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The distinguishing feature between iron homeostasis in single versus multicellular organisms is the need for
multicellular organisms to transfer iron from sites of absorption to sites of utilization and storage. Ferroportin
is the only known iron exporter and ferroportin plays an essential role in the export of iron from cells to
blood. Ferroportin can be regulated at many different levels including transcriptionally, post-transcriptionally,
throughmRNA stability and post-translationally, through protein turnover. Additionally, ferroportinmay be reg-
ulated in both cell-dependent and cell-autonomous fashions. Regulation of ferroportin is critical for iron homeo-
stasis as alterations in ferroportin may result in either iron deficiency or iron overload. This article is part of a
Special Issue entitled: Cell Biology of Metals.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Iron is essential and while one of the most abundant of the tran-
sition metals, it is generally biologically unavailable. Organisms
must go to great efforts, in terms of energy expenditure and expres-
sion of specific proteins to generate iron in a bioavailable form. Iron
is used for a variety of oxidation/reduction reactions and when com-
plexed with protoporphyrins forms heme, the major oxygen-
binding molecule. Iron can be found bound to proteins as iron,
oxo–diiron (Fe–O–Fe), oxo–iron–zinc (Fe–O–Zn), iron–sulfur clus-
ters (Fe–S) and heme. The ability of iron to participate in oxida-
tion/reduction reactions is the feature that makes iron so useful in
enzymatic reactions. That same feature of facile electron transfer
makes iron potentially dangerous, as iron can donate electrons to
O2 and H2O2 generating superoxide anion and the hydroxyl radical
(for review see [1]). These molecules can oxidize proteins, lipids
and nucleic acids rendering them defective. Iron in high concentra-
tions can replace other transition metals in their binding to proteins
resulting in defective protein function and inactive enzymatic activ-
ity. This is most notably seen when iron replaces manganese as the
metal cofactor for superoxide dismutase 2 [2]. Thus, while iron is es-
sential, its concentration in biological fluids must be tightly
controlled.

In eukaryotes, iron acquisition can be regulated, but once acquired
there is no regulated mechanism of iron loss. In contrast, excess
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copper can be exported through bile [3]. The rate of iron loss is essen-
tially invariable and is due to epithelial cell loss, menstruation and
child-bearing. In the absence of an export mechanism, malregulation
of iron import can lead to iron overload, tissue damage and organ
dysfunction. While the penetrance of genetic iron overload disorders
is subject to debate [4,5], there is no question that secondary iron
overload or transfusion-related iron overload carries a significant
burden of morbidity and mortality.

There is no regulated mechanism of iron loss from an organism,
however, multicellular organisms face the issue of transferring iron
from one tissue to another [6]. This requires the active export of
iron from cells to biological fluids, most notably plasma. Four tissues
are critically important for cellular iron homeostasis. The placenta
and intestine are responsible for net iron transfer to the organism
while macrophages and parenchymal tissue like hepatocytes, repre-
sent sites of iron recycling. The majority of iron in vertebrates is
found as heme in circulating erythrocytes. Erythrocytes have a de-
fined life span and in humans the average erythrocyte lives for
120 days. Aged or damaged erythrocytes are cleared from the circula-
tion through phagocytosis by macrophages. Once ingested by macro-
phages, erythrocytes are degraded in lysosomes, heme is released,
iron extracted from heme by the ER-localized enzyme heme oxyge-
nase and the released iron can be stored or exported. Most of the
iron that enters plasma daily comes from macrophage-recycled iron.
Intestinal iron uptake, under normal conditions, accounts for only a
fraction of total plasma iron. Ferroportin (Fpn) emerges as a critical
transporter in terms of iron acquisition and transfer of iron between
cell types, as it is the only known transporter that exports elemental
iron from cells. Fpn is essential to distribute iron between tissues
and for iron absorption into the organism.
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2. Function of Fpn in mammalian health

To date, Fpn is the only known mammalian iron exporter and is
essential for transport of iron from one cell type to another. Three dif-
ferent groups reported the identification of Fpn nearly simultaneous-
ly [7–9]. One of the groups that discovered Fpn did so through
analysis of a zebrafish mutant [9]. The mutant resulted from a large-
scale ENU mutagenesis screen and showed a severe defect in hemo-
globinization in early zebrafish embryos. The mutant gene was
shown to be Fpn containing a premature stop codon. The Fpn protein
was not expressed in erythrocytes but rather in the yolk syncytial
layer, suggesting that the defective protein prevented the movement
of iron from iron stores to the circulation. Studies with older mutant
embryos showed increased iron content in intestinal cells and macro-
phages, suggesting a defect in iron transport [10]. These results were
confirmed in mice with a targeted deletion in the Fpn1 gene [11].
These findings show that Fpn is essential for early embryonic devel-
opment. The loss of Fpn in the extraembryonic visceral endoderm
resulted in embryonic death. In contrast, expression of Fpn hypo-
morphs, notably Fpnffe/−, where ffe is the name of a mouse with a
missense mutation of Fpn (H32R), resulted in severe neural tube de-
fects [12]. The severity of the defect was a function of the expression
of Fpn and could be phenocopied by iron limitation using iron chela-
tors [13]. These results underscore the importance of Fpn and iron in
vertebrate development.

Deletion of Fpn1 in utero resulted in viable mice, however, the
mice showed stunted growth and anemia shortly after birth. These
mice accumulated iron in enterocytes, macrophages, and hepatocytes
[11]. The data are consistent with an essential role for Fpn in cellular
iron export, as the lack of Fpn resulted in iron accumulation in iron-
exporting tissues. Elemental iron, iron not bound to protein, is taken
up as Fe2+ by the H+/M2+ (divalent transition metals) symporter
DMT1 present on the luminal surface of the enterocyte (for review
see [14]). DMT1 is not specific for iron and will transport other tran-
sition metals. The importance of DMT1 in iron acquisition is shown by
the severe defect in intestinal iron absorption shown by mice with
mutations in DMT1 [15]. Once iron is taken up by DMT1 it is found
in the cytosol of enterocytes. To enter the blood and have access to
the rest of the tissues of the body, iron needs to cross the basolateral
membrane. Transport across the basolateral membrane is mediated
by Fpn. The enterocyte has a short life span and iron accumulated
within the enterocyte will be lost to the body when the cells are
sloughed off. Thus, iron acquisition is dependent on transfer of iron
across both the apical and basal surfaces. As will be described
below, Fpn-mediated iron transport is highly regulated and this regu-
lation provides the coordination between iron acquisition, utilization
and storage.

Mice with a targeted deletion of Fpn1 in macrophages show a rel-
atively mild anemia [16]. Most of the iron entering blood comes from
macrophages recycling iron from senescent red blood cells, so it was
unexpected that the anemia was mild. The Fpnffe/− mouse also
shows a mild anemia [12]. One explanation is that macrophages can
export heme via the Feline Leukemia Virus C Receptor (FLVCR) trans-
porter [17], which might compensate for the loss of Fpn.

The importance of Fpn has been underscored by studies of
humans with iron overload diseases and studies of genetic or ac-
quired iron-related anemias. In both instances there are alterations
in the level of the peptide hormone hepcidin. Studies in mice, dis-
cussed below, first showed that hepcidin is a negative regulator of
iron acquisition and acts by altering Fpn levels. Most forms of
human hereditary hemochromatosis result from a deficiency in hep-
cidin expression and are inherited as recessive disorders (for review
see [18]). Deficiencies in hepcidin result in increased iron acquisition.
In contrast, increased expression of hepcidin results in iron-limited
anemias. In 1999 Pietrangelo and colleagues identified patients with
iron overload disease but the patients had no defects in the HFE
gene, which is responsible for most instances of hepcidin-deficiency
related iron overload disease [19]. They demonstrated that this iron
overload disorder was dominantly inherited in contrast to disorders
due to hepcidin deficiency. They reported that many patients with
this disorder showed a unique phenotype of primarily Kupffer cell
iron loading and relatively low to normal transferrin saturation (re-
ferred to as “classic” Fpn disease). Other patients showed a phenotype
indistinguishable from classic hereditary hemochromatosis, which
results from mutations in genes that lead to hepcidin deficiency. It
was later shown that both phenotypes resulted from mutations in
Fpn [20]. Mechanisms that explain both the inheritance pattern and
phenotypes are described below.

3. Structure of ferroportin

Ferroportin has 9–12 transmembrane domains (multitopic). The
topology of Fpn has not been defined with precision and the number
of transmembrane domains is still undefined. A model proposed by
Liu et al. [21] suggesting 12 transmembrane domains has been most
often used as a working model for Fpn structure [22]. Studies indicate
that the amino terminus of Fpn is cytosolic [21–24]. The location of
the carboxyl-terminal, however, is unclear. Studies using epitope-
tagged proteins have suggested that the carboxyl-terminal is cytosol-
ic [21,25] but other studies, including a recent study using monoclo-
nal antibodies, have suggested that the carboxyl terminal is
extracellular [26]. These authors suggested that the presence of the
epitope might affect the location of the carboxyl terminal. While
this is possible, epitope-tagged Fpn is fully functional with respect
to transport activity and regulation.

A second controversial issue regarding Fpn structure is whether
Fpn is a monomer or dimer. Many reports using similar approaches
including chromatography, cross-linking and physical techniques
such as birefringence, have led to contrasting results, with some stud-
ies showing Fpn as a monomer [20–22] and others showing Fpn as a
dimer [23,25,27]. Support, for the dimer model comes from genetic
data. Human diseases due to mutations in Fpn show dominant inher-
itance. There are a number of possible mechanisms that explain the
dominant inheritance. The two most probable possibilities are hap-
loid insufficiency, in which the required level of a gene product neces-
sitates production from both parental alleles. In the absence of one
allele, the level of gene product is not sufficient for function. A second
possible explanation is that Fpn is a multimer. A mutant Fpn can par-
ticipate in multimer formation and affect the activity of the complex,
thus becoming dominant negative. In this model, a cell carrying a mu-
tant allele would have three different Fpn multimers, a wild type
homodimer, a mutant homodimer and a wild type-mutant heterodi-
mer. Only the wild type homodimer would have activity, giving the
cell 25% of normal activity. There is a critical distinction between
the twomodels: a null allele or missense mutation would lead to hap-
loid insufficiency but would not affect wild type Fpn activity versus a
multimer acting in a dominant negative mechanism. Analyses of Fpn
mutations in human patients have shown that all mutations identi-
fied to date are missense mutations, no nonsense mutations have
been reported. Further, a targeted deletion of Fpn1 in mice, which is
embryonic lethal when homozygous, shows no phenotype when het-
erozygous [11]. Young Fpnnull/+ heterozygous mice were indistin-
guishable from controls in all measurements. At age 6 months,
Fpnnull/+ mice were not anemic, although reticulocytes and mature
erythrocytes had decreased cellular hemoglobin and decreased cell
volume indicative of iron-restricted erythropoiesis [11].

The lack of an obvious phenotype for Fpnnull/+ mice could be dis-
counted as mice being different from humans, however, a missense
mutation in mice flatiron (Fpn H32R) showed the phenotype of “clas-
sic” ferroportin disease and the expected dominant genetic transmis-
sion [12]. The mutant protein, when expressed in mammalian cells or
when analyzed in cultured flatiron mouse macrophages, showed
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impaired iron transport activity. These results provided support for
the model that Fpn is a dimer. Further support for a dominant nega-
tive dimer model came from studies in zebrafish. Expression of wild
type human or mouse Fpn cDNA in zebrafish had no discernible phe-
notype [28]. In contrast, expression of missense mutations that result
in defective Fpn activity led to anemia due to iron insufficiency. As
zebrafish express endogenous Fpn, the observation that mutant Fpn
can affect the function of wild type endogenous Fpn provides strong
support for the dominant negative model of genetic transmission
and Fpn multimerization.

Mutations that result in defective Fpn transport activity will lead
to the phenotype of “classic” Fpn disease, which is macrophage iron
loading and normal to low transferrin saturation. What is unclear is
the exact mechanism by which a specific Fpn mutation will lead to
decreased iron transport. Expression of mutant Fpn in some cultured
cell types results in defects in Fpn trafficking where the mutant pro-
tein never reaches the cell surface [21,23]. In other cell types, the mu-
tant Fpn was shown to accumulate at the cell surface but had
defective transport activity [22,24]. The exact reasons for the differ-
ences in observed behavior of Fpn mutants has yet to be resolved.
4. Metal transport activity of Fpn

The role of Fpn in iron transport has been readily shown by ex-
pressing Fpn in a variety of different cell types, including cultured
mammalian cells, Xenopus oocytes and zebrafish embryos. Fpn-
mediated iron transport activity, in mammalian cells, has been
assessed by measuring the levels of the iron storage protein ferritin.
Cells incubated with iron show increased cytosolic iron and concom-
itantly increased levels of ferritin [8,29]. When iron is removed, cellu-
lar ferritin is high and expression of Fpn, either endogenously or from
transfected plasmids, results in iron export and decreased ferritin,
which can be assayed by ELISA or Western blot. Fpn activity can
also be assayed by measurement of the egress of radioactive iron
from cells [30,31]. All of these measurements support the genetic
data, that Fpn is an iron transporter and may well be the only verte-
brate cellular iron exporter.

Little is known about the mechanism of Fpn-mediated iron trans-
port. It is inferred that the substrate for Fpn is Fe(II), based on the ob-
servation that iron transport requires an extracellular ferroxidase
activity. This ferroxidase is provided by the multicopper oxidases ce-
ruloplasmin (Cp) and/or hephaestin. The role of Cp in facilitating
entry of iron into blood was reported in the mid 1800's in which cop-
per salts were shown to be efficacious in treating anemia in young
women (see [32] for an engaging history of the relationship between
copper and iron). Starting in the mid 1950's, studies by Cartwright
[33] and later Frieden and co-workers [34,35] proved that copper-
deficient animals were also iron-deficient and that the copper-
containing protein Cp was required to release iron frommacrophages
and hepatocytes. Vulpe et al. identified a Cp homologue hephaestin as
the gene defective in sex-linked anemia in mice [36]. Hephaestin is a
membrane bound multicopper oxidase, which is highly expressed in
the intestine. In the absence of hephaestin, mice are anemic due to
defective iron export from the intestine.

Hephaestin, Cp, zyloklopen (a newly identified mammalian multi-
copper oxidase [37]) and the orthologous multicopper oxidase Fet3 in
fungi and algae have a similar mode of action. These molecules con-
tain four to six atoms of copper which store electrons as Fe(II) is ox-
idized to Fe(III). The stoichiometry of the reaction is

4Fe
2þ þ 4H

þ þ O2➔4Fe
3þ þ 2H2O

The multicopper oxidases oxidize one iron atom at a time storing
the extracted electron. When the fourth atom is oxidized the stored
electrons reduce molecular oxygen in one concerted reaction. The ox-
idation of ferrous to ferric iron can occur non-enzymatically. There
are, however, two reasons that the multicopper oxidases are impor-
tant for iron transport. First, the reaction carried out by the multicop-
per oxidases does not generate oxygen radicals in contrast to
spontaneous oxidation of iron. Second, at low oxygen tension sponta-
neous oxidation of iron is slow and multicopper oxidases, due to their
high affinity for oxygen, dramatically increase the rate of oxidation
[38]. The requirement for a ferroxidase has been shown genetically
and in a number of systems by demonstrating a requirement for a
multicopper oxidase in Fpn-mediated iron export. In several cell
types including macrophages [39] and neural derived cells [40], the
lack of a multicopper oxidase impairs iron transport. Some studies
have reported a physical interaction between Fpn and Cp [40] or
hephaestin [26]. The fact that a soluble form of the yeast Fet3 can re-
store iron egress in mice with a targeted gene deletion in Cp suggests
that if there is an interaction between Fpn and a multicopper oxidase,
it need not be stable [41].

To date it has been shown that all known Fe(II) transporters can
also transport other transition metals. Expression of Fpn can protect
cells from zinc [42] or manganese [43] toxicity and does so by lower-
ing the concentration of those metals in cells. As described below,
transcription of Fpn1 can be induced by zinc and other metals provid-
ing support for a physiological role for Fpn-mediated transport of
other transition metals.

Fpn can be found in eukaryotes other than vertebrates. Morrissey
et al. identified FPN in Arabidopsis based on positional cloning of a
mutant Arabidopsis gene that showed increased cobalt accumulation
in shoots [44]. The mutation was identified as a premature stop
codon in a putative FPN. Further analysis showed that Arabidopsis
has two FPN loci that encode proteins with different tissue and sub-
cellular locations and function. FPN1 is expressed in the plasmamem-
brane of the stele, which is the vascular system of plants. FPN2 is
expressed on the vacuolar membrane of the root and its levels change
in response to iron deficiency. Studies in mutant and transgenic
plants, as well as expression of Arabidopsis FPN1 in yeast, showed
that the two plant FPNs can differ in metal transport activity [44].
FPN2 was shown to transport cobalt whereas FPN1 showed a prefer-
ence for iron.

The nematode Caenorhabditis elegans has three Fpn genes. Fpn1.1
expressed in mammalian cells was capable of transporting iron and
zinc [45]. The substrate preferences of the other two Fpn are un-
known. There are three striking features about Fpn in non-
vertebrate species. First, vertebrates have only one Fpn gene; non-
vertebrates may express multiple genes. Second, non-vertebrate Fpn
may be localized on subcellular membranes, whereas, vertebrate
Fpn appears to function at the plasma membrane. Finally, inverte-
brates do not appear to express hepcidin, the major peptide hormonal
regulator of Fpn levels. These findings suggest that during evolution
Fpn might have had selective pressure resulting in a more restricted
subcellular distribution and metal selectivity.

5. Transcriptional regulation of Fpn expression

Ferroportin transcription has been shown to be regulated by iron
deficiency hypoxia, transition metals, heme and inflammatory cyto-
kines. The extensive regulation underscores the important role of
Fpn in iron homeostasis.

5.1. Regulation of Fpn in response to hypoxia

One of the major physiological cues for increased iron absorption
is hypoxia/anemia. Increased erythropoiesis leads to increased iron
absorption and elevated levels of Fpn mRNA. McKie et al.'s discovery
of Fpn was based on increased expression of Fpn mRNA in the duode-
num of the hypotransferrinemic mouse [4]. This mouse is severely
anemic and shows increased hypoxic response. Hypoxia leads to
wide changes in transcription including genes involved in iron
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metabolism. The basis for the hypoxic response is the stabilization of
members of the HIF family of transcription factors (for review see
[46]). Under normal conditions Hif1α and Hif2α are cytosolic pro-
teins that are rapidly degraded by the proteasome. The signal for deg-
radation is the hydroxylation of HIF proline residues. Proline
hydroxylation is mediated in an iron, oxoglutarate and oxygen-
dependent reaction by prolyl hydroxylases. In the absence of these re-
agents, Hif1α or Hif2α are not hydroxylated and not degraded but ac-
cumulate in the nucleus where they partner with aryl hydrocarbon
receptor nuclear translocator (Arnt) (also referred to as Hif1β) to
form an active transcription factor. Deletion of Arntwas shown to de-
crease iron-mediated induction of DMT1 and Fpn in the intestine [47].
Furthermore, an intestine-specific deletion of Hif2α reduced tran-
scription of Dmt1 and Fpn1 while deletion of Hif1α did not [48].
The Fpn promoter contains HIF-Responsive Elements (HRE) and an
Fpn reporter construct responded to low oxygen [49]. Mutation of
the HREs prevented that response. Finally, Chromatin immunoprecip-
itation (CHiP) studies performed with mouse duodenum showed that
Hif2α could bind to the Fpn promoter region. These results show that
Hif2α is a direct activator of Fpn transcription.

The importance of transcriptional regulation of Fpn1 in intestinal
iron homeostasis was shown using mice with a targeted deletion in
Hamp, the gene that encodes hepcidin [50]. In the absence of hepci-
din there is increased expression of intestinal iron transporters,
DMT1 and Fpn, as well as systemic iron overload. An intestinal spe-
cific deletion of Hif2α in Hamp−/− mice resulted in decreased levels
of DMT1 and Fpn1 mRNA, showing the importance of transcriptional
regulation of Fpn1 [51]. It was noted that deletion of Hif2α reduced
transcription of Fpn1 in mice placed on a low iron diet for a short pe-
riod of time (two weeks). In contrast, there was increased Fpn1 tran-
scription in Hif2α-deleted mice chronically maintained on a low iron
diet, indicating the importance of other transcription factors in regu-
lating Fpn1.

5.2. Regulation of Fpn transcription by heme and metals

Fpn transcription was shown to be induced by iron, heme and
other transition metals. Studies have shown that erythrophagocytosis
results in Fpn1 transcription in macrophages [52,53]. Subsequent
work has shown that both heme and iron can induce Fpn1 transcrip-
tion. Different results, however, were obtained using different cell
types. In some instances heme and iron were shown to act indepen-
dently on Fpn1 transcription. For example, Marro et al. showed that
in RAW264.7 mouse macrophages, Fpn1 transcription was induced
by heme or by iron-free protoporphyrin IX [53]. Addition of iron
salts had no effect on Fpn1 transcription. They further showed that
the heme induction of Fpn1 transcription was due to the release of
the heme-sensitive transcriptional inhibitor Bach1 and the accumula-
tion of the transcription factor Nuclear Factor Erythroid 2 (Nrf2). The
authors demonstrated the presence of binding sites for these tran-
scription factors in the promoter region of Fpn1. Mutation of those el-
ements in reporter constructs abrogated transcription. In contrast,
Knutson et al. showed that in the mouse macrophage-like cell line
J774 heme-induced Fpn transcription was due to the release of
heme iron [31,52,54]. For example, Fpn1 transcription could be re-
duced by the iron-chelator salicylaldehyde isonicotinoyl hydrazone
(SIH) and increased in response to iron salts, suggesting that iron
was the critical factor in regulating transcription. Delaby et al., inves-
tigating heme-dependent transcription of Fpn1 in cultured bone mar-
row macrophages, concluded that heme-induced Fpn1 transcription
required the release of iron from heme [55]. Inhibition of iron release
from heme prevented Fpn1 transcription and incubation of cells with
protoporphyrin was unable to induce Fpn1 transcription. Fpn1 mRNA
and Fpn1 reporter constructs, expressed in cultured cells or bonemar-
row macrophages, responded to iron salts suggesting transcriptional
activation rather thanmRNA stabilization [42]. It is clear that different
results are found in different cell types. In the case of iron-induction
of Fpn1 transcription, the relevant transcription factor has not been
identified. One possible explanation that might reconcile these results
is that Nrf2, which belongs to the basic leucine zipper (b-Zip) tran-
scription factor family, has a central role in protecting cells against
oxidative stress. Electrophilic agents can induce Nrf2-dependent
Fpn1 transcription in an iron-independent manner [56]. It might be
possible that iron salts can also induce Nrf2-dependent transcription
through iron's effect on oxidant stress.

Fpn can also be induced by activation of the transcription factor
MTF-1 [42]. MTF-1 targets genes relevant to heavy metal loading
such as metallothionein-1 (MT-1) or the zinc efflux transporter
Znt1. MTF-1 can also mediate the induction of MT genes in response
to stress situations such as oxidative stress and hypoxia. Troadec et
al. determined that MTF-1 is important in the zinc-mediated induc-
tion of Fpn1 mRNA [42]. MTF-1 binds to the Fpn1 promoter in the
presence of zinc and mutagenesis of the two Metal Responsive Ele-
ments (MREs) in the Fpn1 promoter abolishes the MTF-1 zinc re-
sponsiveness. They further demonstrated that cadmium induced
Fpn1 transcription in an MRE-dependent manner. Cadmium can di-
rectly displace zinc from metallothionein or damage metallothionein
by generating oxidative radicals that would act on metallothionein
and release zinc. The released zinc can then bind to MTF-1 and
induce transcription.

5.3. Inhibition of Fpn transcription by inflammation

Hepcidin expression is induced during inflammation, commonly
by bacterial products acting through Toll-like receptors. Inflammation
can also affect transcription of Fpn. Injection of bacterial-produced li-
popolysaccharide (LPS) into mice or rats resulted in decreased Fpn1
transcription in spleen and intestine [50]. The effect on Fpn1 tran-
scription was independent of specific cytokines, as mice with gene
deletions in IL-6, Tnf-α and IL-1 all respond to LPS with hypoferremia
and reduced levels of Fpn1 mRNA [57]. Interestingly, the effect of LPS
attenuation on intestinal Fpn1 mRNA levels was decreased by the ad-
dition of an iron chelator [58]. Most recently, Harada et al. showed
that activators of the redox-sensitive transcription factor Nrf2
reduced the LPS-induced suppression of Fpn1 mRNA in human
and mouse macrophages [56]. It is tempting to speculate that iron
chelators might function as Nrf2 activators, which would unify
these findings.

6. Post-transcriptional regulation of Fpn

Abboud and Haile discovered Fpn through the identification of an
mRNA that had an iron-responsive element (IRE) in the 5′-region of
the mRNA [8]. The FPN mRNA was identified by its ability to bind to
Iron Regulatory Protein 1 (IRP1). (For review see [59–61]). Subse-
quent studies showed that translation of Fpn1 or Fpn reporter con-
structs containing the IRE was inhibited by low iron and increased
by high iron. The importance of the 5′-IRE was underscored by the
discovery of a mouse that had a mutation that deleted the IRE. A
radiation-induced mutation in mice was identified that resulted in
a 58 bp microdeletion in the Fpn1 promoter region [62]. This dele-
tion altered the transcription start site and eliminated the 5′-IRE,
resulting in increased duodenal and hepatic Fpn1 protein levels dur-
ing early postnatal development. Mice carrying this mutation show a
complex phenotype including polycythemia (increased red blood
cell production) at birth followed by iron overload as adults and ane-
mia as the mice age [62–64]. Increased red cell expansion (polycy-
themia) was related to defective maternal-to-fetal iron transport.
Fetal iron deficiency was attributed to decreased placental Fpn pro-
tein and mRNA. It is unclear why Fpn1 mRNA levels were decreased.
Iron overload in adult mice was attributed to increased Fpn protein
expression due to the absence of the 5′-IRE. Age-related anemia
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was ascribed to a loss of splenic stromal cells. The reason for this loss
was not determined.

Analysis of mRNA transcripts in mouse duodenum and erythro-
blasts [55] and human erythroblasts [56] identified Fpn1 transcripts
which lacked the 5′-IRE, termed Fpn1B. Translation of Fpn1B is insen-
sitive to iron. The reading frame of the protein, however, is identical
to that of the IRE-containing transcript and the protein can transport
iron and respond to hepcidin. Fpn1B accounted for 25% of total Fpn1
mRNA in duodenum but constituted a much higher percent of Fpn1
transcripts in erythroblasts [65]. It was suggested that the Fpn1B in
the intestine might still export iron even under conditions of iron de-
ficiency. In the developing erythroblast, iron-insensitive translation of
Fpn1 might make erythropoiesis sensitive to hepcidin levels and thus
sensitive to systemic iron deficiency [66].

7. Post-translational regulation of Fpn

The expression of Fpn can also be regulated post-translationally.
Once Fpn is expressed, it is targeted to the cell surface. The concentra-
tion of cell surface Fpn determines the amount of iron exported. The
level of cell surface Fpn is highly regulated by the rate of synthesis,
the rate of internalization and the rate of degradation. Below we de-
scribe how the hormone hepcidin regulates Fpn levels and how Fpn
levels can also be regulated independent of hepcidin.

7.1. Hepcidin-mediated Fpn internalization

The roles of hepcidin and Fpn were cemented by the striking ob-
servation that mice with a targeted deletion in Hamp were massively
iron-loaded [67]. In contrast, overexpression of hepcidin in mice led
to severe iron deficiency [68]. A study in humans showed that overex-
pression of hepcidin, as seen in a severe example of the Anemia of
Chronic Inflammation, resulted in hypoferremia [69]. In contrast,
the recessive iron overload diseases were due to decreased levels of
hepcidin [70]. These studies showed that hepcidin affected entry of
iron into blood. How this occurred was elucidated by Nemeth et al.,
who demonstrated that hepcidin bound to and induced the internal-
ization of Fpn expressed in cultured cells [29]. The observation that
Fpn levels were affected by hepcidin explained both recessive iron
overload disorders resulting from decreased hepcidin and iron defi-
ciency disorders resulting from increased levels of hepcidin. Hepcidin
levels are increased by inflammation and increased iron stores and
are decreased by hypoxia and by increased erythropoiesis (for review
on regulation of hepcidin transcription see [18,71].

The finding that hepcidin resulted in a loss of Fpn was confirmed
in vivo by examining Fpn levels in mouse tissues. Increased levels of
Fpn were seen in intestine, spleen and liver in Hamp−/− mice com-
pared to control mice. Hepcidin also induces the loss of Fpn in cul-
tured hepatocytes [72] and macrophages [12]. The relationship
between hepcidin and intestinal Fpn, however, remains cloudy.
Chronically high levels of hepcidin lead to loss of intestinal Fpn, but
studies have shown that acute changes in hepcidin have a modest ef-
fect on intestinal Fpn levels. At the same time, however, acute
changes in hepcidin have a significant effect on Fpn levels in splenic
macrophages [73,74]. Analogous results were reported in intestine-
like cell lines; acute hepcidin exposure had little effect on Fpn levels
but did affect iron transport activity [75]. The alteration in iron trans-
port activity was suggested to result from changes in DMT1 levels.
How hepcidin affects DMT1 levels is unclear. To date the only
known hepcidin receptor is Fpn. There are data that show that hepci-
din binding to Fpn has effects beyond inducing the internalization of
Fpn, including marked transcriptional changes [76]. Such transcrip-
tional effects may extend to DMT1. One approach to test this possibil-
ity is to measure the effect of hepcidin on DMT1 levels in mice with a
targeted deletion of Fpn in intestine.
The mechanism of hepcidin-mediated Fpn internalization in mac-
rophages and many other cultured cell types has been described. The
binding site for hepcidin has been identified as an extracellular loop
in Fpn in which the residue Cysteine 326 is absolutely required for
hepcidin binding [77,78]. Mutation of C326 leads to hepcidin-
resistant hemochromatosis in patients. As described above, evidence
suggests that Fpn is a dimer and that each monomer of Fpn must
bind hepcidin for hepcidin-mediated internalization. Hepcidin bind-
ing to Fpn was shown to lead to the binding of the cytosolic Janus ki-
nase (Jak2), a non-receptor tyrosine kinase and member of the JAK-
STAT signaling family [79]. Bound Jak2 is autophosphorylated and
then phosphorylates Fpn on either of two adjacent tyrosines [80].
Mutation of these two tyrosines to phenylalanines resulted in a loss
of hepcidin-mediated Fpn internalization [80,81]. Phosphorylated
Fpn is internalized by clathrin-coated pits. Phosphorylation is a tran-
sient event and once internalized, the phosphate(s) on Fpn is re-
moved by an unidentified phosphatase. Hepcidin-resistant Fpn
mutants that are capable of binding hepcidin show defects in Jak2-
mediated Fpn phosphorylation. Jak2 can bind to the Fpn mutants
but it is not activated and does not phosphorylate Fpn [79]. Coopera-
tivity between the two Fpn monomers is required for Jak2 binding
and phosphorylation. A dimer composed of a wild type Fpn monomer
and a hepcidin-resistant monomer will bind Jak2 but will not be
phosphorylated or internalized. A different example of cooperativity
is shown by the human Fpn mutant D157G; this mutation results in
hepcidin-independent activation of Jak2 and constitutive internaliza-
tion of Fpn [82].

One of the consequences of Jak2 activation is a transcriptional re-
sponse resulting from Jak2 phosphorylation.[83]. In isolated macro-
phages as well as mice, hepcidin addition and binding to Fpn leads
to a transcriptional response that results in the suppression of inflam-
mation. This suppression is mediated in part through induction of
Suppressor of cytokine 3 (Socs3) [76]. These studies are supported
by work in mice with a targeted deletion in macrophage Fpn. The
hepcidin-Fpn1 macrophage signaling is abrogated, which mimics
the low hepcidin situation and leads to enhanced TLR4 signaling
and an increased proinflammatory response [74]. A particularly ele-
gant study showed that mice with mutations in TransMembrane PRo-
teaSe Serine 6 (TMPRSS6) show a blunted response to an
inflammatory stimulus [84]. Mutations in TMPRSS6 result in high
levels of hepcidin and severe iron-limited anemia. This result distin-
guishes between the effects of iron and hepcidin on transcription
and shows that high levels of hepcidin canmodulate inflammation in-
dependent of iron.

Hepcidin-mediated internalized Fpn is degraded in the lysosome,
but to gain entry to the lysosome Fpn must enter the lumen of multi-
vesicular bodies (MVB). The MVB then fuses with lysosomes and Fpn
is then exposed to lysosomal hydrolases. Entry of membrane proteins
into the MVB requires their ubiquitination and recognition of protein
bound ubiquitin by a set of cytosolic proteins termed ESCRT proteins.
Reductions in many of the ESCRT proteins by RNAi leads to decreased
degradation of Fpn and the accumulation of Fpn in intracellular vesi-
cles [80,85]. Tsg101 (Vps23p) is a component of the ESCRT-I complex,
which is required for recognition of ubiquitinated cargos destined for
the MVB. Ubiquitination of internalized Fpn is a requirement for entry
into the MVB. Prevention of ubiquitination, as occurs in a mutant cell
with a temperature-sensitive E1 ligase, leads to hepcidin-mediated
accumulation of Fpn in large intracellular vesicles, similar to that
seen in Tsg101-silenced cells. The residue that is ubiquitinated on
hepcidin-mediated internalized Fpn was identified as lysine 253
[80]. This residue is on the same large intracellular loop that contains
the Jak2 phosphorylated tyrosines. The E-3 ubiquitin ligase Nedd4-2
was identified as being responsible for the ubiquitination of
hepcidin-internalized Fpn [45].

Kono et al. described an interesting interaction between hepcidin
and multicopper oxidases [81]. Increased expression of transfected
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Cp in cultured cells or addition of Cp to medium, antagonized
hepcidin-mediated Fpn internalization, as much higher doses of hep-
cidin were required to internalize Fpn in Cp expressing cells. Expres-
sion of mutant Cp, with diminished oxidase activity did not suppress
hepcidin-mediated internalization. The mechanism by which Cp in-
fluences hepcidin-mediated internalization remains unclear.
7.2. Hepcidin-independent internalization of Fpn

Hepcidin is the sole identified ligand that can induce Fpn internal-
ization. Studies, however, have shown that Fpn internalization can
occur in a hepcidin-independent manner. As described above, Cp
plays a role in cellular iron egress. Mice with a targeted deletion in
Cp show brain iron overload similar to that seen in humans with acer-
uloplasminemia. In the absence of Cp, iron is not exported from cells
[40]. Further studies have shown that Fpn is degraded in the absence
of Cp. In macrophages and neural cells, the loss of functional Cp, ei-
ther by RNAi silencing or copper deprivation [33] or expression of a
dominant-negative form of Cp [86], resulted in the loss of Fpn on
the cell surface. Inhibition of endocytosis revealed that Fpn was
being synthesized but was being rapidly internalized and degraded.
When endocytosis was inhibited, Fpn accumulated at the cell surface.
Fpn internalization, due to the absence of Cp, was independent of
hepcidin and Jak2 but was dependent on the ubiquitination of K273
and Nedd4-2 [45].

An important finding was that an Fpnmutant (N174I) incapable of
transporting iron was not internalized in the absence of Cp activity
[39]. Further, in the absence of Cp, wild type Fpn immunoprecipitated
from 59Fe-labeled cells had 59Fe bound to it. No 59Fe was found on
Fpn immunoprecipitated from 59Fe-labeled cells expressing Cp.
These findings led to the hypothesis that in the absence of Cp, iron
could not exit Fpn and iron bound to Fpn affected Fpn conformation.
It was further hypothesized that the altered Fpn conformation was
recognized by the E3-ligase resulting in Fpn being marked for inter-
nalization and degradation. Support for this hypothesis came from
two lines of evidence. First, in the absence of Cp, addition of other
multicopper oxidases could restore cell surface Fpn. Most important,
addition of iron chelators to cells silenced for Cp could also restore
cell surface Fpn. These data support the view that the loss of cell sur-
face Fpn was due to an inability to “offload” bound iron.

The second line of evidence supporting the view that defective
iron transport activity leads to Fpn degradation came from the finding
that expressed cell surface Fpn was degraded when cytosolic iron
pools were reduced [45]. The initial discovery of this phenomenon
came from the finding that there was a time-dependent disappear-
ance of Fpn-GFP in cells induced to express Fpn-GFP. Robust cell sur-
face expression of Fpn was lost in 24–36 h, although there were still
high levels of Fpn mRNA. Addition of iron preserved cell surface
Fpn, while addition of permeable iron chelators rapidly decreased
cell surface Fpn. Similar results were found using cell lines transfected
with Fpn-GFP constructs. Transport-defective Fpn was not affected by
iron chelators, and an Fpn mutant lacking K253 was also not affected
by the iron chelator. Finally, iron-limited internalization of Fpn was
dependent on the E3-ligase Nedd4-2. Further evidence that iron-
limited “marking” of Fpn reflected a loss of transport substrate was
demonstrated by the fact that high levels of zinc or manganese, sub-
strates for Fpn transport, led to Fpn being retained on the cell surface
even in the presence of iron-chelators.

Substrate-mediated degradation of membrane transporters has
been eloquently articulated by Pelham and colleagues working in
yeast [87]. They suggested that Ub-E3 ligases, such as Rsp5, are able
to detect misfolded membrane proteins because polar residues in
the lipid bilayer are abnormally exposed. One can imagine that sub-
strate transport requires molecular movement of the transporter.
The absence of substrate or the presence of bound substrate might
trap the transporter in the extremes of these conformational changes
increasing the possibility of degradation.

8. Conclusion

The importance of Fpn in iron homeostasis is supported by the fact
that it is regulated at many different levels. Many of aspects of that
regulation remain to be clarified. The transcriptional regulation of
Fpn in response to iron or to inflammation requires identification of
the critical transcriptional activators or repressors. What also requires
clarity is the reason for the cell type variation in transcriptional regu-
lation of Fpn and in the subcellular location of Fpn. Why do different
Fpn mutants show differences in subcellular localization in different
cell types? Even wild type Fpn shows cell type specific changes in
subcellular location. In some cases, particularly in intestinal cells or
macrophages, Fpn can be found in subcellular compartments [27].
Iron or other conditions can induce its translocation to the cell sur-
face. Strains of mice that contain a missense allele of Mon1a have
lower splenic iron levels than other strains of mice [88]. Macrophages
cultured from these mice have higher levels of cell surface Fpn in con-
trast to macrophages from other strains, which have more Fpn in
their Golgi than on the cell surface. The function of Mon1a is un-
known nor are the mechanisms that control the movement of Fpn
from Golgi to cell surface.

The finding that there are two mechanisms for removal of Fpn
from the cell surface leads to the question of how do these mech-
anisms interact? What are the biochemical requirements that dif-
ferentiate the two forms of Fpn regulation? Notably, is the
hepcidin-independent mechanism of greater importance in tissues
not bathed by the systemic circulation? While there is some
understanding of Fpn regulation at both transcriptional and post-
translational levels, there really is little known about the mecha-
nism of Fpn-mediated metal transport. It has been suggested that
multicopper oxidases provide a driving force for iron transport.
This hypothesis needs more rigorous testing. Expression of Fpn
can deplete iron from ferritin but the affinity of iron for Fpn is un-
known. Mutagenesis studies have suggested residues required for
iron transport [22] but beyond that finding there is no structural
information on how this multitopic protein transports iron. Finally,
both the specific residues in Fpn or the evolutionary pressures that
determine metal substrate selectivity in Fpn are unknown. These
and other issues will surely be addressed before the next special
issue of Cell Biology of Metals.
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