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1. I N T R O D U C T I O N  

Simulated annealing methods are methods proposed for the problem of finding, numerically, a 
point of the global minimum of a function defined on a subset of a k-dimensional Euclidean 
space. The motivation of the methods lies in the physical process of annealing, in which a 
solid is heated to a liquid state and, when cooled sufficiently slowly, takes up the configuration 
with minimal inner energy. Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [1] described 
this process mathematically. Simulating annealing uses this mathematical  description for the 
minimization of other functions than the energy. The first results have been published by Cern~ 
[2,3], Kirpatrick, Gelat t  Jr., and Vecchi [4,5], and Geman and Geman [6]. For a related earlier 
result, see Hasminskij [7]. Most of the early considerations concern minimization of functions 
defined on a finite set. Kushner [8] and Gelfand and Mitter [9] obtained results for functions with 
infinite domains. Laarhoven and Aarts  [10], Laarhoven [11] and Pfiug [12] are monographs on 
simulated annealing. Steel [13], in a review of [11], calls simulated annealing the most exciting 
algorithmic development of the decade. 

Some of the literature, e.g., [11], reports surprisingly good results when applying simulated 
annealing to difficult problems. The description of the results is often short on detail; e.g., 
in [11], not the number of steps in the method, but computer  t ime is reported and the behavior 
of the function minimized, the position of local minima, etc., is difficult to ascertain. 

Analogies of simulated annealing with stochastic approximation made us suspicious of the 

performance of the former. This has been the motivation of the present s tudy in which simulated 
annealing methods are tested on very simple functions. 

Our results confirm the suspicion and contrast  frequent reports in literature of surprisingly 
good performance. On the other hand, our results do no contradict the theoretical results, which 
are mostly asymptotic,  and more modest  than informal claims. Pfiug [14], in a talk, argued that  
simulated annealing cannot work satisfactorily in the case of a very simple function (similar to 
tha t  which we consider in Section 2), but we were unable to understand the proof, unable to get 
a writ ten proof, and it seems the result was not published. Laarhoven [11, p. 33], recommends 
a cooling schedule (a rule for letting a parameter  of the method slowly approach 0), but warns 
tha t  the schedule precludes any guarantee for the proximity of the final configuration to a globally 
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optimal one. Another theoretical result tha t  constitutes a warning about  the performance of 
simulated annealing methods appears  in the last quoted monograph and is discussed in Section 2. 

Section 2 is concerned with the simulated annealing method, applied as originally proposed, to 
a function on a finite domain. The method is described by a Markov chain x = (xn), where xn 
is the est imate of the point of global minimum after n steps (i.e., after n function evaluations). 

We consider a class of very simple functions with the domain a set of size 2k + 1 and with a 
local minimum 0 at - k  and a global minimum - 1  at k + 1 (cf. Figure 1 below). We consider 
k = 4, 6, 8, 10 and find the convergence of the distribution of Xn to the limiting distribution very 
slow. We have chosen a parameter  in the simulated annealing method such that  the limiting 
distribution gives probabili ty 0.8 to the point of global minimum and considered the initial 
distribution concentrated at the point - k .  (Choosing a higher probabili ty than 0.8 would make 

the convergence slower still.) For k = 10 and n = 10 s, the probabili ty of {xn = k + 1} is 0.00502 
(cf. Table 1). For the same k, just 22 function evaluations suffice to determine the point k + 1 of 
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Figure 1. 

Table 1. The  speed with which P(k~l approaches the l imiting value 0.8. 

k 4 6 8 10 10 

initial density p(_O) = 1  p(_° k) = 1  p(° k) = 1  p(_O) = 1 uniform 

p(n) 0.7 0.7 0.31954 0.00502 0.466751 k-+-i 

n 62,134 5,035,077 10 s l0 s l0  s 

Start ing with Section 3, minimization of functions defined on an infinite set is considered, again 
for ra ther  very simple functions (see Figure 2 in Section 3.1). Each of the two particular methods 
considered depends on two parameters  a and ~ and even with "best" (i.e., best we found) values 
for these parameters ,  the performance is rather bad. In the case described in Table 4, Section 3.2, 
the expected squared deviation from the point of global minimum is approximately 2.24 after 
n --- 10,000 steps. With  this many function evaluations, a primitive deterministic search would 
est imate the point of global minimum with a squared deviation 10 -s .  Other  cases are similar 
and worse. In addition, the performance of the methods depends strongly on the choice of the 
two parameters  a and a and the optimal values for these depend, in turn, on the function to be 
minimized. 

In Section 3.5, we consider a simple improvement z -- (zn) over the simulating annealing 
method x. The  improvement is considerable with properly chosen a and or. However, it was not 
clear whether  the improvement persists in the multidimensional case. In Section 4, we s tudy 
the behavior for a very simple function F defined on [ -3 ,  3] k and, indeed, the advantage of z 
over x diminishes with increasing dimension. We also compare here the behavior of x and z 
with random search, discrete search, and discrete search followed up by a gradient method. The 
discrete search followed up by the gradient method performs much better  than any of the other 
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m ethods  for the  specific funct ion considered. T h e  last  p rope r ty  m a y  change if o the r  funct ions 
are considered,  because  then  the  determinis t ic  search m a y  fail to get  close to  the  point  of  global 
m in imum.  However,  easy  descript ion of the  pe r fo rmance  of the  determinis t ic  search for funct ions 
in the  class of all Lipschitz  (C) cont inuous funct ions is available; no such general  descr ipt ion of 
the  behavior  of the  s imula ted  anneal ing es t ima to r  xn for a given n is available. 

We th ink  t h a t  our  examples  make  the  usefulness of s imulated anneal ing doubtful .  

2 .  F I N I T E  D O M A I N  

Consider  a posi t ive integer k and the  function f defined on the set D = { - k , - k  + 1 , . . . ,  k + 1} 
by the  relat ion f ( x )  = k - Ix I (see Figure 1 for the k = 10 case). The  funct ion has a local 
m i n i m u m  at  - k ,  wi th  the function value 0, and a global m i n i m u m  at  k + 1, wi th  the  value - 1 .  

I t  takes  2(k + 1) funct ion evaluat ions  to find, with certainty,  the point  k + 1 of global min imum.  
Consider  the  homogeneous  s imula ted  anneal ing method .  This  me thod  needs a definit ion of 

ne ighborhoods  (not topological  neighborhoods)  for points  in the  funct ion domain  D. Define 
these  ne ighborhoods  by 

N ( - k )  = { - k , - k  + 1}, N ( k  + 1) = {k ,k  + 1}, and 

N ( x ) - - { x - l , x + l } ,  for - k < x < k .  

In addit ion,  the  m e t h o d  depends  on a posit ive cons tant  c. The  me thod  changes xn -1  to  a 
poin t  xn, the  approx ima t ion  a t  t ime  n, as follows. First ,  a point  y is chosen at  r a n d o m  in 

N(xn-1) .  If  A = f (y )  - f ( x )  < O, then  x~ is set equal to y; if A > 0, then,  condi t ional ly  
on the  past ,  xn is set equal  to y wi th  probabi l i ty  c~ = e -A/° ,  and to x ~ - i  wi th  p robabi l i ty  
1 - c~ (see [11, Section 2.2]). This  simplifies in our case, because A equals I if it is positive. 
T h e  l imit ing dis t r ibut ion of x is known and described in the l i terature  under  much  more  general  
a s sumpt ions  t h a n  here (e.g., [11, p. 20, (2.43)]), bu t  it m a y  be easier to  derive it in our  special  
case anew. T h e  t rans i t ion probabil i t ies  for the  homogeneous  Markov chain x are then  as follows, 
wi th  ~ = 0.5 - ct/2: 

(~ O~ 
P-k,-k  = 1 -- ~ ,  P - k , - k + l  = -~, (2.1) 

P~,i-1 = 0.5, Pi# = ~,Pi,i+I = 2 '  for -- k < i < 0, (2.2i) 

1 1 
P0,-1 = 2 '  P0,1 = 2 '  (2.3) 

a 1 
Pi,i-1 =-~,  P i , i=~ ,  P i , i + l =  2 '  f o r 0 < i < _ k ,  (2.4i) 

C~ C~ 
Pk+l,k = ~ ,  Pk+l,k+l = 1 -- ~-. (2.5) 

Ar rang ing  these into a ma t r i x  and reading the  columns easily gives relat ions between the  discrete 
dens i ty  ( abbrev ia ted  hencefor th  to  density) q at  t ime  n and ~ at  t ime n + 1, if, on the  lef t -hand 
side, q is replaced ~. As s ta ted ,  the  equat ions  de termine  the  s t a t iona ry  densi ty  q, the  limit of the  
discrete  densit ies of xn for any  initial density. 

q k (1 = - q-k  + 0.5q-k+1, (2.6) 
C~ 

qi = ~qi-1 + ~q~ + 0.5q~+l, for -- k < i < 0, (2.7i) 
C~ 

q0 -'- ~ ( q - 1  + ql),  (2.8) 
(~ 

q~ = 0.5qi-1 + ~qi + ~q i+ l ,  for 0 < i < k, (2.9i) 

= - qk+l. (2.10) 
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Equation (2.6) is equivalent to q - k + l  = a q - k  and assuming aqi-1 = qi, we obtain, from (2.7i), 
tha t  also aqi  = qi+l- Thus, by induction, the last relation holds for all i = - k , . . . , - 1 .  Conse- 
quently, qi = olk+iq_ k for i = - k , . . . ,  0. By symmetry,  qi = O~k+l-iqk+l for i = 0 , . . . ,  k + 1. For 

i = 0, the two relations imply tha t  q - k  -= O~qk+l. These relations give 

qi = a k + l - l i i q k + l ,  for i = - k , . . . , k  + 1, (2.11) 

and it is easy to verify tha t  (2.8) also holds. The sum of all qi is ((1 + a)(1 - a k + l ) ) / ( 1  -- a )  

qk+l and 
1 - - a  

qk+l = (1 + a ) ( 1  --  a k + l )  " ( 2 . 1 2 )  

For small a and k not very small, this is close to ( 1 -  a ) / ( 1  + a )  and close to /3 if a = 
(1 - ~ ) / ( 1  + /3 ) .  

Consider the choice 13 = 0.8 and the corresponding a = 0 .2 /1 .8  (for k = 4, 6, 8, 10, this results 
in a ~3 tha t  differs from 0.8 by, respectively, 1.4 × 10 -5, 1.7 x 10 -7, 2.1 × 10 -9, 2.5 x 10-11). 

Thus, the s ta t ionary and limiting density p has Pk+l = 0.8 (with the small error indicated above, 
inconsequential in the considerations below). How fast does the density approach its limit? For 

~(n) :> 0.7, if ~,(n) = P { x n  = k + 1} and find n for which ~k+l several k, we consider the value of ~k+l 

~(n) for n = l0 s . We such an n is at most 10s; if such an n is larger than  l0 s, we determine t,k+l 
have chosen the initial density concentrated on - k ,  except in one case we have chosen the initial 
density to be uniform over { - k , . . . ,  k + 1}. The results are in Table 1. Table 2 gives the density 
for case k = 10 and n = l0 s for the two initial discrete densities. 

T a b l e  2. V a l u e s  o f p ~  n) for n -- 108, k --- 10, a n d  t w o  i n i t i a l  dens i t i e s .  

I n i t i a l  d e n s i t y :  p(_O) _-- 1 

i p~n) i p~n) 

- i 0  0 .88387 1 1.28 × 10 - l °  

- 9  0 .09821 2 1.40 X 10 - 1 °  

- 8  0 .01091 3 2.43 X 10 - 1 °  

- 7  0 .00121 4 1.18 × 10 - 9  

- 6  0 .00013 5 9.57 × 10 - 9  

--5 1.50 x 10 - 5  6 8.51 × i 0  - s  

- 4  1.66 X 10 - 6  7 7.65 × 10 - 7  

- 3  1.85 × 10 - 7  8 6.89 x 10 - 6  

- 2  2.04 x 10 - 8  9 0 .00006 

- 1  2.15 x 10 - 9  10 0 .00056 

0 1.27 x 10 - l °  11 0 .00502 

i 

- 1 0  

- 9  

- 8  

- 7  

- 6  

- 5  

- 4  

- 3  

- 2  

- 1  

0 

I n i t i a l  d e n s i t y :  u n i f o r m  

p~n) i p~n) 

0.42214 1 1.87 x 10 - l °  

0 .04690 2 1.26 × 10 - 9  

0.00521 3 1.09 × 10 - s  

0 .00058 4 9.76 × 10 - s  

0 .00006 5 8.78 × 10 - 7  

7.15 × 10 - 6  6 7.90 × 10 - 6  

7.94 x 10 - 7  7 0 .000071 

8.82 x 10 - s  8 0 .000640 

9.75 x 10 - 9  9 0 .005762  

1.04 x 10 - 9  10 0 .051861 

6.80 × 10 -11  11 0 .466751 

(0) 
We see that ,  for the function considered and the initial density such tha t  P - k  : 1, the approach 

of Pn to the limiting density is very slow. Tha t  is, for our choice of ~ tha t  leads to the limiting 
density with the very modest  property, tha t  it gives probabili ty 0.8 (not, e.g., 0.99) to the 
point k + 1 of the global minimum. The results are consistent with a heuristic argument  that  
for a such tha t  the chain has a moderately  large probabili ty to stay at 11, it has a small probabil i ty 
to cross from - 1 0  to 0. The results also complete some theoretical bounds on the speed of such 
convergence. The theoretical results (see [11, Section 2.4, relation (2.64)] in particular) are that ,  
for the density Pn to be within a positive ¢ from the limiting density, it is enough tha t  n be at 
most a constant times N ~ where N is the size of the function domain. 

Our results show the following. 

(i) An extremely slow approach of the density Pn to its limit. 
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(ii) An extremely poor performance of the simulated annealing method when compared to 
a deterministic search that  requires 2k + 1 function evaluations and locates the point of 
global minimum exactly. 

For the homogeneous case, in general, we have another property. 
(iii) If, for some n, x~ = u is already close to a point of global minimum, the process 

X~+l, x~+2,. • •, with the initial density giving probability 1 to u, will still wander through 
all the points of the domain, including all the points of local minima and local maxima. 
This is because it has the same limiting density as the original process. 

These results show difficulties for the nonhomogeneous process, in which a is slowly decreasing 
with n. In the consideration of this nonhomogeneous process (see [11, Section 3.2]), the a t tempt  
is made to decrease a when the density of Xn is close to the limiting density; it is not known 
when this is the case, and we have shown it may take an extremely large number of steps. 

The advice given on when to stop the algorithm is often (e.g., [11, Section 3.2, p. 31]) to stop 
when the function values do not change much anymore. However, that  may well happen at a point 
of local minimum, and, from (iii), if the function values do not change too much for a while, they 
will start  changing eventually. A heuristic argument why (iii) persists in the nonhomogeneous 
case is that  the process started from Xn at time n still will find a global minimum, and not only 
for the particular function considered, and so it must go through the whole domain again. 

There are reports on applications of simulated annealing methods where these methods quickly 
found a point with the function value nearly minimal (e.g., [11, Chapter 4]). This may be possible 
only if the methods do not have to go through several steps uphill (i.e., with increasing function 
values), which was the case for our f here. Thus, successful applications may be perhaps obtained 
when the function values at points of local minima are close to the minimal function value, or 
when it takes only a few steps uphill to escape from a local minimum. 

It should be also noted that  the neighborhoods are to be chosen and are not an inherent part 
of function itself. The behavior of the simulated annealing methods depends strongly, however, 
on the choice of the neighborhoods. It is quite obvious that  our results would be different, if the 
neighborhood of - k  was chosen to include the point k + 1. 

Lundy and Meese [15] construct functions fN on size (2N/~ + 1) 2 domain, with f i a  small 
positive number, and claim that  the time Ta to reach the point 0 of the minimum has expectation 
ETa = O(N) for the simulated annealing method, while for a competitor (gradient method with 
the initial point randomized), the analogous time Tc satisfies ETc = 4N2/5. The function has 
many local minima, but from each, one step slightly uphill gets to a long sequence of downhill 
steps. The competitor is fine tuned to its disadvantage such that  it can reach 0 only if the initial 
point falls close to 0, in a set of size (2/5 + 1) 2. However, even with such choices the claim is 
questionable, because of an unjustified step in the proof. Functions fN are chosen in such a way 
that  the probability the annealing method makes an uphill step from a point of local minimum 
towards 0 is considerably larger than that  (say p) of a step in a direction away from 0. The 
authors declare the latter negligible and give the proof for the case that  p is indeed 0. But this 
way they no longer study a simulated annealing method, but a different method with a different 
limiting density. The main difficulty with the omission of the small probability is that  as N 
increases to infinity, there is a very large number of events, all with probability p, the occurrence 
of any of which the proof neglects to consider. 

3.  I N F I N I T E  D O M A I N  

3.1. Two M e t h o d s  

With this section, we begin considerations of two simulated annealing methods for functions 
defined on an infinite domain, a subset of the k-dimensional space R k. The methods do not 
require a choice of neighborhoods, but the theoretical results do not describe the behavior in 
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such detail as for the homogeneous method in the finite domain case. The methods need a choice 
of two parameters a and dr. 

Considered here are two methods K and GM, proposed and studied in [8] and [9]. We study 
the behavior of the two methods when these are applied to about the simplest two functions, the 
function in Figure 2, restricted to the domain [-3,  3], and the function not restricted. It might be 
easier for the reader if we refer to these two functions by the domain rather then by two names. 
The function f is defined in Table 3 and its graph is shown in Figure 2. 

1 
0.8 
0.5 
0.4 
0.2 

0 
-0.2 

-8 -6 -4 -2 0 2 

Figure 2. Function f .  

Table 3. Funct ion f .  

On .f(x) 
[ -8 ,  - 1 . 3 )  0,099 - 0.39 axctan(1.3 + x) 

[ - 1 . 3 , - 1 )  (1 + x)2(5 + 3x) 

[-1,-0.5) 2(1 + x) 2 
[--0.5, O) 1 -- 2x 2 

[0, 0.5) 1 - x2(2 + o.sx) 
[0.5, 1) - 0 . 2  + 2(x - 1)2(1.4 - 0.4x) 

[1, 1.5) - 0 . 2  -I- 2(x - 1)2(2 - x) 

[1.5, 3] 0.05 + 0.5 arc tan(x  - 1.5) 

The two methods require the existence of the second derivative of the function. The function f 
has a second derivative, bounded by 6.4, everywhere except at points -1 .3 ,  -0 .5 ,  0.5, 1.5, where 
one-sided second derivatives exist (cf. Table 3). f can be approximated with any desired accuracy 
by a function that  has a second derivative everywhere, bounded by the same constant as the 
original function. Tha t  is, change f by interpolating linearly between f " ( - 1 . 3 - 6 )  and f ~ ( - 1 . 3 )  
on ( -1 .3  - 6 , -1 .3]  and change f '  and f accordingly to preserve continuity; this changes f on 
( -1 .3  - 6, 3) by at most 366 + 1.162 (even if other points than -1 .3  are considered). The decision 
not to use such a modification of f was taken to save time on computations, some of them very 
long. 

The two methods, for finding a point of global minimum of a function defined on the 
k-dimensional Euclidean space R k, are described by the same recursion formula 

xrt  + l = xr t  - art  A ( xr t  ) + crt ¢rt , (3.1) 

where A(x) is the gradient of f at x, ~1, ~2,. • • are independent standard normal random variables 
and 

a dr 
for method K, (3.2) an=log(n+2), C ~ = l o g ( n + 2 )  

a (F 
art ~ ~ ,  art ---- n x/n log log(n + 15) for method GM, (3.3) 

with positive numbers a and dr. These are specific cases of the methods originally proposed, the 
numbers 2 and 15 are specific choices to cause the fractions to make sense. (GM method has zero 
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instead of 15, but  requires (3.3) for large n only; we think the slight change is inconsequential). 

Kushner [8] also considers the situation when the gradient cannot be computed,  but  is est imated 
by biased random variables (similar to stochastic approximation methods).  

The  two methods are stochastic approximation methods except tha t  the steps an for method K 
and the variances of cn~n for both  the methods are larger than  the optimal  choices established for 
stochastic approximation methods. However, stochastic approximation methods do not guarantee 
convergence to a point of global minimum, except for a new modification in [16]. The modification 
is difficult to use unless the dimension of the domain is small. 

We s tudy the behavior of the two methods first by E ( x n  - 1) 2, the expected squared deviation 
of xn, for n = 10,000, from the point 1 of the global minimum, and its dependence on a, a and 
the domain of the function. We then limit our considerations to method K and domain [ -3 ,  3] 
only, and obtain results on the density of xn for several pairs (a, 0). We show a few paths 
of x = ( X l , . . . , x n ) .  The results suggest a possible improvement z over x. We study this 
improvement  for the same function and then for a multidimensional problem. The results show 
tha t  the two methods K and GM are extremely slow, and tha t  the improvement z is losing the 
advantage over x as the dimension increases. 

3.2. T h e  E x p e c t e d  S q u a r e d  E r r o r  

We s tudy the expected squared error E ( x , ~  - 1) 2 for both K and GM methods, with the initial 
point x0 = - 1  of a local minimum of f ,  and with n = 10,000. Both methods depend on two 
constants a and o. 

For given a and o, we estimate E ( x n  - 1) 2 from 5,000 independent replicas Z~s of the random 
variable Z = (xn - 1) 2 with i = 1 , . . . , 1 0 0  and s = 1 , . . . , 5 0 .  For ease of implementation,  

observations of Z~ = (1/100)(Z~1 + . . .  Z~100) are obtained. The random variables Z~ can be 
expected to be normal to a high level of accuracy. We then estimate E ( x n  - 1) 2 by the usual 
0.99-intervai est imate based on the normality assumption. The center of this interval est imate is 
2 = (1/50)(Z1 + . . .  + Zs0). The observation of 2 will be called the mean-squared deviation and 
abbreviated to msd. 

Table 4. msd for K, domain [ -3 ,  3], max imum half-width of the 0.99 interval esti- 
mates  is 0.25, "best" a ---- 0.3, a = 1. 

a 

cr 0.03 0.1 0.3 1 3 10 

0.1 4.04 4.01 4.00 4.00 4.00 5.24 

0.3 4.68 4.15 4.03 4.01 3.92 5.21 

3.27 3.03 5.61 1 4.04 3,56 

3 4.30 4.36 4.13 3.74 3.10 5.32 

10 5.36 5.02 5.10 5.05 4.96 5.66 

30 6.57 6.62 6.78 6.82 6.81 6.87 

Table 5. msd for K, domain [ -8 ,  3], max imum hMf-width of the 0.99-interval esti- 

a 

0.03 0.1 0.3 1 3 10 

0.1 4.03 4.01 4.00 4.00 4.00 5.20 

0.3 7.92 4.17 4.03 4.01 3.91 5.23 

1 20.36 15.89 5.87 3.26 5.60 

3 23.03 22.53 21.35 15.37 7.03 6.70 

10 24.15 24.44 23.81 23.98 23.81 23.67 

30 27.83 28.43 27.70 27.62 28.63 29.44 

mates  is 0.25, "best" a = 3, a ---- 1. 
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Table 6. msd for GM, domain [-3,3], maximum half-width of the 0.99-interval 
estimates is 0.24, "best" a ---- 1000, a ---- 30. 

a 

a 30 100 300 1 , 0 0 0  3 , 0 0 0  10,000 

1 2.81 3.50 3.95 4.00 4.00 4.76 
3 2.62 3.11 3.71 3.99 4.00 4.84 

10 3.63 2.30 2.72 3.39 3.97 5.03 
30 4.13 4.06 3.73 ~ 2.77 5.33 

100 4.63 4.60 4.74 4.70 4.59 5.19 
300 5.96 5.93 5.96 5.88 6.04 6.00 

Table 7. Gelfand-Mitter method, domain [-8, 3], maximum half-width of the 0.99- 
interval estimates is at most 10% of msd, "best" a = 3, 000, a = 30. 

a 

a 30 100 300 1,000 3 , 0 0 0  10,000 

1 9.95 3.89 3.99 4.00 4.00 4.72 
3 6.16 4.00 3.92 4.00 4.00 4.80 

10 18.11 7.46 2.99 3.47 3.98 5.00 
30 2 2 . 5 7  2 0 . 6 8  17.21 6.27 5.37 

100 2 3 . 7 6  2 3 . 4 7  2 2 . 9 3  2 1 . 8 0  20.01 18.31 
300 2 6 . 4 3  2 5 . 2 7  2 6 . 0 1  2 5 . 2 2  25.49 26.37 

Tables  4-7  give these es t imates  for the two methods,  two functions,  and  several pairs of a and  a.  

The  es t imates  have been computed  for more values of a and a; the tables  give only  values tha t  

su r round  the  "best" a and  a. 

Note t ha t  the  expected squared deviat ions depend on the  domain  of the funct ion  minimized.  

Thus ,  for me thod  K, the "best" a = 0.3, a = 1 for domain  [ -3 ,  3] are ra ther  a bad choice for 

d o m a i n  [ -8 ,  3] (cf. Table 5). For the "best" values of a and a,  Table 8 gives es t imates  o f E ( x ~ - l )  2 

ob ta ined  anew from 20,000 independen t  observat ions in each of the cases and  half-widths of the  

0.99-intervals es t imates  with centers msd. 

Table 8. msd and half-width of the 0.99-IE for the "best" a and or. 

method domain a 

g [-3, 3] 0.3 

g [-8, 3] 3 

GM [-3, 3] 1000 

GM 3000 [-8, 3] 

c~ msd 

1 2.23 

1 3.11 

30 2.40 

30 2.89 

Half-width of 
the 0.99 IE 

0.05 

0.03 

0.06 

0.05 

3 .3 .  D e n s i t y  o f  x~ for  n = 10 m a n d  m = 1 ,2 ,3 ,4  

Es t imates  of these densit ies are relative frequencies in 5,000 independen t  observations.  They  

are repor ted  in graphs only. We report  on method  K only (similar results have been obta ined  

fbr m e t h o d  GM),  and  on domain  [ -3 ,  3]. We show the results for the "best" a = 0.3 and a = 1, 

and  then  for four addi t iona l  pairs in which the two parameters  are changed by mul t ip l ica t ion  

and  division by 10. For a small,  mass stays close to - 1 ;  for a large, close to the endpoin t s  of the 

domain .  The  msd ' s  from Table 4 are reported again in the descript ion of Figures  3-7. 

3.4.  P a t h s  

I t  may  be of interest  to see how the individual  pa ths  behave; this  is no t  easy to show, and 

we show here 6 replicas of the process (xn/ evaluated at  several n. This  concerns method  K, 

doma in  [ -3 ,  3]. In  Figures  8 and  9, the un i t  on the horizontal  axis is 1,000. 
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Figure  3. "Best" a = 0.3, cr = 1, m s d =  2.24. 

0.6 

-3 

0.18 

-3  

F igure  4. Smal l  a = 0.03, smal l  a = 0.1, m s d =  4.04 ("bes t"  2.24). 
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F igure  5. Large a ---- 3, smal l  ~r = 0.1, m s d =  4.00 ("bes t"  2.24). 
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-3 

F igure  6. Large  a = 3, large a = 10, m s d =  4.96 ("bes t"  2.24). 
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Figure 7. Small a = 0.03, large a = 10, msd= 5.36 ("best" 2.24). 
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Figure 8. Six independent realizations of (x l , . . . ,  xn) with n = 10, 000. 
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Figure 9. Six independent realizations of <xl, . . . ,  Xn) with n = 1,000,000. 

3 .5 .  A n  I m p r o v e m e n t  

A n  improvement  suggests itself: since (xn),  for some a and  a,  wanders  over the domain,  an 

improvemen t  might  be ob ta ined  by keeping track of x~ wi th  the smallest  funct ion value. Formally, 

this is realized by observing also a sequence (zn) defined by 

z0 = x0; zi ---- xi, if f ( x i )  <_ f ( z i - 1 ) ,  zi = zi-1,  otherwise. 

We have not  seen this r ecommenda t ion  in the l i terature,  perhaps because of s t rong belief by 

au thors  t ha t  an  improvement  to s imula ted  annea l ing  is not  necessary, msd for zn are given in 

Table  9. The  half-widths are, as before, small  in comparison with msd. 

We see a drast ic  improvement  over Xn for some, bu t  not  all a and a. In  par t icular ,  the values 

a --- 0.3, cr -- 1 are no longer the "best," the values a = a = 3 are "best" now. Note tha t  zn is not  

necessari ly closer to 1 t h a n  xn. Genera l iza t ion  of this improvement  to the case  when funct ion  

values and  derivatives are observed with error would be not  t ha t  simple. 
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Table  9. msd for zn for n = 10,000, m e t h o d  K, doma in  [ -3 ,  3]. 
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a 

a 0.1 0.3 1 3 10 

0.1 4 4 4 4 0.42 

0.3 3.97 4 4 3.92 0.57 

1 8 x 10 - 4  0.57 3 2.74 0.25 

3 2 X 10 -7 1 X 10 -7  7×  I0 - s  15 X i0 - s ]  6 X 10-7 
p 

i0 3 x 10 -7 3 x 10 -7  3 x 10 -7  3 x 10 -7 4 x 10 -7  

30 7 x 10 - 7  7 x 10 - 7  7 x 10 - 7  7 x 10 -7  7 x 10 - 7  

4.  T H E  M U L T I D I M E N S I O N A L  C A S E  

4.1. T h e  F u n c t i o n  

We shall consider the function F,  defined on [ -3 ,  3] k by 

k 

F ( x )  = 

i = 1  

This is a very simple function and suitable to show unsatisfactory behavior of a method and much 
less suitable to show a good behavior. We shall apply the various methods to F without  using 

the fact that ,  for the minimization of F,  it is enough to minimize f restricted to [ -3 ,  3]. Table 10 
shows the centers msd and half-widths of the 0.99-interval estimates for xn, with the "best" 
a = 0.3, ~r = 1 and zn with the "best" a = 3, cr -- 3; "best" as found in the one-dimensional case. 

The  expected squared deviation ek for (xn> in our k-dimensional problem is, of course, kel 
and the opt imal  a and a do not depend on the dimension. This is not true for (z~); we use the 
"best" a and a we found in the one-dimensional case (cf. Table 9). With  increasing dimension k, 
the improved process (zn) loses the advantage over (xn). 

Table  10. msd  and ha l f -wid ths  for X n  and z n ,  n = 10,000, and  several  d imens ions  k. 

x n  z n  ra t io  of the  

k msd hw msd hw two msd 

1 2.23 0.06 

2 4.45 0.11 

3 6.68 0.17 

4 8.90 0.22 

5 11.13 0.28 

6 13.36 0.33 

7 15.58 0.39 

8 17.81 0.44 

9 20.03 0.50 

10 22.26 0.56 

5 × 10 -8  6 X 10 - 9  

2.9 x 10 - 4  1.4 × 10 -5  

0.020 0.009 

0.324 0.038 

1.428 0.085 

2.970 0.092 

4.727 0.100 

6.503 0.131 

8.609 0.153 

10.546 0.184 

4.49 × 107 

3.18 × 105 

330.8 

27.5 

7.79 

4.50 

3.30 

2.74 

2.33 

2.11 

4.2.  D e t e r m i n i s t i c  and  R a n d o m  

In the deterministic search, [ -3 ,  3] 

Search 

was divided into m intervals such that  

m k <_ 9,500, 

and the Cartesian products of these were used to cover [ -3 ,  3] k. The function was evaluated 
at the center point of each subinterval. We have chosen 9,500 to have an option to add, after 
the deterministic search, a continuing search by a gradient method. For many  k, the number  n 
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Table  11. 

k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

V. FABIAN 

Values of rn and  n = mk .  

n 

9, 500 9, 500 

97 9, 409 

21 9,261 

9 6,561 

6 7, 776 

4 4, 096 

3 2, 187 

3 6,561 

2 512 

2 1,024 

of function evaluations is considerably smaller than 9,500 (we put  the gradient method at a 
disadvantage, because we consider the bound 9,500 irrespective of the set of integers of form 
?7~k). 

The deterministic search was completed by a gradient method,  with the gradient multiplied 
by 0.2, s tar t ing from the deterministic search est imate and using at most  17 additional steps. 

We also used random search: the est imate is equal to the point with the smallest function value 
among 10,000 points randomly selected from the domain. The random search performed worse 
than  the deterministic search for our function F (see Section 4.3 for the overall comparison).  

There  is a difficulty with the deterministic search in tha t  the covering of a k-dimensional cube 
by dividing the edges into m subintervals leads to a very large number m k of function evaluations 
for all nontrivial m > 2 and even moderately  large k. This is aggravated by the difficulty of 
covering uniformly, at least approximately, the cube by n points with n not of the form m k .  

The first difficulty may, however, only reflect the difficulty of the problem itself, related to the 
entropy of the unit cube in the k-dimensional space: to cover the unit cube in R k by n cubes 
of diameter  u, we need at least n > u-k; if u -1 is an integer; it is enough to have n -- u -k.  If  
a global proper ty  of a function can be answered only by evaluating the function at a point in 
each of those n cubes, then we need n evaluations. (Of course, we may get a correct answer, 
sometimes, by merely guessing.) 

Some methods,  proposed as improvements over the discrete search seem not to be improve- 
ments, but only have their deficiencies bet ter  hidden, and their properties less well understood. 

Is the worse performance of the random search in Table 12 an exception? Consider a positive 
integer k, a function Hk defined on [0, 1] k, and a subinterval I of [0, 1] of length 0.1 such tha t  on I k, 
Hk is negative and on the complement it is nonnegative. Assume also that  Hk, restricted to I k, 
has no other s ta t ionary points except the point of global minimum. In both the deterministic 
and the random search, it is desirable to select at least one point in I k. For the deterministic 
method,  tha t  would be guaranteed if each edge is divided into 10 subintervals, resulting in n = 10 k 

function evaluations. Next consider the random search. The probabili ty tha t  a point, selected at 
random from [0, 1] k, falls outside I k, is 1 - (0.1) k and the probabili ty tha t  at least one among n 
such independently selected points falls into I k is 1 - [1 - (0.1)k] n. To have the probabil i ty at 
least 1 - ~, tha t  a point will be selected in I k, we need [1 - (0.1)k] n < e which is approximately 
(with a very good accuracy) equivalent to n > --(logc)(10k). Thus, n is required to be several 
times larger than in the deterministic case, and the desired event has only a large probabil i ty to 
occur whereas in the deterministic search it is a certainty. 

Similarly, procedures have been proposed many  times tha t  s tar t  from a few randomly chosen 
points in the domain and follow with a search for a local extreme, or a simulated annealing 
method.  We have never seen proofs of useful properties of such methods. 
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Table 12. Comparison of msd for several methods and dimensions. 

random deterministic deterministic 
k x z search search and gr. 

1 2.23 5.0 × 10 - s  1.79 × 10 -7 1.11 × 10 - s  10 -12 
2 4.45 0.00029 0.00114 0.00021 2 × 10 -12 
3 6.68 0.0202 0.027 0.061 3 x 10 -12 
4 8.90 0.324 1.088 0.040 4 x 10 -12 
5 11.13 1.428 3.289 1.250 5 X 10 - 1 2  

6 13.36 2.970 5.892 0.375 6 x i0 -12 
7 15.58 4.727 8.649 7.000 7 X 10 -12 
8 17.81 6.503 12.378 8.000 8 x 10 -12 
9 20.03 8.608 19.648 2.250 9 x 10 -12 

10 2 2 . 2 6  10.546 29.155 2.500 10 -11 
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4 .3 .  C o m p a r i s o n s  

For  k = 1 . . . .  ,10, Table  12 compares  the  pe r fo rmance  of the  s imula ted  annea l ing  m e t h o d  x, 

i ts  i m p r o v e m e n t  z, the  r a n d o m  search,  and  the  de te rmin i s t i c  search.  Inc luded  are  also resul t s  

for the  de t e rmin i s t i c  search,  using a t  mos t  9,500 funct ion evaluat ions ,  and  the  con t inua t ion  by  a 

smal l  s t ep  g rad i en t  me thod .  

T h e  msd  for x and  z are copied here from Table  10. The  resul ts  for the  r a n d o m  search have been  

o b t a i n e d  in 5,000 i n d e p e n d e n t  replicas.  T h e  ha l f -wid ths  of 0.99 interval  e s t ima te s  of the  expec t ed  

squared  dev ia t ions  are  all less t h a n  10% of  the  co r respond ing  values of msd.  The  p rope r t i e s  of 

the  de t e rmin i s t i c  search are also in our  case easy  to  de t e rmine  from the  one -d imens iona l  case 

and  the  value  of  m (cf. Tab le  11). The  g rad ien t  m e t h o d  used 0.2 as t he  cons t an t  mu l t i p ly ing  the  

g rad i en t  and  was i n s t ruc t ed  to  s top  when the  dev ia t ion  from 1 was at  mos t  10 -6 .  T h e  n u m b e r  of 

these  add i t i ona l  s teps  depends  on k, because  of the  ini t ia l  po in t  of the  g rad ien t  me thod ,  and  was 

at  mos t  17, in all cases. T h e  resul ts  show t h a t  the  s imula t ed  annea l ing  sequence x has  the  wors t  

behav io r  of all the  me thods ,  except  for k = 10, when it is s l ight ly  b e t t e r  t h a n  the  r a n d o m  search.  

R a n d o m  search is second worst .  The  improved  s imula ted  annea l ing  z and the  de t e rmin i s t i c  search  

t r a d e  ranks  depend ing  on the  d imens ion  k wi th  the  de te rmin i s t i c  search b e t t e r  for mos t  k. 

However ,  t ake  the  following into cons idera t ion .  

(i) T h e  improved  s imula t ed  annea l ing  m e t h o d  is favored here by  p r e l im ina ry  c o m p u t a t i o n  

to  help  select  the  "best"  p a r a m e t e r s  a and  or; choosing these  different ly might  influence 

ser ious ly  the  pe r fo rmance  (see Table  9). Try ing  to  choose these  p a r a m e t e r s  well in an 

ac tua l  app l i ca t ion  will subs t an t i a l l y  increase the  number  of funct ion evaluat ions .  We do 

not  know of any theore t i ca l  resul ts  showing the  behavior  of xn or zn for a finite n. In  

contrast, 

(ii) the deterministic search does not depend on parameters (depends on the function consid- 

ered and on the number of evaluations). Its behavior is well known for many large classes 

of functions, where the behavior for the worst function in the class can be found. An 

example  of such a class is, of course,  the  class of all Lipschi tz  (C)  cont inuous  funct ions  on 

a b o u n d e d  subse t  of R k, w i th  a known cons t an t  C. T h a t  does not  mean  the  m e t h o d  can 

be app l i ed  on ly  when  C is known; bu t  in t h a t  case, the  b o u n d  for the  er ror  de pe nds  on C. 

For  s m o o t h e r  funct ions,  s imi lar  b u t  more  efficient m e t h o d s  are known. 

T h e  n u m b e r  of observa t ions ,  10,000, generous ly  rich for k = 1, seems ra the r  smal l  for k > 6 

and  d imens ions  larger  t h a n  6 have been  inc luded ma in ly  to  compare  x and z. For  th is  reason,  

we o b t a i n e d  some resul t s  concerning  the  K me t hod ,  d o m a i n  [ - 3 ,  3] and  n = 107. Res t r i c t i ng  the  

n u m b e r  of  repl icas  th is  t ime  to 500 only, we o b t a i n e d  (i) an e s t ima te  0.722 of P{Ixn - 11 <_ 0.2} 

for k = 1 (a 0 .99-interval  e s t ima te  for th is  p robab i l i t y  is (0.667, 0.772)). For  k = 10, we o b t a i n  

an  e s t i m a t e  0.7221° = 0.0385 of P{x,~ E [0.8, 1.211°}. For  t he  same k and  n,  we o b t a i n e d  these  



94 V. FABIAN 

additional results: a 0.99 interval estimate (9.03 - 2.26, 9.03 + 2.26) of the expected squared 
deviation of x,~ from 1. With the deterministic search, with m -- 5 and 9,765,625 evaluations, we 
obtained the point (1.2, 1 . 2 , . . . ,  1.2). Seven additional steps by the gradient method give a point 
with squared deviation from 1 less than 10 -7. 

All the methods considered would perform differently for functions different from those con- 
sidered here. For example, the performance of the deterministic search followed by the gradient 
method would not find, with the accuracy given in Table 12, the point of the global minimum, 
if the deterministic method leads close to a different point of local minimum, for example, in 
the case last discussed, with m = 5, if f had a smaller value at - 1 . 2  than at 1.2. More difficult 
functions than F can be easily constructed. For example, for k -- 2, a difficult function H is 
such that v minimizing H(u, v) strongly depends on u, so that the method cannot really find the 
best v before it finds the best u and vice versa. 

The small step gradient method is probably better than the steepest descent method (see [17]). 
In case of functions with nondiagonal matrix of the second-order derivatives, second-order gra- 
dient methods outperform the simple gradient method; a very simple version of such a method 
has been described by Fletcher and Powell [18] and studied often since (see, e.g., [19]). 
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