On the regularity of the leafwise Poincaré metric

Marco Brunella

Institut de Mathématiques de Bourgogne, BP 47870, 21078 Dijon, France

Received 19 December 2003; accepted 19 January 2004

Abstract

We prove that for a foliation of general type on a complex projective surface the curvature of the leafwise Poincaré metric is absolutely continuous.

MSC: 32Q30; 32U40; 37F75

Keywords: Holomorphic foliations; Positive currents

Let X be a complex projective surface, possibly singular but with at most cyclic quotient singularities. Let \mathcal{F} be a holomorphic foliation on X. We shall suppose that the singularities of \mathcal{F} satisfy the following standing assumptions: (i) $\text{Sing}(\mathcal{F})$ are disjoint from $\text{Sing}(X)$, i.e., around a cyclic quotient singularity of X the foliation is the quotient of a nonsingular one; (ii) $\text{Sing}(\mathcal{F})$ are reduced, in Seidenberg’s sense, i.e., locally generated by vector fields whose linear parts have eigenvalues a, b with a/b not a positive rational. We shall also suppose that the canonical bundle $K_\mathcal{F}$ of \mathcal{F} is nef, that is $K_\mathcal{F} \cdot C \geq 0$ for every algebraic curve $C \subset X$. According to results of Seidenberg, Miyaoka and McQuillan [7], these assumptions on $\text{Sing}(\mathcal{F})$ and $K_\mathcal{F}$ are not at all restrictive: up to a birational transformation they are always satisfied, unless the foliation is birational to a \mathbb{CP}^1-bundle (an uninteresting case). Besides [7], we also refer to [3] for a general overview of the birational theory of foliations, and their Kodaira-type classification.

In this paper we pursue the study of the leafwise Poincaré metric, begun in [2]. Let us recall the context. Each leaf of \mathcal{F} is a complex connected one-dimensional orbifold, injectively immersed in $X' = X \setminus \text{Sing}(\mathcal{F})$, and uniformized by the disc D or by the affine line C. On each leaf we put its Poincaré metric (which is identically zero, by definition, if the leaf is parabolic, i.e., uniformized by C). This leafwise metric can be seen as a
(singular) hermitian metric on the canonical bundle K_F of F, and the main result of [2] is: if there exists at least one hyperbolic leaf (uniformized by D) then the curvature Ω of this hermitian metric on K_F is a closed positive current. See also below, Section 1, for a local reformulation of this result.

We can decompose this curvature Ω in two ways. First of all, according to Siu’s theorem [8] we have

$$\Omega = \Omega_{\text{alg}} + \Omega_{\text{res}},$$

where $\Omega_{\text{alg}} = \sum \lambda_j \delta_{C_j}$ is a finite (possibly empty) positive sum of integration currents δ_{C_j} over algebraic curves $C_j \subset X$, and Ω_{res} is a closed positive current with vanishing Lelong number outside a finite set $P \subset X$. Here the finiteness of the sum in Ω_{alg} comes from the fact that each C_j is necessarily the closure of a parabolic leaf, hence their number is finite (mainly by Jouanolou’s theorem [5]), and the finiteness of P comes from $P \subset \text{Sing}(F)$.

Secondly, we can take the Lebesgue’s decomposition of Ω into singular part and absolutely continuous part [4, p. 355]

$$\Omega = \Omega_{\text{sing}} + \Omega_{\text{ac}},$$

corresponding to the fact that the coefficients of Ω are (complex) measures which can be decomposed with respect to the Lebesgue measure on X. Generally speaking, for a closed positive current we have $\Omega_{\text{alg}} \leq \Omega_{\text{sing}}$, and the inequality may well be strict: on C, a singular measure is generally speaking far from being atomic. Moreover, whereas Ω_{alg} is always closed, Ω_{sing} can be nonclosed. Here we shall prove that in our special context we always have equality.

Theorem. Let X be a complex projective surface with at most cyclic quotient singularities, and let F be a holomorphic foliation on X with $\text{Sing}(F)$ reduced and disjoint from $\text{Sing}(X)$, and with K_F nef. Suppose that F has at least one hyperbolic leaf. Then for the curvature Ω of the leafwise Poincaré metric we have

$$\Omega_{\text{alg}} = \Omega_{\text{sing}}.$$

Let us discuss this result in the context of Kodaira dimension of foliations [3,7]. When $\text{Kod}(F) = -\infty$ the result was already proved in [2, Proposition 5] (with equality to zero), as a step toward the classification of those foliations; the proof we give here is however different and independent, and perhaps more natural. When $\text{Kod}(F) = 0$ the result is empty, because in that case all the leaves are parabolic. When $\text{Kod}(F) = 1$ the result is trivial, due to the special structure of those foliations. Hence, the really interesting case is when $\text{Kod}(F) = 2$ (which happens for “most” foliations). In that case some estimates of McQuillan [7] give $\Omega_{\text{alg}} \equiv 0$, and therefore we obtain the following regularity statement.

Corollary. If moreover F is of general type then Ω is absolutely continuous.

This allows to define the (punctual) wedge product $\Omega \wedge \Omega$, which by [4, Theorem 10.7] is an absolutely continuous positive measure on X whose total mass bounds the selfintersection of the canonical bundle: $c_1^2(K_F) \geq \int_X \Omega \wedge \Omega$. We don’t know if equality
is here always realized. Anyway, we can at least claim that \(\int_X \Omega \wedge \Omega > 0 \), i.e., the positive measure \(\Omega \wedge \Omega \) is not identically zero. Indeed, if \(\Omega \wedge \Omega \equiv 0 \) then, following the last pages of [2], we can construct on \(X \) a second holomorphic foliation \(\mathcal{G} \) in the Kernel of \(\Omega \). This \(\mathcal{G} \) is tangent to \(\mathcal{F} \) along its parabolic leaves, at first order, so that we have \(K_{\mathcal{F}} = N_{\mathcal{G}}^* \otimes \mathcal{O}_X(D) \) for a suitable reduced divisor \(D \) which is \(\mathcal{G} \)-invariant. But then the logarithmic Castelnuovo–De Franchis–Bogomolov lemma says that \(\text{kod}(\mathcal{F}) = \text{kod}(N_{\mathcal{G}}^* \otimes \mathcal{O}_X(D)) \leq 1 \).

However, for a foliation of general type it is tempting to do a much stronger conjecture: the support of \(\Omega \wedge \Omega \) is the full \(X \). It is not difficult to see (using [2, Proposition 6]) that \(\text{Supp}(\Omega \wedge \Omega) \) is a closed subset invariant by \(\mathcal{F} \).

1. Some local computations

Take a point \(p \in X'' = X \setminus \{ \text{Sing}(\mathcal{F}) \cup \text{Sing}(X) \} \) and let \((z, w) \in D \times D \) be local coordinates around \(p \) in which the foliation \(\mathcal{F} \) is expressed by the equation \(dz = 0 \). In this local chart, the leafwise Poincaré metric is represented by

\[
e^F_i \, dw \wedge d\bar{w},
\]

where \(F : D \times D \to [-\infty, +\infty) \) is a plurisubharmonic function [2] which satisfies moreover the “curvature \(-1\)” differential equation

\[
F_{ww} = e^F.
\]

The polar set \(\Sigma = \{ F = -\infty \} \) is possibly nonempty: it coincides with the trace of parabolic leaves on our local chart \(D \times D \). According to McQuillan [7, §V], the function \(F \) and its polar set \(\Sigma \) have the following regularity properties:

(a) \(\Sigma \) is an analytic subset of \(D \times D \), that is a discrete set of fibres;
(b) \(F \) is continuous on \(D \times D \setminus \Sigma \), that is \(e^F \) is continuous on \(D \times D \).

In fact, we shall need only \(F \in L^\infty_{\text{loc}} \) outside \(\Sigma \); but on the other hand the difficult part in [7, §V] consists in showing such a local boundedness property, the continuity being then a simple consequence via a Montel-type argument.

Let us consider the following two positive measures on \(D \times D \):

\[
\mu = F_z \delta_z, \\
\nu = (e^F)_z \delta_z
\]

and let us observe that, as distributions, they are related by

\[
\mu_{ww} = \nu
\]

because \((F_{z\bar{z}})_{ww} = (F_{w\bar{w}})_{z\bar{z}} = (e^F)_{z\bar{z}} \) (it is perhaps worth noting that the derivative \(F_{w\bar{w}} \) appearing in \(F_{w\bar{w}} = e^F \) has to be understood, a priori, as a “classical” derivative, not as a distributional one, using the smoothness of \(F \) on the vertical fibres; but the fact that this classical derivative is bounded implies that it coincides with the distributional one). We
may assume, without loss of generality, that the chart $D \times D \subseteq X$ is well embedded up to the boundary, so that μ and ν have a finite total mass.

Take the Lebesgue’s decomposition of μ and ν:

$$\mu = \mu_{\text{sing}} + \mu_{\text{ac}}, \quad \nu = \nu_{\text{sing}} + \nu_{\text{ac}}.$$

Our first aim is to prove that the above relation between μ and ν still holds between their singular parts: $(\mu_{\text{sing}})_{\pi} = \nu_{\text{sing}}$. In some sense this is obvious, since F is smooth on the verticals, but a formal proof requires some care.

The measure μ can be disintegrated with respect to the projection $\pi : D \times D \to D$, $\pi(z, w) = z$:

$$\mu(\phi) = \int_{D} \mu(\phi(z, \cdot)) \, d\sigma(z) \quad \forall \phi \in C_{c}^{\infty}(D \times D),$$

where $\sigma = \pi_{*}\mu$ and $\mu^{(z)}$ is a positive probability measure on $D_{z} = \pi^{-1}(z)$ for σ-a.e. $z \in D$. From $\nu = \mu_{\pi}$ we then obtain

$$\nu(\phi) = \int_{D} \mu_{\pi}^{(z)}(\phi(z, \cdot)) \, d\sigma(z) \quad \forall \phi \in C_{c}^{\infty}(D \times D),$$

where $\mu_{\pi}^{(z)}$ is a distribution on D_{z} for σ-a.e. $z \in D$. Remark that $z \mapsto \mu_{\pi}^{(z)}(\phi(z, \cdot)) = \mu^{(z)}(\phi_{\pi}(z, \cdot))$ is a bounded function, for every fixed ϕ.

Lemma 1. For σ-a.e. $z \in D$, $\mu_{\pi}^{(z)}$ is a positive measure.

Proof. Take $\phi, \psi \in C_{c}^{\infty}(D)$, $\phi \geq 0$, $\psi \geq 0$, and consider ϕ as a function of w and ψ as a function of z. Then

$$\int_{D} \psi(z) \mu_{\pi}^{(z)}(\phi) \, d\sigma(z) = \nu(\psi \phi) \geq 0$$

and the arbitrariness of ψ gives

$$\mu_{\pi}^{(z)}(\phi) \geq 0 \quad \text{for } \sigma\text{-a.e. } z \in D.$$

More precisely, there exists $E_{\phi} \subseteq D$, with $\sigma(E_{\phi}) = 0$, such that $\mu_{\pi}^{(z)}(\phi) \geq 0$ for every $z \in D \setminus E_{\phi}$. Take now $\{\phi_{n}\}_{n=1}^{\infty} \subseteq C_{c}^{\infty}(D)$, $\phi_{n} \geq 0$ for every n, dense in the space of positive smooth functions, and set $E = \bigcup_{n=1}^{\infty} E_{\phi_{n}}$. Then $\sigma(E) = 0$, and $\mu_{\pi}^{(z)}(\phi_{n}) \geq 0$ for every $z \in D \setminus E$ and for every n. By density we conclude that $\mu_{\pi}^{(z)}(\phi) \geq 0$ for every $z \in D \setminus E$ and for every positive smooth ϕ. This means that $\mu_{\pi}^{(z)}$ is a measure for σ-a.e. $z \in D$.

Therefore, for σ-a.e. $z \in D$ we can write

$$\mu^{(z)} = h^{(z)}(w) \, dw \wedge d\overline{w}$$

where $h^{(z)}$ is a positive subharmonic function on D_{z}. The submean inequality for each $h^{(z)}$ and the fact that $\mu^{(z)}(D_{z}) = 1$ for every z show that the function $(z, w) \mapsto h^{(z)}(w)$ is
locally bounded from above (and of course also from below, being positive). This allows to compute easily the Lebesgue’s decomposition of μ:

$$\mu_{\text{sing}}(\phi) = \int_D \mu^{(z)}(\phi(z, \cdot)) \, d\sigma_{\text{sing}}(z),$$

$$\mu_{\text{ac}}(\phi) = \int_D \mu^{(z)}(\phi(z, \cdot)) \, d\sigma_{\text{ac}}(z),$$

where $\sigma = \sigma_{\text{sing}} + \sigma_{\text{ac}}$ is the Lebesgue’s decomposition of σ. As a consequence of this we also find

$$(\mu_{\text{sing}})_{w,\pi}(\phi) = \int_D \mu^{(z)}_{w,\pi}(\phi(z, \cdot)) \, d\sigma_{\text{sing}}(z).$$

Let us now compute the Lebesgue’s decomposition of ν.

Lemma 2.

$\nu_{\text{sing}} = e^F \mu_{\text{sing}}$.

Proof. It is sufficient to prove that for every $w \in D$ the subharmonic function $f(z) = F(z, w)$ satisfies

$$((e^f)_{\text{sing}} = e^f (f_{z\bar{z}})_{\text{sing}}.$$

Outside the poles, f is locally bounded and hence locally of finite energy (i.e., locally integrable w.r. to the measure $f_{z\bar{z}}$). Therefore the first derivatives f_z and $f_{\bar{z}}$ are locally square integrable [6, Chapter 1, §4]. By a standard regularization procedure we then obtain the chain-rule formula

$$((e^f)_{z\bar{z}} = e^f f_z f_{\bar{z}} + e^f f_{\bar{z}} z,$$

where $e^f f_z, f_{\bar{z}} \in L^1_{\text{loc}}$ is an absolutely continuous measure. Taking singular parts we obtain the desired formula, at least outside the poles of f. But these poles (which are discrete) are not charged neither by $((e^f)_{z\bar{z}})_{\text{sing}}$, for e^f is bounded, nor by $e^f (f_{z\bar{z}})_{\text{sing}}$, for e^f vanishes at those poles. Whence the equality everywhere. □

Using the disintegration formula before Lemma 1, the singular part ν_{sing} of ν can be written as

$$\nu_{\text{sing}}(\phi) = \int_D \mu^{(z)}_{w,\pi}(\phi(z, \cdot)) \, d\sigma_{\text{sing}}(z) + \tilde{\nu}(\phi),$$

where $\tilde{\nu}$ is a “residual” positive measure. Indeed, the integral above defines a singular measure γ which is less than or equal to ν, and so $\nu_{\text{sing}} \geq \gamma$. Remark that if $B \subset D \times D$ is a Borel set with $\sigma_{\text{ac}}(\tau(B)) = 0$ then $\gamma(B) = \nu(B)$ and so $\tilde{\nu}(B) = \nu_{\text{sing}}(B) - \gamma(B) = \nu_{\text{sing}}(B) - \nu(B) \leq 0$, i.e., $\tilde{\nu}(B) = 0$. On the other hand, by the previous lemma ν_{sing}, and hence $\tilde{\nu}$, is absolutely continuous with respect to μ_{sing}, and hence with respect to
\[\sigma_{\text{sing}} \wedge i \, dw \wedge d\overline{w}. \] Thus \(\tilde{\nu}(B) = 0 \) for any Borel set \(B \subset D \times D \) with \(\sigma_{\text{sing}}(\pi(B)) = 0 \). It follows from these properties that \(\tilde{\nu} \) is in fact identically zero.

Therefore the Lebesgue’s decomposition of \(\nu \) is simply

\[
\nu_{\text{sing}}(\phi) = \int_{D} \mu^{(z)}_{w \overline{w}}(\phi(z, \cdot)) \, d\sigma_{\text{sing}}(z),
\]

\[
\nu_{\text{ac}}(\phi) = \int_{D} \mu^{(z)}_{w \overline{w}}(\phi(z, \cdot)) \, d\sigma_{\text{ac}}(z)
\]

and by comparison we find:

Lemma 3. \((\mu_{\text{sing}})_{w \overline{w}} = \nu_{\text{sing}}.\)

Remark that the regularity properties of \(F \) and \(\Sigma \) were used only in Lemma 2, in a rather weak way.

2. **Proof of the theorem**

Let us still work in the local chart \(D \times D \subset X'' \) of the previous section. The curvature \(\Omega \) is here expressed by

\[
\Omega = \frac{i}{2\pi} \partial \bar{\partial} F.
\]

The derivative \(F_{w \overline{w}} = e^F \) is an absolutely continuous measure, and so the singular part \(\Omega_{\text{sing}} \) does not contain the term in \(i \, dw \wedge d\overline{w} \). By positivity, \(\Omega_{\text{sing}} \) does neither contain the terms in \(i \, dz \wedge d\overline{w} \) and \(i \, dw \wedge d\overline{z} \), and therefore

\[
\Omega_{\text{sing}} = \frac{1}{2\pi} \mu_{\text{sing}} i \, dz \wedge d\overline{z}
\]

where, as in the previous section, \(\mu \) is the measure \(F_{z \overline{z}} \).

By Lemma 3 we have

\[
i \partial \bar{\partial} \Omega_{\text{sing}} = \frac{1}{2\pi} \nu_{\text{sing}}
\]

where, with a double abuse of notation, we have dropped the factor \(i \, dw \wedge d\overline{w} \wedge i \, dz \wedge d\overline{z} \).

By Lemma 2 we also have

\[
i \partial \bar{\partial} \Omega_{\text{sing}} = \frac{1}{2\pi} e^F \mu_{\text{sing}}.
\]

The first important consequence of these computations is that \(i \partial \bar{\partial} \Omega_{\text{sing}} \) is positive, at least outside \(\text{Sing}(F) \cup \text{Sing}(X) \). Using an extension theorem [1] we now check this positivity everywhere. Of course, the problem concerns only \(\text{Sing}(F) \), for \(\text{Sing}(X) \) can be treated by simply lifting to a local smooth cyclic covering, where \(F \) becomes nonsingular.

Lemma 4. \(i \partial \bar{\partial} \Omega_{\text{sing}} \) is a positive measure on \(X. \)
Proof. Instead of Ω_{sing}, let us consider $\Omega_{\text{ac}} = \Omega - \Omega_{\text{sing}}$. It is a positive current on X which satisfies $i\partial \bar{\partial} \Omega_{\text{ac}} \leq 0$ on $X' = X \setminus \text{Sing}(\mathcal{F})$, because Ω is closed. According to [1], $\Omega_{\text{ac}}|_{X'}$ can be extended to X as a positive current $\tilde{\Omega}_{\text{ac}}$ with $i\partial \bar{\partial} \tilde{\Omega}_{\text{ac}} \leq 0$ (everywhere). Moreover, this extension can be choosen equal to the trivial extension by zeroes: the coefficients of $\Omega_{\text{ac}}|_{X'}$ are measures, and they are extended to X without additional mass. Then the absolute continuity of Ω_{ac} shows that $\tilde{\Omega}_{\text{ac}} = \Omega_{\text{ac}}$ on the full X, whence $i\partial \bar{\partial} \Omega_{\text{ac}} \leq 0$ everywhere and therefore $i\partial \bar{\partial} \Omega_{\text{sing}} \geq 0$ everywhere. \hfill \Box

By Stokes’ theorem, the total mass of this positive measure must vanish, and consequently the measure itself must be identically zero:

$$i\partial \bar{\partial} \Omega_{\text{sing}} \equiv 0.$$

Therefore, returning to a local chart we see that

$$e^{\nu} \mu_{\text{sing}} \equiv 0,$$

which means that $\text{Supp}(\mu_{\text{sing}}) \subset \Sigma$, the trace of parabolic leaves. Globally, we see that $\text{Supp}(\Omega_{\text{sing}})$ is contained in the algebraic subset of X filled by parabolic leaves and singularities. More precisely, we also see that $\text{Supp}(\Omega_{\text{sing}} - \Omega_{\text{alg}})$ is contained in $\text{Sing}(\mathcal{F})$.

Indeed, if $C \subset X'$ is a parabolic leaf then, along C, the pluriharmonic current Ω_{sing} has the form $g\delta_C$, for some harmonic function g on C. But for every $p \in C$ the Lelong number of Ω at p is obviously equal to $g(p)$, so that g is in fact constant and $\Omega_{\text{sing}} = \Omega_{\text{alg}}$ along C.

Now, from

$$i\partial \bar{\partial} (\Omega_{\text{sing}} - \Omega_{\text{alg}}) \equiv 0$$

and

$$\text{Supp}(\Omega_{\text{sing}} - \Omega_{\text{alg}}) \text{ finite}$$

we deduce $\Omega_{\text{sing}} = \Omega_{\text{alg}}$, and this completes the proof of the theorem.

References