Ab), whereAb is the set of all
a ∈A such thata ⊆ b. It remains only to note that ifa0⊆∗ a1 are two elements ofAb then
for all sufficiently largen, the intersectionT(b∩n,n) ∩ Ta1 is included inT(b∩n,n) ∩ Ta0. 2
Claim 5. EveryU ∈Ult(B) has countableπ -character.

Proof. Let U0 = U ∩ B0 and letb be the element ofK determined byU0 as in the above
proof. Pick ac ∈A such thatc 6⊆∗ b. LetAb = {a ∈A: a ⊆ b}. SinceA is totally ordered
by ⊆∗, we must have thata ⊆∗ c for all a ∈ Ab. A typical element ofU is equal to the
intersection of the formT(b,n) ∩ Ta0 ∩ (∼ Ta1), wheren ∈N anda0⊆∗ a1 are inAb. Since
a0⊆ b anda0⊆∗ c, we can find, inA, a finite modificationc∗ of c such thata0⊆ c∗ and
c∗ ∩ n= b ∩ n. Sincea1⊆ b andc∗ 6⊆ b we can findm> n such thatc∗ ∩m 6= a1 ∩m. It
follows thatTc∗ ∩T(c∗∩m,m) refines the given element ofU . Since there exist only countably
many possibilities forc∗ andm, this gives us a countableπ -basis ofU and finishes the
proof of Claim 5 as well as the proof of Theorem 8.4.2
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Corollary 8.5. There is a ccc nonseparable growth ofN of size continuum which does not
map onto the Tychonoff cube[0,1]ω1.

Now we go to a combinatorially still finer characteristic associated to the continuum, the
cardinalb, the minimal cardinality of a subset ofNN which is unbounded in the ordering
of eventual dominance.

Theorem 8.6 [54]. There is a growth ofN whose ccc is productive but which has a family
of sizeb of open subsets without a linked subfamily of the same size.

Remark 8.7. An interesting example of a compact ccc nonseparable space that does not
map onto[0,1]ω1 was recently constructed by M. Bell [9] assuming thatP(N)/fin con-
tains some special kind of Hausdorff gaps. Bell’s construction (reproduced in part above in
Section 5) is based on an elegant theory of ‘Total-Ideal-Spaces’ over familiesQ of partial
0-1-functions onN. Chain conditions of Total-Ideal-Spaces over families of partial func-
tionsQ are the same as those ofQ viewed as partially ordered sets ordered by the inclusion.
There is a general fact about posetsQ of partial functions onN under the assumption of
certain combinatorial principle OCA (see [68, Theorem 10.3∗]): Q is ccc if and only ifQ
is σ -centered. This explains why the theory of Total-Ideal-Spaces can never give us small
compact ccc nonseparable spaces without some additional set-theoretical assumptions, i.e.,
it can never give us results like Theorems 8.1, 8.3, 8.4, 8.5 and 8.6. However the relevance
of gap-spaces in this context has been recently recuperated by Farah [58] who has con-
structed a kind of Hausdorff gaps in the quotient algebra ofP(N) modulo anFσ filter on
N which then Moore [71] was able to use in producing a Souslinean space which does not
map onto[0,1]ω1, modifying a construction appearing in a previous version of this survey.
The fact that this new construction works under the assumption of MA and non-CH has
shattered our hope that the ultimate form of Souslin hypothesis, stating that any compact
ccc nonseparable space maps onto[0,1]ω1, is a consistent statement. This reconsideration
has led us to Theorem 8.4, which we did not know at the time of our lectures in North
Bay and whose proof, ironically, does not use gaps in quotient algebras at all, but only the
simple technology already exposed in the same series of lectures.

9. Compact subsets of function spaces

The chain condition method has been first introduced to this area by H.P. Rosenthal [37,
38] who proved the following result which started a whole new theme of research in this
subject.

Theorem 9.1 (Rosenthal).Every weakly compact subsetK of some Banach space which
satisfies the ccc is separable.

Proof. By Theorem 2.1(1) ifK is ccc then every weakly compact subset ofC(K) is
separable. By a well known result of Amir and Lindenstrauss [2], the Banach space
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C(K) is weakly compactly generated, and therefore, separable. It follows also thatK is
metrizable. 2

Today we know much deeper reasons of why Theorem 9.1 is true. For example, using
the result of Amir–Lindenstrauss, Rosenthal himself observed that every weakly compact
subsetK of a Banach space contains aσ -point-finite collectionF of cozero subsets ofK
which separates any two points ofK in the sense that for everyx 6= y in K there is
U ∈ F which contains exactly one of the points (see [69]). Now, point-finite families in
compact ccc spaces are countable (see Lemma 2.2), so ifK is ccc the separating familyF
is countable and soK is second-countable. However, in [29], Namioka has discovered an
even deeper reason:

Theorem 9.2 (Namioka).Every weakly compact subsetK of some Banach space contains
a dense subset which is completely metrizable.

This has turned out to be the right approach as similar results have been established
for a wider and wider classes of compact spaces occurring in functional analysis. For
example, one of the vast generalizations of Rosenthal’s theorem is the following result
of Gruenhage [32].

Theorem 9.3 (Gruenhage).If K is a compact space for whichC(K) is weakly countably
determined thenK contains a dense completely metrizable subspace.

A spaceZ is said to be ‘countably determined’ if it is a continuous image of a closed
subset of some product of a compact space and a separable metric space. To relate this to
Theorem 9.1 recall the well-known result of Talagrand [94] which says that ifK is a weakly
compact subset of some Banach space the function spaceC(K) in its weak topology is a
continuous image of a closed subset of some product of a compact space and the irrationals.

Note that ifC is any one of these classes of compacta then it is closed under taking
closed subspaces, so we conclude another interesting property of anyK in C: every Radon
probability measure onK has a separable support. This is so becauseKµ = supp(µ)
also belongs toC andµ is a strictly positive measure onKµ. So in particular,Kµ is
ccc and therefore separable. The property that every Radon probability measure onK

has a separable support is closely related to the weak Lindelöf property of the function
spaceC(K). In fact, it is equivalent to it in a class of compacta that includes all the classes
considered so far:

Theorem 9.4 (Argyros, Mercourakis and Negrepontis).The following two properties are
equivalent for every compact subsetK of some sigma-product of the unit interval:

(a) Every Radon probability measure onK has a separable support.
(b) The Banach spaceC(K) is weakly Lindelöf.

Proof. The implication from (a) to (b) is based on a well known result of Alster and
Pol [1] and Gulko [70] which says thatCp(K) is Lindelöf for every Corson compactumK.
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First of all, C(K) with the weak topology can naturally be identified with a closed
subspace ofCp(P (K)), whereP(K) is the space of the Radon probability measures
onK with the weak∗ topology, the essential part of the unit ball ofC(K)∗. It turns out
that under the assumption of (a) the spaceP(K) is also a Corson compactum so (b) is
an immediate consequence of the Alster–Pol–Gulko theorem. This fact was actually first
exposed (without a proof) by R. Pol in [88]. To see this, recall thatK can naturally be
identified (via Dirac measures,x 7→ δx ) with the set of extreme points ofP(K), so we are
done by the following general fact (see [3]) which is of independent interest.

Lemma 9.5. The following are equivalent for every Corson compactumK ⊆Σ([0,1]I ).
(a) Every Radon probability measure onK has a separable support.
(c) The closure of the convex hull ofK, as taken in the Tychonoff cube[0,1]I , is actually

a subset of the sigma-productΣ([0,1]I ).

Proof. Suppose there is a pointx0 ∈ conv(K) which has uncountably many non-zero
coordinates. Then we can find a netcξ (ξ ∈D) of finite convex-combinations of elements
ofK converging tox0. Eachcξ can naturally be identified with a finitely-supported Radon
probability measureµcξ . So, we can find a subnetcη (η ∈ E) such that the corresponding
netµcη (η ∈ E) converges to someµ ∈ P(K). Supposeµ has a separable support, i.e.,
there is a countable setA⊆ I such that

supp(µ)⊆ {x ∈K: x(i)= 0 for all i /∈A}.
Pick j ∈ I \ A such thatx0(j) > ε > 0. Sincecη (η ∈ E) converges tox0, we have that
cη(j) > ε for almost allη ∈ E. It follows that, on one hand,

∫
πj dµ = 0, while on the

other hand
∫
πj dµcη = cη(j) > ε for almost allη ∈ E, contradicting the fact thatµcη

(η ∈E) converges toµ. This proves that (a) implies (c). The converse implication follows
from the general fact that every Radon probability measureµ defined on aconvexCorson
compactumH has a separable support. This is an immediate consequence of the fact that
every suchµ is represented by a pointx of H (see [87]) and therefore, using the Fréchet–
Urysohn property ofH , it follows that there is a sequence of finite convex-combinations
of Dirac measures converging toµ. Clearly, the union of supports of these measures must
be dense in supp(µ). This finishes the proof of Lemma 9.5.2

The implication from (b) to (a) in Theorem 9.4 is in fact true for every compact spaceK.
To see this, letµ be a given Radon probability measure onK, and going to supp(K), let
us assumeµ is strictly positive onK. Forx ∈K andn ∈N, set

Cnx =
{
f ∈ C(K): f (x)= 0 and

∫
f dµ> 1/n

}
.

Then eachCnx is a closed convex subset ofC(K) and for everyn the intersection of
Cnx (x ∈ K) is empty. Using the weak Lindelöf property ofC(K), for eachn there is a
countable setDn ⊆ K such that

⋂
x∈D Cnx = ∅. It is clear that

⋃∞
n=1Dn is dense inK.

This finishes the proof of Theorem 9.4.2
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The weak Lindelöf property of Banach spaces continues to be a source of vital and
difficult problems in this area ever since the original paper of Corson [13] where the
property was first considered. Theorem 9.4 indicates that in some of these problems the
chain condition method is quite relevant. The paper [3] of Argyros et al. particularly
emphasizes the usefulness of this method in showing the extreme complexity of the class
of Corson-compact spaces as it is able (under certain additional set-theoretic assumptions)
to distinguish basically all known chain conditions.

Let us now consider a class of compacta which is topologically much more complex than
the class of Corson compacta, but whose importance in functional analysis is not smaller.
This is the class of Rosenthal compacta, pointwise compact subsets of the first Baire
class over the irrationals. That this class of spaces enjoys some of the pleasant properties
of Corson compacta was established in a series of deep results of Bourgain, Fremlin,
Talagrand and Godefroy (see [10,16]). For example, Bourgain, Fremlin and Talagrand have
established that every Rosenthal compactum is a Fréchet space. Using this result, and his
own result saying that the class of Rosenthal compacta is closed under the functorP(K)

(the space of Radon probability measures onK with the weak* topology), Godefroy has
proved another analogue:

Theorem 9.6 (Godefroy). Every Radon probability measureµ on a Rosenthal com-
pactumK has a separable support.

Proof. Every suchµ is in the weak*-closure of the set of Radon probability measures
on K with finite supports, so by the Bourgain–Fremlin–Talagrand theorem, there is a
sequence{µi} of such measures withµi → µ. Let S be the closure of the union of their
supports. It is clear thatS is a support ofµ. 2

A stronger version of this result was established by Bourgain (see [95, 14.2.2]):
L1(K,µ) is separable for every Radon probability measureµ on a Rosenthal com-
pactumK. Note that in the class of Corson compactaK, the separability ofL1(K,µ)

is clearly equivalent to the separability of the support ofK, so we did not have to consider
the problem of separability ofL1(K,µ) above. In this context it is also helpful to recall
Fremlin’s Theorem 6.4 which says that under MAω1, if a compactumK supports a Radon
probability measureµ for whichL1(K,µ) is not separable, thenK maps onto[0,1]ω1.

It is now quite natural to ask whether the class of Rosenthal compacta is pathological
enough to be able to distinguish between the countable chain condition and separability, a
problem first explicitly stated by Pol [30]. Starting from Pol’s question we were recently
able to prove a more general fact which even better fits the general picture.

Theorem 9.7 [56]. Every Rosenthal compactum contains a dense metrizable subspace.

Note the absence of complete metrizability in the conclusion of this result. This is not
an accident since, for example, the split interval is a Rosenthal compactum in which all
metrizable subspaces are countable and so none of them is denseGδ . This also hints
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that the proof of Theorem 9.7 had to be quite different from the old Namioka-style
arguments. The proof required an interesting synthesis of the chain-condition method
discussed above in Section 3 with the method of forcing and absoluteness. Analyzing the
algebraic properties of a carefully chosen point-countableπ -basis of a compact countably
tight ccc nonseparable space was quite instrumental in deciding that the method of forcing
is relevant here. This method is also useful in understanding as well as relating some of the
previous work since, for example, it gives another way to prove results like Theorems 9.2
and 9.3 above.
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