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Abstract 

A hierarchical scheme is presented for smoothly interpolating scattered data with radial basis functions of compact 
support. A nested sequence of subsets of the data is computed efficiently using successive Delaunay triangulations. The 
scale of the basis function at each level is determined from the current density of the points using information from the 
triangulation. The method is rotationally invariant and has good reproduction properties. Moreover the solution can be 
calculated and evaluated in acceptable computing time. 

Kqword..c: Hierarchical interpolatton: Scattered data: Compactly supported radial basis functions 

1. Introduction 

During the last two decades radial basis functions have become a well established tool for 
multivariate interpolation of both scattered and gridded data; see [2, 7, 8.21,25] for some surveys. 
The major part 

S(.Y) = C c’j4 ( IlS - X; i) (1) 
;= 1 

of the interpolant is a linear combination of translates of a prescribed continuous basis function 
@: Rd 4 R, Q(s) = c$( 11 .Y 11) which is radial with respect to the Euclidean norm 11.11. Prominent 
examples are Duchon’s thin plate splines c$(r) = r2 log(r) [4-61, Hardy’s multiquadrics 
q!)(r) = (2 + r2)l 2 [13] and inverse multiquadrics 4(r) = (c.’ + r2)- ‘j2. as well as the Gaussians 
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4(r) = e-O’. It h as b een shown that interpolation based on these particular functions which we 
refer to as classical radial basisfunctions provide good approximation behaviour [14, 15, 321 and 
this confirms earlier observations in [ 111. Nevertheless, although preconditioning methods are 
available [9], one has to face the fact that for large data sets interpolation using these classical 
functions requires an unacceptable amount of computation time. 

In this paper we bypass this problem by restricting 4 to have compact support and we consider 
interpolants purely of the form (1). Now the interpolation problem usually requires matching 
a given functionf: Rd -+ R! on a given set X = (xi- . . . , xN} c lRd of pairwise distinct centres with 
respect to conditions 

s(xk) =,f(xk), 1 < k 6 N. (2) 

The well-posedness of this problem depends on the nonsingularity of the interpolation matrix 

Following Micchelli [ 163 as a sufficient condition we require that 4 is positive definite on Rd. 

Definition 1. A continuous function $ : [0, r,) + IR is said to be positive definite on (Wd, 4 E PD,, iff 
the quadratic form cTAX,d, c is strictly positive for all possible choices of X = (x1, . . . , xN} and 
c =(c,, . . . , c.,v) E RN’,\, (O}. 

The positive definiteness of 4 guarantees that all possible interpolation problems (2) possess 
a unique solution and this then justifies referring to 4 as a basis function. 

Smooth compactly supported radial basis functions have only very recently been constructed. 
To the best of our knowledge the first instances of such functions were provided in [27] and the 
details of their construction can be found in Schaback’s survey paper [25]. Further developments 
were provided in [30, 313 who came up with a broad variety of piecewise polynomial compactly 
supported radial basis functions. Very recently, Wendland [29] constructed further instances of 
such functions. Moreover it was proven in [29] that for a specific space dimension d, these 
functions possess the lowest possible degree among all piecewise polynomial compactly supported 
radial functions which are positive definite on R” and of a given order of smoothness. We find this 
a useful property in practice and thus provide a selection of Wendland’s functions indicating the 
order of continuity and the relevant space dimension. Note that if 4 E PDd then 4 E PDk whenever 
k d d. 

q5 =(l -r)+ C’nPD,, 

c/l = (1 - r): (37. + 1) C’nPD,, 

q!~ = (1 - r): (8r2 + 5r + 1) C4nPD,, 

q!J = (1 -r,: C’nPD,, 

c#) = (1 - r,: (4r + 1) C*nPD,, 

4 = (1 - r)“+ (35~~ + 18~ + 3) C4nPDJ. 
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In order to adapt the interpolation to scattered data of different densities it is clearly necessary to 
be able to scale the support of 4. So from now on we assume that the radius of support of 4 is one 
and replace 4 by 

c/I~(.) := q5(.ix) for ;( > 0, 

in (1). The radius of support of C/I~ is then 1. Given a set X of scattered centres one ends up with 
a symmetric interpolation matrix AX.@, which is not only positive definite but also sparse provided 
that the scale r is adjusted to the density of X. One can then exploit this by applying an iterative 
method such as the conjugate gradient method [12] for the inversion of A,,,,. 

Unfortunately, the distribution of the centres can vary considerably, and this makes finding the 
right scale awkward. If 2 is too low. the approximation will be poor; the surface may exhibit small 
peaks and flat spots. On the other hand if x is too large, A,. Ox is no longer sparse enough to make 
its inversion efficient which is the main reason for choosing compactly supported functions. 

Therefore, in this paper we present a hierarchical method which starts with a decomposition of 
X into a nested sequence 

Xl cx2c .” = X.%f 1 = x5, = x (3) 

M subsets 

Xk = ;.Y:“’ . ..\-\;“!I c x, 1 < li < M. I, 

This allows the interpolation to be broken up into A4 steps. The decomposition strategy makes use 
of Delaunay triangulations [22], and is designed so that the density of the points in each Xk is as 
uniform as possible and increases smoothly as k increases. The density (or rather sparsity) of Xk can 
be measured in various ways, but we concentrate on two which between them nicely capture this 
concept. The first is the sepa1~1tior7 disrunce 

q(X,) := min 
I $!<lUC \< 

i Xi’) - Xii’/ ‘2, 

which is half the distance between the closest pair of points in Xk. The second is the radius Ofthe 
largest ironer empty’ sphrr 

Q(Xk) := max min 
.,t<‘l I s / s 1, 

.s - .\-:“’ I, 

where R is some fixed compact region in R’ containing the original set X. For convenience we will 
assume that D is the closed interior of some polygon iR surrounding X which could for example be 
its convex hull. The measures q and Q help to provide a data-dependent criterion for choosing the 
scale of the basis function at each level. 

We have found that regarding both computation time and approximation behaviour, the 
hierarchical method is able to handle small and large data sets, say N = 2000 or more, very well. In 
contrast (depending on the underlying hardware facilities). interpolation using globally supported 
radial basis functions is often unfeasible once N is beyond 100 or 200. 

We believe therefore that the method presented in this paper will be useful in practice for 
interpolating general scattered data sets. The implementation only requires a routine for matrix 
inversion (preferably an iterative method) and code for creating and manipulating triangulations. 
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2. Multistep interpolation 

The use of multistep techniques (also referred to as multistage or hierarchical methods) is 
common practice for scattered data analysis [ 11. We now describe such a method in our present 
context. One considers a nested sequence (3) of subsets Xk of X and decomposes the interpolation 
of X into M steps. Starting with k = 1, at the kth step one matches the errorfunction 

.f- (s, + ... + Sk- 1) 

on X, by computing the coefficients of the kth interpolant 

after the scale xk > 0 of the basis function has been specified. To be more precise, the corresponding 
interpolation scheme has the form 

s,l.x, =.flx,. 

.~21.Yz = (.f- S1)I.x2> 

From this one obtains the identity 

(s, + ... + S3f)l.Y =.fIx. 

which guarantees that s = s1 + ... + s,~ matchesf‘at each of the centres in X. The basic idea is to 
set x1 relatively large, and to let the xk decrease as k increases. The main philosophy behind this 
strategy is that the basic trends and characteristics of the graph offare captured in the first few 
steps, while its finer details emerge in the last ones. 

Although this iterative interpolation process is easy to understand and straightforward to 
implement, there remain two tasks: 
- setting up a decomposition of X into subsets Xk, 
- making a reasonable choice for the scales xk. 

Determining the Xk and zk is critical to the success of the method, especially in view of 
computation time and the quality of the interpolant s, and these will be the subjects of the next two 
sections. 

3. Thinning algorithm 

We now describe a thinning algorithm which generates from the given scattered data set 
X a nested sequence of subsets in such a way that the points in each subset are distributed as evenly 
as possible and their density increases smoothly. We shall restrict the space dimension d to two, 
although in principle the same algorithm could be used in arbitrary space dimensions. 



The algorithm works backwards. Starting with Yy = X, it recursively removes points from it, 
one by one. until there are only a small number K left. Some suitable subsequence of the resulting 
subsets 

Y, c Yf(+, c “’ c Y,\ = x 

can then be chosen for the hierarchical interpolation. The criterion for point removal is that the 
separation distance LI( Yi. i) should if possible be greater than q(Y,). This implies that one has to 
locate the closest pair of points and remove one of them. 

In order to study the efficacy of the algorithm with regard to the uniformity of the points in each 
subset, it will be useful to also keep in mind Q( Yi) as defined in Section 2. Now if 
q( Yi) = 1) !‘l - j’2 jl /2 for some J ,, lqz E Yi then the circle having the line segment J’~J’~ as a diameter 
cannot contain any other points in Yi, and it follows that q(Y,) < Q(Yi). If we let I) = q/Q, then 
0 < p < 1 and we say that Yi has un$~~rnit~~ /) = /I( Yi). An example of a data set with high 
uniformity is the set of nodes in a triangular grid made of equilateral triangles. Resorting to 
trigonometry. one finds that /I = J ‘Is/2. A regular square grid has uniformity l;:,,‘% 

The closest pair and largest empty circle of a discrete set Y of points in the plane are well-known 
concepts in computational geometry [22]. and they can both be computed relatively easily from 
the Voronoi diagram y i of Y. It is shown in [22] that the closest pair of points in Y are Voronoi 
neighbours in y i7. It also follows from observations in [22] that the centre of the largest inner empty 
circle must be either a node of y ;, or an intersection between an edge of y ;, and XL’. or a vertex of 
(7-Q. This is due to the fact that the function rninEy . - J’ ~ is convex in each Voronoi polygon. 

In practice, however. we find it easier to make computations with the Delaunay triangulation .F,r 
of the points in Y, which as a planar graph is the dual of ‘/; [22, 281. The closest pair are 
neighbouring nodes in .7r from which one computes ~i( Y ). Regarding Q( Y ), observe that each node 
of y i7 is the circumcentre of a triangle in .y& and the corresponding circumcircle contains no other 
points in Y (the Delaunay criterion). Thus, by ignoring circles whose centres lie on CR, we obtain 
a very close approximation to Q(Y) by computing the radius of the largest circumcircle of the 
triangles in .q, whose centres lie in R. Since this is considerably easier to calculate in practice, we 
have approximated Q(Y). in all of our numerical examples, by 

where C( T ) denotes the circumcentre of triangle T. Note that the quantity in (5) is bounded above 
by Q( Y ). Their difference is generally small and only depends on the distribution of points near the 
boundary of R. 

Bearing these facts in mind, we compute at each step of the thinning algorithm the Delaunay 
triangulation of the current subset. Now let .F be a Delaunay triangulation. Those nodes in 
.F which lie on the boundary will be called houndal.~ nodes while the rest will be called interior 
MO&S. Boundary nodes are treated a little differently in order to prevent boundary erosion in the 
thinning algorithm. 

Definition 2. Suppose the neighbouring nodes (interior or boundary) of any interior node x E .y are 
41, . .Y~. Then define 

~l,~~(.s) = min .~i ~ .~ . t/,,,(s) = max 
1=1. .I, i=l 

~ ~l.Yi --S 1 
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Figs. 1 and 2. Original data set X = X, = Yzooo and X3 = Ysoo 
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Figs. 3 and 4. X, = Y,,j and X, = Y,,. 

If s E .F is a boundary node it has precisely two boundary neighbours x1, x2. In this case define 

Definition 3. We say that a node XE.Y is removable if 
(i) d,i”(-Y) < d,i”( x) for all y E .F, and 

(ii) &,ax(.4 d d maz ! W ( 9 h enever d,i,(.u) = d,i,(J’). 

Notice that if any closest pair of points are either both boundary or both interior nodes, then dmin 
will attain its minimum value at both of these points. Thus in most cases both criterions (i) and (ii) 
will be used to choose the point for removal. However, there still may be more than one removable 
point (this will certainly be the case when the nodes form a regular grid). 

Now recall that X = {.x1 . . . . , xVI. Choose some small K > 3 with K 4 R;. 

Thinning algorithm. 
(1) Let yv = x and conzpute -TV = .Ty,. 
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Figs. 5 and 6. q. Q and theI!- ratio /I at each step 

(2) For dmwsiny i = N. . . . K + 1: 
(24 ClK~ose Ull)’ lx?l?locuhle node .Y E .=/7. 
(2b) Ler ~7~ = s mu YipI = Yi (+ 

Since .& 1 differs from 37 in only a few edges in the vicinity of the deleted node, &t can be 
computed quickly from the other. The same property has been exploited before in the context of 
point insertion in Delaunay triangulations [3]. 

When the algorithm has finished, the sequence rl. , j‘v is an ordering of the points in X. Indeed 
it merely remains to choose M and A’, . . . N.tf 1 such that K = N, -C N, < ‘.. < NM = N and 
let Xk = Ys, = (~‘t, . . ~‘y,~. The sequence (X,), will then be the desired decomposition. In 
analogy with hierarchical methods based on regular rectangular grids we propose choosing (N& to 
be a geometric sequence and we will come back to this in Section 5. Figs. 1-4 show an example 
where X (=YzooO) contains 2000 randomly generated points in the unit square, while the subsets 
y319 Ylzs, and YSW were generated by the thinning algorithm. 

If we calculate and store in Step 2. y(j) = L/( Y;) and Q(i) = Q( Yi), for iE{K. . . ,Nj, this 
information can be used to decide on the scales xI, in (4). Figs. 5 and 6 show the graphs of q(i), Q(i) 
and p(i) = q(i):‘Q(i) for i = 3. .X. 

4. Scale of the support 

In this section we concentrate on the choice of the scale xL of the support of the basis function at 
the kth step of the method described in Section 2. 

The discussion depends on the set Xk, the separation distance cf(X,) and the radius Q(X,) of the 
largest inner empty sphere. For reasons of notational simplicity, we shall for the moment drop the 
index li, so that X = XL, (1 = (16, Q = QL, % = zh. 
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In order to make a reasonable choice for z one has to be aware of its effect on the corresponding 
interpolation with respect to both 
- approximation behaviour and 
- stability. 

First note that the identity A,,,, = Ax/,,@ holds. In other words, interpolation at locations from 
X using 42 can be understood as interpolation with 4 on X/K Therefore we shall fix 4 and vary 
X;‘x, so that 4 is then to be replaced by ql = y/x and Q by Qx = Q/r. 

In view of the approximation behaviour, it is intuitively clear that a higher density of points 
yields a better approximation and from this point of view one desires as large as possible a value 
for x. 

However, for large values of a one gets small quantities LJ~ which makes roughly speaking at least 
two rows (columns) of the collocation matrix nearly coincide. In these cases one has to expect 
a rather unstable interpolation process. In view of this one would prefer a small x. 

Consequently, when selecting the scale one cannot expect to achieve both best possible stability 
and best possible approximation. One has to balance CL in a useful manner according to the 
requirements of the particular application. 

This phenomenon has already been observed in a more general context by Schaback who refers 
to it as an uncertainty relntion in his survey paper [26]. Indeed, it is shown there that (radial) basis 
functions with good approximation behaviour necessarily provide bad upper bands for the spectral 
norm of the inverse of the corresponding collocation matrix. 

Following along the lines of [26], pointwise error estimates of the interpolation method are 
usually to be obtained in terms of a local density measure around each of the points x in L2. To be 
more precise, for some positive r this pointwise density measure is given by 

and is subject to h,(.u) < h for all s E n with some positive constant h which does not depend on x. 
Our definition of 

Q := max min 
XER 1 < , < \ 

II Y - ri 11 

establishes an appropriate relation to h,. since 

On the other hand [26]. the stability of the interpolation process is intimately related to the size 
of the smallest eigenvalue of the corresponding collocation matrix Ax.@. In the setting of Scha- 
back’s survey, which is in these parts based on earlier papers [ 17-191 and [23,24] the latter 
depends on the separation distance 

of the set X. 
In view of our particular situation, this motivates for each possible x to use qa as a measure for 

the sensitivity of the stability of the interpolation process, while we relate the magnitude of Qz to the 
quality of its approximation behaviour. 
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If one wishes to emphasize quality of approximation throughout the hierarchical scheme, one 
should bound QZ above by some fixed, and preferably small, number ;’ > 0 which will depend on 
the size of the domain 8. This leads to 

(6) 

as a lower bound for x. 
Or, alternatively one may prefer to guarantee stability of the inversion of the collocation matrix 

by bounding LJ~ below by some sufficiently large fixed positive number 6. in which case one obtains 
an upper bound for x, namely 

x < q/h. 

If one combines (6) and (7) one finds that 

(7) 

provided Q::;, d q/c?, which in particular yields the lower bound 

p = q/Q > h!- j /’ 

Consequently, since we would ideally prefer to choose ;’ as low as possible and 6 as high as possible, 
this suggests that the best balance can be achieved for high values of p. In consequence, in order to 
improve the effectiveness of the hierarchical method one could consider choosing the Nk to coincide 
with a selection of the peaks in the graph of p. 

Finally. if one decides either to guarantee good approximation or stability throughout the 
hierarchical scheme then, based on the above observations, one obtains two possible strategies for 
choosing rk in (4): 

(i) fix ;* > 0 and set xk = Qk/;’ for all k, or 
(ii) fix 6 > 0 and set rk = q,/?j for all k. 

Alternatively. one could even compromise the two strategies, and set 

xk = (j.Qk “,’ + (1 - i)qk’.ij) 

for some ~E(O. 1). 

5. Numerical results 

In analogy with hierarchical methods based on regular rectangular grids we chose (Nk)k to be 
a geometric sequence: N1 = 3 1, N2 = 125, Nj = 500, A;, = 2000. In our example we used Franke’s 
function (Fig. 7) 

,f(s. J) = 0.75~.- 0 Zj(9,--2I’-O.25(9?-2)’ + 0,75~- (9r~2)2,49~(9~-2lL:lo 

+ 0.5r- 0 25(9x-7)'-0.2S19y-3) _ 0,7,~(91~4)~-(9y-:)~ 

a well known standard function used in the investigation of methods for interpolating scattered 
data; see [lo. 111. The function was sampled on a randomly generated set of 2000 points in the unit 
square !S = [O. l] x [O. l] where its range is approximately c-0.15, 1.501. 
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Fig. 7. Franke’s function f. 

Table I 

1 3 1 0.0731 0.1957 0.373 1.957 0.1288 0.02 
2 175 0.03 16 0.0993 0.318 0.993 0.0219 0.53 
3 500 0.0148 0.0456 0.325 0.456 0.0012 9.96 
4 2000 0.000 1 0.0423 0.002 0.100 0.0011 17.91 

Figs. 1-4 show the points X = X1 = Y z000 and three subsets X3 = YSO,,, X2 = Y rz5, and 
X, = Y,,. Figs. 5 and 6 show y, Q and /I in the thinning algorithm. Notice that XI, X, and X3 are 
much more uniform than X, and this is confirmed by the values of p in Table 1. 

For the interpolation we chose the basis function 4(r) = (1 - r)ic (4~ + 1). and took 7 to be 0.1 so 
that zk = QJ;' = 10.QI, for k = 1,2, 3. Observe from Table 1 that the sequence (E& satisfies 
approximately xI, 2 2xk- r except for k = 4 where we decided to reduce the radius ‘zk a little since p4 
is very small. The maximum error ek := ,f - I$= I sj / , ,<) was found approximately by sampling on 
a 101 x 101 uniform rectangular grid in the unit square. The accumulated time in CPU units 
required for the inversion of the collocation matrices up to and including the kth step is denoted by 
uk. For this purpose we have implemented the conjugate gradient method. 

Figs. 8-l 1 show in sequence the resulting approximations s,; s, + s2; s1 + s2 + s3; and 
s=sr +s,+~~+s,.Figs.l 2215 show in sequence the approximation errors,f’- s,;J‘-- (s, + sJ; 
.f’- (s, + .s2 + s3): and,f’- s. 

In order to demonstrate the utility of the hierarchical method we have generated several test 
examples for the special case n/l = 1 where Franke’s function was interpolated on X with different 
choices of the scale x between 0.065 and 0.225. Figs. 16 and 17 reflect our results. In Fig. 16 one can 
see the graph u(z) for the computational costs in CPU units as a function of the scale x and Fig. 17 
shows the plot of the maximum error e(r) on n. Observe that there is no choice of x which achieves 
the balance between speed and reproduction performance offered by the hierarchical method. As 
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Figs. 14 and 15. Error functions f - (sl + s2 + sj) andf- (sl + s2 + .sj + sq) 
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Figs. 16 and 17. CPU time U(T) and maximum error e(u) for the one-step method. 

an example, for x = 0.165 the one-step method requires u(r) = 187.49 units of CPU time with 
a maximum error e(sc) = 0.1117. Compared to the hierarchical method this is more than ten times 
slower with a reproduction behaviour which is more than hundred times worse. 

For the purpose of comparison we interpolated Franke’s function on X1 using thin plate splines. 
The maximum error on Q was found to be 0.0296 attained at (x, JI) = (0.46,O.g). This is approxim- 
ately equivalent to the performance of the hierarchical method after step two. However, note that 
the thin plate spline (and any other classical radial basis function technique) will have stability 
problems on X due to the small separation distance q(X). 

Finally, we note that, in general, the computational complexity of the thinning algorithm is 
[‘(A’ log N) for constructing the Delaunay triangulation and with our implementation, G(N2) for 
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making the nested sequence YK, . . , Yy, because finding a removable point at each step requires 
Lf (N) operations. The computational time for the multistep approximation depends on the method 
used for inverting the collocation matrices. Since we applied the conjugate gradient method on 
sparse matrices the costs are asymptotically (f (N) only. The computational time could probably be 
reduced by further research along the lines of multilevel preconditioning strategies, which are 
typically used in the numerical solution of partial differential equations. For an up to date survey 
and further references we recommend [20]. 

6. Conclusions and final remarks 

A hierarchical scheme, based on a thinning algorithm, has been presented for interpolating 
scattered data with radial basis functions of compact support. 

One nice feature of the thinning algorithm is that the representation of the hierarchy by the 
sequence ( Yi)i can be stored simply as the sequence of points yl, . . , yN, which is just a reordering of 
the original set X. This requires relatively little storage space, and we found this convenient when 
experimenting with different basis functions and/or scales on the same data set. 

The thinning algorithm depends on the scattered data points Xi and not on the valuesf(xJ. One 
could also, especially when gradients in fare large, consider making the method data dependent. 

Moreover: the hierarchical method could be regarded as a type of data reduction strategy. 
Indeed after several numerical observations, it has often been found that the graph of p(i) is 
typically roughly constant for i up to some threshold i,, after which it is monotonically decreasing. 
In the example of Fig. 6, i,$ = 563. This suggests that one could consider only interpolating on the 
first i, points, while ignoring the rest and still obtain a very good approximation. Indeed this is 
confirmed by the fact that there is very little change when going from the penultimate error 
f- (sr + s2 + sj) (Fig. 14) to the last onef‘- s (Fig. 15). 
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