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Abstract-The manner in which the steady flow of a low viscous fluid (representing blood) di- 

vides at a junction (where a straight single branch leaves the straight parent trunk) is numerically 
investigated by adopting conformal mapping techniques in terms of the significant dimensionless pai 
rameters: the entrance flow rate index p, the branch diameter ratio 0, and the angle of branching cy. 
The ratio of the flow rate in the side branch to the flow rate in the main branch, 7, is found to 
increase with a reduction in the flow index p and with an increase in 0. The problem is analyzed 

by a numerical approach and a visualization technique is employed to establish the existence of two 

interdependent separation regions, one in each branch. The location of the occurrence of separation 
and the size of the separated regions are found to be dependent on the value of 7. The study depicts 
the formation, growth, and shedding of vortices in the separated region of the main branch and the 

double-helicoidal flow in the side branch. 

1. INTRODUCTION 

It has been experienced that an accurate knowledge of the geometry of arterial segments is 

essential in the analysis of both the deformable characteristics and the hemodynamic properties of 

arteries. In the case of a branched arterial segment or a bifurcation, the geometrical configuration 

is very complex and the task of understanding the elastic and hemodynamic behaviour in the 

neighbourhood of the branching presents a formidable challenge. In its native environment, 

blood flows through a series of bifurcations as it courses its way through the vascular network. 

Flow through branched tubes has been of particular interest, in view of the possibility that 

characteristics of the flow may be related to certain forms of arterial disease. Since diseases and 

defects of the human cardiovascular system remain an important cause of death, researchers are 

expending considerable energy to understand this complex system. Besides biochemical factors, 

the hydrodynamic ones play a major role for atherosclerosis, deposition of blood platelets and 

lipids. Of the various cardiovascular diseases, atherosclerosis is the most frequent one. Deposits 

and blockages are mostly found at bends and bifurcations of human arteries [l-3]. The flow is 

changed there and vorticities as well as secondary flows may also occur at these sites. Of greater 

interest are the stagnation points, the flow separation, the reverse flow, and the reattachment of 

the flow. The duration for which particles remain in such reverse flow areas is a decisive factor [4]. 

The geometry of the bifurcation has an influence over the location of the flow separation, but the 

flow rate is of no less importance. 

General studies have presented steady and pulsatile profiles of velocity in branched tubes 

with a branch-to-trunk area ratio greater than one [5,6]. Kuchar and Ostrach [7] considered 
entrance effects associated with laminar flows of viscous fluids in uniformly circular cylindrical 
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elastic tubes. The problem becomes more complex in the case of branched vessels. Martin 

and Clark [8] experimentally and theoretically analyzed wave reflections in branched flexible 

conduits. Malindzak [9] subsequently made more sophisticated in-vivo analyses of the wave 

reflections. An experimental study was conducted by Matsuo and Okeda [lo] to investigate the 

hydrodynamics of branching flow in relation to the blood supply to the basal part of the brain. It 

was revealed that in the blood circulation, branching loss is important where a small artery divides 

off with a large branching angle from a large trunk. Liepsch [ll] studied the flow behaviour (like 

separation, stagnation, and reattachment points) in bends and bifurcations of arterial models, 

involving steady and pulsatile flow conditions in rigid and elastic models with Newtonian and 

non-Newtonian fluids. He showed that the flow can be optimized in such a manner as to minimize 

the pressure drop. This means that no additional pressure loss due to separation or turbulence 

should occur, since such losses increase the pumping power requirements. 

Roach et al. [12] used a dye to study the flow in glass models of arterial bifurcations. They have 

emphasized the importance of bifurcation geometry and of possible changes in the bifurcation 

geometry in understanding cerebral vascular hemodynamics. Roach [13] pointed out the lack of 

mapping techniques for lesions near the apex of bifurcations. Schneck and Gutstein [14] observed 

some correlation between the occurrence of the atherosclerotic plaques and the angle of bending 

and branching. Rodkiewicz and Howell [15] studied the manner in which the flow divides at an 

arterial bifurcation as a function of the significant dimensionless parameters: Reynolds number, 

unsteadiness parameters, and velocity function parameter. They found that for certain values of 

these parameters, more fluid flows into the side branch. This led to the important conclusion that 

for a bifurcation in a rigid wall, the blood flow generating system, activated by an impulse from 

the brain, could supply more blood to the preferential area of the human body by changing the 

values of these three parameters. Murray [16] studied the relation between the weight of a branch 

of a tree, its diameter, and its branching angle. He showed that the circumference of a branch is 

related to the total weight distal to it by a power function: Weight = 7.08 (circumference)2.4Q. In a 

separate communication [17], he showed that in a blood vessel with laminar flow, when minimal 

power is being used to move the blood, flow c( (radius)3. Uylings [18] developed the concept 

further and showed that at the optimum, flow 0: (radius)(j+2)‘(j-2), where j has the value 4 for 

laminar flow, 5 for turbulent flow, and intermediate values for transitional flow regimes. 

For arterial branching in the cardiovascular system, the dominant mode is that in which a 

single stream of blood divides into two separate streams. The two branch streams may vary 

considerably in their relative size and direction, but the underlying functional phenomenon is the 

same as when a stream of blood is divided into two separate streams. In the study of vascular 

anatomy, a distinction is generally made between a branching side at which a parent artery 

divides into two nearly equal branches and one in which the parent artery gives off a relatively 

small branch. The rather rare case, in which the two branch streams are equal, shall be referred 

to as a symmetrical bifurcation. The complex flow pattern at the bifurcation of a stream makes a 

complete analysis of the problem nearly impossible. However, by adopting the conformal mapping 

technique, the complex nature of three-dimensional flows in the case of arterial branching has 

been demonstrated here. 

Figure la. Schematic diagram of the horizontal 

cross-section (in the z-plane) of the arterial 

segment having a bifurcation. 

Figure lb. C-plane. 
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The present paper deals with an analysis of blood flow in arterial bifurcations. The analysis has 

been carried out analytically by using the conformal mapping approach. The branched artery has 

been modelled as a circular tube having a circularly cylindrical branch. The analysis performs in 

the situation where a single stream divides into two separate streams. Numerical computations 

for a specific case reveal several very important aspects of arterial flow near bifurcations. 

2. PROBLEM FORMULATION 
AND TECHNICAL ASSUMPTIONS 

Let us consider a nonsymmetrical bifurcation in an arterial segment (having circular cross- 

section), which consists of a parent artery and two daughter branches of unequal diameters. 

Here, the vascular bed has been considered horizontal. Figure la shows the horizontal cross- 

section through the axes of the arterial segments. The analysis has been performed on the basis 

of the 

(i) 

following simplifying assumptions: 

The flow energy is supplied only at the beginning of the system, and there are no energy 

sinks in the system due to bifurcation or, if present, it takes place downstream of the 

junction. 

(ii) The flow is steady and axisymmetric. 

(iii) Blood may be treated as a homogeneous fluid with low viscosity. 

(iv) The walls of the channel are considered to be rigid. 

3. METHOD OF SOLUTION 

The problem will be analyzed here by employing the method of conformal mapping, by con- 

sidering the viscosity of blood to be small. In Figure la, EFDDACCBE represents schematically 

the geometrical configuration of the boundaries of a section of the arterial bifurcation. F is taken 

as origin and the axes of z and y are chosen along FD and FB, respectively, in the z-plane. 

cx denotes the angle of bifurcation CAD. The boundaries of the arterial wall segment are taken 

to be straight. 
By using the Schwarz-Christoffel theorem, the various boundaries of the arterial junction 

(cf. Figure la) may be transformed to the real axis of a C-plane (cf. Figure lb), and the re- 

gion of flow between the boundaries is transferred to the upper half of the c-plane. 

Referring to Figure lb, the expression for the transformation function is given by 

dz -K <l-h 

;i3 = (C + n) cc + m> (C - 1) (1) 

= Kc-d, 
(n - mY(l + n) c : n 

-- 
(n-m;;l+m) c: 

-- 
m (I+m;(l+n)<ll i2) 1 

in which K is a complex constant and m, n are real unknowns that represent, respectively, the 

distances AD and AE. m and n have been calculated at a later stage. 

Throughout this study, a subscript 0 shall be used to refer to the parent artery, subscript 1 to 

the larger of the two daughter branches, and subscript 2 to the smaller branch. 

With F as origin in the z-plane and using the standard results of integration [19], the integration 

of equation (2) between A and B (cf. Figure la) yields 

2rzcsccr-2(ro-ri) cota-22i(re-ri) 

[ (n - m(l + n) I 

0 -a/* 
5 

s 

0 -a/n 
=K 

m5+ndC- 
6 

(n-mLI+m) ,<+mdC 

-(l+ m ,‘(1+ ) ” i-1’” J n o. 
1 d< 1 

KT m’-a/” n’-a/” cost - isina 

=sin (n-m)(l+m)-(n-m)(l+n) + (l+m)(l+n) ’ [ 1 o<a<lr, 
(3) 
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in which r denotes the uniform radius of an artery. Assuming K = Ki +i Ks in (3) and separating 

the real and imaginary quantities, we have 

2r~CSCcY-2((Tc-r~)COtcY=- 
ml-a/?r nl-aflr cos ff 

(n-m)(l+m) - (n-m)(l+n) + (I-t-m)(l+n) 1 
and (4 

K2r 

‘lro - ‘1) = sina 

nl-rr/?r ml-a/” 

(n - m) (1 + n) - (n - m) (1 + m) - (1 + Zy(: + n) 1 KIT 
+ (1 + m) (1 + n)’ 

(5) 

Further integrating equation (2) separately in a small interval [-m - E, -m + E] for the point D, 
and [-n -E, -n + E] for the point E in the C-plane, we get 

T1 = 
x ml-“/” (K1 cos a + K2 sin a) 

2(n-m)(l+m) ’ 
and 

TQ = 
A nl+ln (Ki cos (Y + Kz sin a) 

2(n-m)(l+n) . 

For rr = TO, we have from (6)) 
ml-cr/7r nl-a/7r 
-=- 
l+m l+n ’ 

and with the help of (7), we get from (4) and (5), respectively, 

n- 

r2 = 2 (1 + m) (1 f n) 
( KI cos ct + K2 sin (r), 

Ki since = K~COSCY. 

Using (9), the following simplifications can be made from (6) and (8): 

(6) 

(7) 

and (8) 

(9) 

K1 IT nl-a/x set cx K1 r mi-crfz set a! K1 x seca 

To= 2(n-m)(l+n)’ “= 2(n-m)(l+m) 
and 

” = 2 (1 + m) (1 + n)’ (16) 

These expressions may be used to calculate the unknown quantities, tiz. m, n, K1, and K2 for 

a given set of values of r-0, ri, r-2, and (Y. 

As shown in Figure lb, if in the C-plane, two sinks, one each at the points C and D of strengths 

V2 rz and VI rf, respectively, and a source at E of strength VO r$ are considered, the complex 

potential in the C-plane takes the form 

w = -vO rz ln(< + n) + Vi ry ln(C + m) + V2ri ln(C - l), (11) 

in which V denotes the average flow velocity in an artery. If f denotes the flow flux in an artery, 

then 
f =7rr2V. (12) 

Also, the flow balance equation in a bifurcation asserts fe = fi + f2. Thus, we have 

Now, from (11) and (13), we get 

dw V, rf + V2 ~2” 

dC.=- <+n 

Vl rf vz rs - _ 
+C+m+C-I’ 

(13) 

(14) 
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from which the expression for the velocity at any point is obtained as 

dw 

dz= 
g/g=-lG+iv, 

Vl r:: + vz rg 
= 

vlrX+4(C-1) _ Vz&C+n)(C+m) 
Kc1_+ (C + 4 (C - 1) - K <l--a/n K p-a/r 

’ (15) 

in which V, and V, are the velocity components in the x and y directions, respectively. For the 

stagnation point, we must have 

(~r~+V2T~)(C+m)(C-l)-~T;L(C+,)(C-l)-V2T~((.+72)(C+m)=O 

. . . < = (n - m) Vl r: - m (1+ n) vz r-2” 
(n - m) VI r: + (1 + n) V, rZj * 

Introducing the results put forward by Uylings [18], f o( r(j+2)l(j-2) or 

f = Lrp, (17) 

(L being the proportional constant), where j has the value of 4 for laminar flow, 5 for turbulent 

flow, and intermediate values for transitional flow regimes. Thus, for laminar flow p = 3, for 

turbulent flow P = 2.3, and for intermediate flow regimes, the value of p could be expected to 

lie somewhere between 2.3 and 3. Fully turbulent flow, however, may not be developed in the 

arteries. 
Using (12) and (17), we get Vi/V2 = (ri/r2)P-2. Thus, equation (16) becomes 

c= (n-m)--m(l+n)pp 
(n -m)+(l+n)PP ’ 

08) 

where p = rz/rr represents the ratio of the branch diameters. From equation (RX), the position 

of the stagnation point may be located in the C-plane. For different values of (Y and p, m and n 

are different. So the value of C corresponding to the stagnation point depends on the flow rate. 

In other words, as p changes its value, the stagnation point moves along the boundary DAC and, 

correspondingly, the value of C lies between -m and 1. When the stagnation point lies on the 

boundary DA, C varies from -m to 0, and when it lies on the boundary AC, C varies from 0 to 1. 

The stagnation point coincides with the corner A when C = 0, corresponding to which the value 

of p may be considered as critical, tiz. p,,, which is obtained from (18) as 

Per = 
ln(n - m) - ln(m(1 + n)) 

ln P 
(1% 

In order to locate the stagnation point in the z-plane, equation (1) may be integrated along 

AC and AD, which for ro = ri gives 

J 
z 

dz = K 
2 (T2 csc a+iq) J 

c pa/s 

0 (C+n)(C+m)(l --Cl dc’ 
(20) 

in which -m < C < 1. 

4. NUMERICAL APPROACH 

The derived analytical expressions have been computed numerically with the purpose of il- 
lustrating the applicability of the analysis presented in this paper. In order to examine the 
influence of the angle of bifurcation, computations have been carried out for five different values 
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Table 1. Values of < and .z given by equations (18) and (20) for different 3c and Q. 

1 P c 2 

a = 150 3.0 0.6515 0.4229026 

m = 2.0966 2.9 0.6294 0.4007336 

n = 213.6112 2.8 0.6062 0.3786493 

JKJ = 211.53594 2.7 0.5818 0.3565861 

p,, = 1.089 2.6 0.5561 0.3344806 

2.5 0.5291 0.3123751 

2.4 0.5007 0.2902273 

a = 300 3.0 0.6292 0.4228376 

m = 1.8747 2.9 0.6063 0.4003727 

n = 17.4438 2.8 0.5821 0.3777678 

IxY() = 16.876917 2.7 0.5567 0.3551494 

p,, = 1.1511 2.6 0.5301 0.3325394 

2.5 0.5022 0.3098720 

2.4 0.4731 0.2872383 

a = 45O 3.0 0.6106 0.4490159 

m = 1.4885 2.9 0.5873 0.4257418 

n = 6.6285 2.8 0.5628 0.4023003 

(KI = 6.04256 2.7 0.5373 0.3788944 

p,, = 1.1435 2.6 0.5106 0.3553448 

2.5 0.4828 0.3317443 

2.4 0.4538 0.3050074 

a = 60° 3.0 0.6011 0.5013746 

m =1.1326 2.9 0.5781 0.4771510 

n = 3.6691 2.8 0.5542 0.4528799 

IKI = 3.169386 2.7 0.5292 0.4283520 

p,, = 1.0599 2.6 0.5033 0.4037607 

2.5 0.4764 0.3789888 

2.4 0.4486 0.3541123 

Q = 75O 3.0 0.6011 0.5843919 

m = 0.8419 2.9 0.5791 0.5593622 

n = 2.3626 2.8 0.5561 0.5085202 

IKI = 1.97146 2.7 0.5324 0.4913922 

p,, = 0.8966 2.6 0.5078 0.4827769 

2.5 0.4824 0.4568167 

2.4 0.4562 0.4306003 

of CY = 15O, 30’) 45”, 60“, and 75”, while /3 = 0.5. For each of these cases, the flow behaviour 

has been studied with different flow rates by considering p = 3, 2.9,. . . , 2.4. The value of /3 has 

been extended from its physiological range, for better understanding of the problem and for a 

possible use in non-physiological cases. In order to obtain the distance of the stagnation point 
in the a-plane, the right hand side of (20) has been integrated numerically by using Simpson’s 

one-third rule, and the computed results are presented in Table 1. 

The diameter of the parent artery and the larger of the daughter branches are considered to be 
equal to 2 units, whereas the diameter of the smaller of the daughter branches is considered to 
be 1 unit. For the numerical calculations, the flow region is taken to be finite, and the upstream 
end of the main channel is considered to be at a distance equal to its radius, the downstream end 

of the larger daughter branch at a distance equal to thrice its radius, and the smaller branch at a 
distance of 5 times its radius. The length of the branching region is geometrically determined by 

the angle of bifurcation cr and the width of the branched channel. Furthermore, it is assumed that 
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(a) p = 3. 

(c) p = 2.8. 

(b) p = 2.9. 

-031895 C 0.109L7 
y’-0 

(e) p = 2.6. 

(d) p = 2.7. 

435355d -0.17677 

qtso 

(f) p = 2.5. 

(g) p = 2.4. 

Figure 2. Streamlines for or = 15O. 

when p = 3, the average velocity of blood in the entrance region is Ve. Using the numerical results 
for the steady flow corresponding to the aforementioned values of (Y and p, streamiines have been 
drawn (cf. Figures 2-6) to indicate the relative importance of flow rate upon flow paths. 

To find the streamlines within the domain bounded by EFDDACCBE, the loci characterized 
by @ = a constant must be found, which is the information obtained by solving 3 + $$ = 0, 
subject to values of 9 specified on the boundaries. BC, AC, and AD are obviously streamlines, 
since the velocity is along the tangent to these lines. The value ?II = 0 is assigned to the 
segment ED, since it is only necessary to know the value of the stream function to the extent 
of an additive constant. The values of \k along EBC, AC, and AD can be found from the 
relations V, = -i3Z By, v, = g and from the geometrical configuration of the model. The value 
of the stream function is now known at all the points on the boundary, and it remains to satisfy 
Laplace’s equation within these boundaries. The partial derivatives in this equation may be 
approximated by Taylor’s theorem (cf. [20]) f or a function of two variables. The theorem gives 

sqx+h, y+k) = \k(x,y)+ 

and it is assumed that the partial derivatives of IE are continuous up to an order required by the 
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-0.5 e 0.25 

v=o 

(a) p = 3. 
/, 1.5236 

1.32632 

(e) p = 2.6. 

/, I.6328 

(b) p = 2.9. 

-0.20307 

(d) p = 2.7. 

(f) p = 2.5. 

(g) p = 2.4. 

Figure 3. Streamlines for a = 30’. 

accuracy of representation of the function. Equation (21) may be used to approximate both a 

and Wl @’ for example, with k = 0, 

6’9 h2 t129 h3 a39 h4 d4Q 
Q(x+h,y)=Q(x,y)+h,z+,,~+~~+-- 4! ax4 + ‘. ’ ’ 

and (22) 

ax0 h2 a24 h3 a% + h4 a49 
Q(x-h,y)=Q’(x,y)-h,+----- 

2! ax2 3! ax3 jj..jgT-*.*. (23) 

Adding (22) and (23), one obtains 

2h2 a2q 
qx+h,y)+Q(x-h,y)=2Q(x,~)+TG+ 

2h4 a49 --+... 
4! ax4 

If h2 is large compared to h4, by making h suitably small, we can write 

a2f4 
622% 

s(x + h, y) + Q(x - h, y) - 29(x> Y) 

h2 
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(a) p = 3. 
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(c) p = 2.8. 

]_ k::;37 
\y = I.511 

-1.1 
-a757 
u 

5.566L2 
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(e) p = 2.6. 
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/,1.6328 

-0.933 0.6998 

-0.L665y0.2333 

(b) p = 2.9. 

/ AL2152 

(d) p = 2.7. 
/.1.237L2 

(f) p = 2.5. 

/,l.ISLSS 

o.L9ra5 
-0.3299 

- 
.0.16495 

V'O 

(g) p = 2.4. 

Figure 4. Streamlines for o = 45’. 

d29 
&P 

9(x, y + k) + 9(x, y - Ic) - 29(zr, y) 

k2 7 

when k2 is large compared to k4. To satisfy the equation $$ + @ = 0, setting k = h, we have 

Q’(z + h, y) + ‘k(cc - h, y) + \k(z, y + h) + Q’(z, y - h) - 4Q(z, y) = 0. (24) 

This equation must be satisfied at points within the domain of the solution of Laplace’s equation. 
For further work, the interval 0 5 y 5 2 is divided into 16 equal intervals. Taking h = l/8, 

we form a square net on the z-plane. The node at (CC = i h, y = j h) is designated the ij-node, 
i= . ..) -2, -1, 0, 1, 2,. . . ; j = 0, 1, 2,. . . , 16. For the ij-node, we have the relation 
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-0.5 - e.25 

(a) p = 3. 

v-0 
(c) p = 2.8. 

1.1301 
0.9L737 

0.566L2 

0.1.99L7 

(e) p = 2.6. 

0.2333 

(b) p = 2.9. 

(d) p = 2.7. 
1.2 37L2 

0.17677 

(f) p = 2.5. 

3.16L95 

v=o 
(g) p = 2.4. 

Figure 5. Streamlines for Q: = 60°. 

For each interior node, we can obtain a relation similar to (25) involving the stream function \k. 

We thus have a large number of similtaneous equations involving the same number of unknown 
variables 9 at each of the nodes. These simultaneous field equations have been solved by the 
matrix inversion method, by using a high speed computer. After calculating the nodal values 

of the stream function at each node, the streamlines have been drawn by using the method of 
interpolation. 

5. RESULTS AND DISCUSSION 

From the figures, one may note that there is a change in the streamline patterns with increase in 

the flow rate (Reynolds number). At higher flow rates, streamlines are more distinctly displaced 
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(a) p = 3. 

w=o 
(c) p = 2.8. 

0.653 

0.2177 

(e) p = 2.6 

(b) p = 2.9. 

(d) p = 2.7. 
1.237f.2 

0.17617 

(f) p = 2.5. 
I.15165 

(8) p = 2.4. 

Figure 6. Streamlines for Q: = 75O. 

towards the flow divider than those at lower flow rates; the deviation from the axial direction is 

found to be largest for least flow rate, for a given upstream velocity. The separation region grows 

in the main branch when the flow rate decreases and also when the angle of branching is not less 

than 60”. Results indicate further that when the separation region in the main branch increases, 

the separation region in the side branch decreases, and vice versa. Inside the separation regions, 

vortices are generated. The streamlines on the wall, except in this region in the main branch, run 
smoothly downstream. It is to be noted that standing vortex is not seen downstream of the corner 
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for (Y = 15’, 30°, and 45*, but it appears in the side branch for the other cases, and it becomes 
larger as the angle of bifurcation cr increases. For the cases Q! = 60” and 75O, another standing 

vortex is seen on the straight branch (cf. Figures 5 and 6). The vortex point of the bifurcating 

streamline becomes closer to the corner as the angle of branching increases. It is further observed 

from the figures that the size of the vortex in the straight branch increases when the vortex in the 

side branch decreases, and vice versa. Inside the side branch, the flow becomes double-helicoidal, 

which is typical of flows in curved pipes. The stagnation point of the bifurcating streamline is 

nearer to the corner for (Y = 30” than for Q = 15’, but it is at an increasing distance from the 

corner, for o = 45”, 60°, and 75O. From Table 1, it may be observed that as the flow rate in the 

main channel as well as the branching angle increases, the stagnation point of the bifurcating 

streamline moves downstream to the corner. Also, the crititical value of the flow rate index p 

decreases as the angle of branching increases, except for the case when CY = 15’. 

The dependence of the mass flow ratio y (ratio of the flow rate in the side branch to the flow 

rate in the main branch) on the flow rate in the mother trunk is exhibited in Figure 7. This 

graph shows that y decreases with the increase in the flow rate in the main tube. This could be 

attributed to the inability of the fluid to negotiate the turn, due to an increase of its momentum 

in the main-line direction. The change in y is due to a variation in size and location of two 

interdependent (one in the main branch and the other in the side branch) separation regions. 

Since growth of the separation region in the main branch restricts the flow in this branch, the 

mass flow ratio increases. 

Figure 7. Mass flow ratio versus flow rate. 

Our results are in conformity to the experimental observations made by Lutz et al. [21] that as 

the flow proceeds downstream from the entrance, the profiles become progressively more skewed 

towards the ventral side (branch side) of the model. This effect seems to be more pronounced 
as the daughter branch flow is increased and as one proceeds farther downstream. As a result, 

the wall velocity gradient on the dorsal wall (opposite the branches) decreases, resulting in lower 

shear rates there. Eventually, a point of flow separation and flow reversal is detected on the dorsal 
wall. It may be pointed out that both in the present case and in the aforesaid experimental study, 
the model considered is rigid, not flexible. The separation on the outer wall of a daughter branch 

can be eliminated by increasing the flow rate to the branch, keeping the main flow Reynolds 
number fixed. These findings agree with our results. Our results also agree with those of Karino 

and Goldsmith 1221 who investigated the effects of branch angle on flow phenomena in models, 

and reported that vortex formation on the outer wall of a daughter branch occurs at lower values 
of the branch flow ratio as the angle of the daughter branch increases. 
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