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Cell cyle regulation: Repair and regeneration in acute renal fail-
ure. Research into mechanisms of acute renal failure has begun
to reveal molecular targets for possible therapeutic interven-
tion. Much useful knowledge into the causes and prevention
of this syndrome has been gained by the study of animal mod-
els. Most recently, investigation of the effects on acute renal
failure of selected gene knock-outs in mice has contributed to
our recognition of many previously unappreciated molecular
pathways. Particularly, experiments have revealed the protec-
tive nature of two highly induced genes whose functions are to
inhibit and control the cell cycle after acute renal failure. By
use of these models we have started to understand the role of
increased cell cycle activity after renal stress, and the role of
proteins induced by these stresses that limit this proliferation.

The consequences of nephrotoxic renal injury include
segment-specific changes in cell viability and reduced
renal function. In experimental models necrosis of the
S3 segment of the proximal tubule predominates and
apoptosis occurs in a minority of cells, especially those
of the distal nephron. Functionally, severe vasoconstric-
tion, principally applied to the afferent arteriole, reduced
glomerular filtration rate (GFR), and loss of autoregula-
tory responses characterize the renal microvascular re-
sponse to injury. The kidney is also unable to generate
maximum urinary concentration or to reclaim filtered
sodium fully. Reversal of these changes coincides with

Key words: cyclin-dependent kinase, cell cycle, cyclin kinase inhibitors,
p21.

the reestablishment of the normal renal epithelial bar-
rier with new cells that reline the denuded tubules.

The process of regeneration and recovery begins
shortly after injury, in which necrotic cells are accom-
panied by replicating cells lining the injured proximal
tubule. The commitment to DNA synthesis is rapid and
temporally coincides with the emergence of the morpho-
logic and functional derangements. Data to be presented
will support the hypothesis that renal injury and recovery
are part of the same responses and that these processes
depend on proper coordination of the cell cycle machin-
ery. It will also be shown that the engagement of the cell
cycle not only underlies recovery but is an important de-
terminant of whether cells survive the injury itself.

CELL CYCLE PROGRESSION AND
ITS REGULATION

Studies with eukaryotic models have elucidated that
orderly progression through the cell cycle is regulated by
the sequential synthesis, activation, compartmentaliza-
tion, and degradation of proteins controlling both entry
and exit from each phase of the cycle: G1 (gap-1), S (DNA
synthesis), G2 (gap-2), and M (mitosis) (Fig. 1). One of the
major controls on cell cycle progression is the regulation
of phosphorylation of different substrates by interacting
proteins consisting of a cyclin and a cyclin-dependent ki-
nase (cdk). Cyclins, the regulatory subunit of the het-
erodimer, were originally found by nature of their cyclic
oscillations during the sea urchin cell cycle [1]. The first
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Fig. 1. The cell cycle and some of its controls.

described cyclin, now called cyclin B, is synthesized dur-
ing interphase and degraded during mitosis. The catalytic
subunit, cdk, is a serine/threonine protein kinase [2] that
is inactive unless associated with a cyclin. The binding
of the cyclin to its cdk induces several conformational
changes in the active site of the cdk [3], conferring basal
kinase activity [4], and full activity is dependent on thre-
onine phosphorylation of the cdk by the heterotrimeric
cdk-activating kinase [5]. In vertebrates, several different
cyclins and cdk partners are sequentially active through-
out the cell cycle. In lower eukaryotes (e.g., budding and
fission yeast), different cyclins associate with the same cdk
subunit. As cells enter the cycle in G1, usually requiring
transmission of extracellular signals by growth factor re-
ceptors and integrin-derived adhesion signals [6], cyclin D
is synthesized and activates the kinase activity of cdk 4/6
[7]. These kinases phosphorylate Rb, the retinoblastoma
protein [8], a transcriptional repressor, and inactivate the
repression by Rb. The inactivation of Rb is correlated
with increased expression of cyclin E and cyclin E-cdk2
activity and activation of a cascade of responsive genes,
primarily those involved in DNA synthesis [9]. Cyclin
E-cdk2 activity peaks at the G1/S transition, but shortly
after entry into S, cyclin E begins to degrade, cyclin A
starts to be synthesized and cyclin A-cdk2 activity starts
to rise. Peaks of cdk2 activity occur during S phase and
just before mitosis [10]. During late G2, cyclin B accu-
mulates in the cytoplasm. At the beginning of mitosis,
cyclin B rapidly translocates to the nucleus, and the now
active cyclin B-cdc2 kinase controls entry into M phase.
During anaphase and telophase of mitosis, cyclin B is
degraded by ubiquitin- and proteosome-dependent pro-
teolysis [11], causing cdc2 inactivation, and the divided
cells reenter G1 to begin another cycle.

Examination of cell cycle mutants revealed that most
mutations result in arrest at specific stages of the cy-
cle. This led to the concept of cell cycle surveillance
mechanisms (“checkpoints”) that detect defects in DNA
synthesis and chromosome segregation to block cycle
progression [12]. These checkpoints also insure that each
phase of the cycle is irreversible, that each phase is com-
pleted before another is initiated, and that each phase fol-
lows the other in a sequential fashion. One of the major
regulatory checkpoints in the cell cycle occurs at the G1

to S transition, when the cell either commits to genomic
DNA replication or to quiescence and/or differentiation.
It is also a major regulatory intersection for cells that have
sustained genomic damage to undergo repair before en-
tering the DNA synthetic phase. In early G1, levels of
a 21 kD protein (p21) usually increase naturally, which
acts to prevent further cell cycle progression since p21 is
a potent inhibitor of cdk2 activity. This “checkpoint” of
increased p21 levels can also occur because of transcrip-
tional activation caused by the p53 transcription factor,
itself stabilized in reaction to DNA damage [13], or by
other factors not dependent on p53, as we have reported
after renal injury [14]. As cyclin D-cdk4/6 increases, it
titrates the level of p21 by sequestering it as part of a
quaternary protein complex also containing proliferat-
ing cell nuclear antigen (PCNA), the DNA polymerase
d processivity factor. The titration of excess p21 by cy-
clin D allows cyclin E-cdk2 to become activated, which is
necessary for cell cycle progression through G1 and into
S. During late G1, both cyclin D and p21 are degraded.
The mechanism of p21 degradation has not been fully
characterized, but it can be degraded by the proteasome
independently of ubiquitination [15] and also by caspase-
3 [16, 17] in cells in which an apoptotic cascade has been
activated.

A second major cell cycle checkpoint occurs at the G2

to M transition, when the cell commits to start cell di-
vision, having completed DNA replication. Transport of
cyclin B to the nucleus is possibly dependent on phospho-
rylation [18], whereas its associated cdk (cdc2) is both ac-
tivated and repressed by phosphorylation [19–22]. DNA
damage and incomplete replication inhibit this process
by stimulating synthesis of protein kinases that cause
phosphorylation and subsequent cytoplasmic compart-
mentalization of cdc2 and other proteins, whose nuclear
localization is crucial for G2 to M transition [20, 23–25].
This compartmentalization is primarily through binding
and transport by 14-3-3 proteins [26, 27]. Similarly, p21
can directly inactivate cdc2 kinase to cause G2 arrest.

CELL CYCLE REGULATION BY CYCLIN
KINASE INHIBITORS

Two families of proteins interact with and inhibit
cyclin-dependent kinases. One family specifically inhibits
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Fig. 2. Northern blot analysis of p21 mRNA transcripts in rat kidney
cells. Uni Bi is unilateral bifurcation.

cdk4/6, the Ink4 (inhibitor or cdk4) proteins [28]. These
are small molecular weight proteins, ranging from 14 to
19 kD [29–33], each containing ankyrin repeats. They
bind the kinase subunit, preventing formation of an active
cyclin-cdk complex. As inhibitors of cdk4/6 kinase, they
prevent Rb phosphorylation, and arrest the cell cycle in
G1 phase [31, 34]. Their role in normal cell cycle progres-
sion is to act as checks on the assembly and activity of
cyclin D-cdk4/6. Members of this family have been asso-
ciated with terminal differentiation and senescence, and
their mutations or deletions have been associated with
cancer. The second family, of which p21 is a member,
also contains p27Kip1 [35], and p57Kip2 [36, 37], the Kip
(cdk inhibitory protein) proteins. Xiong, et al [38] found
that p21 could inhibit the activity of each member of the
cyclin-cdk cascade and that p21 overexpression inhibited
the proliferation of mammalian cells. Similarly, p21 can
also inhibit PCNA [38–42] and interfere with its role in
DNA replication. Although p57 seems to be expressed
in only a limited number of tissues, both p21 and p27
are expressed in most cells, and p21 mRNA is induced
by stress in p53-dependent and p53-independent path-
ways. The p27 inhibitor is highly expressed in quiescent
cells, but as cells enter G1, nuclear p27 is transported into
the cytoplasm and degraded after ubiquitination. The p21
protein is maximally expressed during G1 where it neg-
atively regulates cdk2 activity. As cyclin D-cdk4/6 lev-
els increase during G1, p21 is titrated, releasing the cdk2
inhibition.

CELL CYCLE ACTIVATION AND
RENAL FAILURE

Shortly after acute renal failure (ARF), many normally
quiescient kidney cells enter the cell cycle. There are in-
creases in nuclear PCNA levels, as well as [3H]-thymidine
or 5-bromo-2′deoxyuridine (BrdU) incorporation into
nuclear DNA. However, coincident with this increased
activity, we have shown that the p21WAF1/CIP1/SDI1 gene is
activated in murine kidney cells [14]. The Northern blot
in Figure 2 shows that no p21 mRNA could be detected in
kidney from the untreated rat, but there was a marked in-
duction of p21 mRNA in all experimental models of ARF.
In the ischemia model, there was a slight increase of p21
mRNA even before release of the clamp (0 h); the major
increase started one hour after reflow and persisted there-

after with maximum expression at 4 hours. There was a
marked induction after 24 hours of unilateral or bilateral
ureteral obstruction, and the highest level was detected
in the kidneys isolated from cisplatin-treated rats.

The sites of p21 mRNA overexpression was localized
by in situ hybridization using an antisense digoxigenin-
labeled RNA probe. Highest amounts of p21 mRNA were
found in the outer stripe of the outer medulla, in the cells
of the thick ascending limbs. The distal convoluted tubule
cells in the cortex were also stained. The localization of
p21 mRNA in all types of ARF is similar. A more sensitive
localization for p21 protein using immunohistochemistry
showed the protein to be present in nuclei of both distal
and proximal tubule cells.

THE INFLUENCE OF p21 ON ARF

The effect(s) of p21 induction in ARF was studied by
comparing wild-type [p21(+/+)] mice with mice homozy-
gous for a p21 gene deletion [p21(−/−)]. Following ei-
ther cisplatin administration or after 30 or 50 minutes of
ischemia, p21(−/−) mice displayed a more rapid onset
of the physiologic signs of ARF, developed more severe
morphologic damage, and had a higher mortality than
their p21(+/+) littermates [43, 44]. Blood urea nitrogen
(BUN) values in untreated animals was nearly identi-
cal, and 1 day after cisplatin injection, the values in the
wild-type mice population were still within the untreated
range. However, at this time, the values in the p21(−/−)
population were severely elevated. After 2 and 3 days of
cisplatin injection, the BUN of the wild-type mice was
elevated, but never to the extent of the p21(−/−) mice.
Similar findings were observed after ischemia. A marked
difference in mortality was also observed. After either
cisplatin-induced or ischemic ARF, morphologic damage
in kidneys of the p21(−/−) mice was evident throughout
the cortex, whereas in the p21(+/+) kidneys was primar-
ily restricted to the S3 segment of the proximal tubules.

In addition to necrosis, apoptosis was also more
widespread in the p21(−/−) mice after cisplatin treat-
ment. In the wild-type mice, most of the apoptotic
cells were located in the distal nephron, whereas in the
p21(−/−) mice, both distal nephron and proximal tubules
contained apoptotic cells. Apoptosis was not found to be
a major reaction in the first several days after ischemia,
either in p21(+/+) or p21(−/−) mice.

As would be expected from the role of p21 as a cell cycle
inhibitory protein, parameters such as BrdU incorpora-
tion into nuclear DNA and increases of PCNA content
are much higher and more widespread after acute renal
failure in p21(−/−) mice, compared with p21(+/+) mice.
Similarly, in another model of ARF, ureteral obstruction,
Hughes, Brown, and Shankland [45] found that p21 ex-
pression limited kidney cell proliferation.
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Fig. 3. In situ hybridization analysis of kidney nuclei for ploidy deter-
mination. Representative nuclei isolated from kidney of mice before
cisplatin injection, or from wild-type mice after cisplatin injection (A),
or from p21(−/−) mice 4 days after cisplatin (B).

MECHANISM OF p21 PROTECTION?

After cisplatin or renal ischemia in vivo, we found that
in kidney of p21(−/−) mice, a more widespread cell death
was associated with an increased cell cycle activity, and in-
creases in nuclear size [27]. In considering possible causes
for this increased size, we investigated whether these cells
contained greater than normal amounts of nuclear DNA.
Figure 3 is an in situ hybridization for chromosome 15 in
nuclei isolated from mice after ARF. Characteristic of this
analysis, two spots of hybridization can be seen in inter-
phase nuclei having a normal 2N DNA content (Fig. 3A).
However, several areas of hybridization can be seen in
kidney nuclei isolated from p21(−/−) mice after acute
renal failure (Fig. 3B), showing polyploid DNA content,
resulting from an uncoordinated cell cycle.

Similar increases in nuclear DNA content had been re-
ported using cultured cells [26] and had been attributed
to the induction of the 14-3-3r protein, a regulator of G2

to M transition. In the absence of p21 induction, over-
expression of the 14-3-3r gene in growing cells caused
an uncoordinated cell cycle in which cells did not divide
synchronously after G2, but rather entered another DNA
synthetic phase. This increased DNA content in the cells,
which in turn led to cell death. However, expression of
both p21 and 14-3-3r led to cell cycle inhibition rather
than to cell death. Recently, it was also shown that this
protein may influence cell fate after injury [24, 46]. We
found the induction of this protein after both cisplatin
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Fig. 4. Proposed mechanism for the interaction of cell cycle inhibitors
with the course of acute renal failure (ARF).

and ischemia-induced ARF in vivo [27]. To explore the
roles of p21 and 14-3-3r in relevant in vitro models of re-
nal cell injury, we determined the effect of either cisplatin
or hydrogen peroxide exposure on cells in which one or
both of these genes were deleted. Our results showed that
as compared with wild-type cells, cells with the gene dele-
tions had much decreased viability, both in dose-response
experiments and in survival times after cisplatin or hydro-
gen peroxide exposure.

These studies are compatible with the idea that cell
stress induces pathways that compete between cell death
and cell cycle arrest (Fig. 4). In wild-type cells, stress re-
sults in induction of cell cycle inhibitors that lead to ar-
rest, whereas in p21 and/or 14-3-3r deleted cells, similar
stress causes cell death pathways to predominate. Our
results indicate that coordinated cell cycle control, ini-
tially manifested as cell cycle inhibition, is necessary for
optimum recovery from ARF. Since in terminally differ-
entiated cells, these proteins are highly expressed only
after injury, we propose that cell cycle coordination by
induction of these proteins could be a general model of
tissue recovery from stress and injury. Our model of cell
cycle regulation after injury is that after ARF, in which
epithelial cells are damaged, normally quiescent cells en-
ter the cell cycle. In kidney of wild-type animals, cell cycle
inhibitors (p21 and 14-3-3r) are also induced, and their
combined activities check the cell cycle at G1 and G2.
As extrapolated from the in vitro results, the presence of
both p21 and 14-3-3r is necessary to coordinate the cell
cycle, and the absence of either of these factors will re-
sult in increased cell death and increased mortality from
ARF. In this model, cell cycle arrest is a prerequisite for
renal cell repair and/or regeneration after injury and the
inhibition of the cell cycle allows the repair of cellular
damage to occur before cell replication.

The evidence that p21 is crucial to the process is
supported by observations that elevated p21 expression
in transformed cells ranging from carcinomas [47–50],
melanomas [51], leukemias [16], hepatomas [10, 52], my-
oblasts [53], and neuroblastomas [54] to nontransformed
thymocytes [55], hematopoeitic cells [56] and umbilical
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vein endothelial cells [57] has been shown to inhibit apop-
tosis. Similarly, Inguaggiato et al [58] have proposed that
resistance to cell death in kidney by heme oxygenase-1
overexpression is by p21 up-regulation, and Miyaji et al
[59] have speculated that p21 induction contributes to
acquired resistance to cisplatin-induced ARF.

FUTURE STUDIES

Confronted with a hostile environment, the kidney
mounts a response that is initiated by signaling molecules
that engage multiple pathways including those that regu-
late the cell cycle. The cell undergoing these changes may
decide to check the progression of the cycle and repair
damage before proceeding or enter a pathway destined to
cell death. This decision point is carefully regulated and
cyclin-dependent kinase inhibitors, especially p21, are
important in this decision. The interface between these
pathways and the cell death pathways are first emerging
but phosphorylation events critical to cell function reside
in the cyclin-dependent kinases and the kinases, phos-
phatases, inhibitors, and activators that regulate their
activities. The identification of the precise pathways en-
gaged in this process is an area of active research not only
in ARF but in the field of cell biology in general.

Reprint requests to Peter M. Price, University of Arkansas for Medical
Sciences, Little Rock, AR 72205.
E-mail: PricePeter@uams.edu
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The role of mitochondria in ischemia/reperfusion injury
in organ transplantation
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The role of mitochondria in ischemia/reperfusion injury in
organ transplantation. In organ transplantation, ischemia/
reperfusion (I/R) results in damage that may affect cell via-
bility and lead to organ failure. I/R injury involves a complex
cascade of events, including loss of energy, derangement of the
ionic hemostasis, production of reactive oxygen species, and cell
death. In this context, mitochondria may be critical organelles,
since they undergo major changes that may contribute to the
injury occurring during I/R.

The damage of allografts derived from ischemia/
reperfusion (I/R) during transplantation may influence
short- and long-term graft function and outcome [1].

Key words: apoptosis, organ preservation, transplant.

Recently the shortage of organs has promoted the
transplantation of marginal allografts to try to expand
the donor pool. I/R may be an important determinant as
to whether marginal grafts survive or fail following trans-
plantation. I/R represent a potentially significant injury
in the process of transplantation and mitochondria play
a critical part, by their pivotal role in energy production,
by the generation of reactive oxygen species (ROS) and
the initiation of apoptosis.

PHYSIOLOGY

Mitochondria are organelles with two defined compart-
ments, the matrix confined with the inner mitochondrial
membrane and the intermembrane space surrounded
by the outer membrane. Mitochondria generate cellu-
lar energy in the form of adenosine triphosphate (ATP).




